
NatNatNNatatttaaaaaa a Ga Gaaa a GGrrrrgugugggguurrrriiiiiinnnnaaaa

Modeling and Simulation in SecondaryModeling and Simulation in Secondary MMooddeelliinngg aanndd SSiimmuullatattiioonn iinn SSeeccoonnddaaryryyy 
Computer Science EducationComputer Science EducationCCoommppuutteer r SScciieenncce e EEdduuccatioatioatattiioonn

Getting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuPPPPPPPeeeeeeegggggggeeeeeeeGGeettttiinngg tthhe e PPiictcttuurrrrrrrrrreeeeeeeeeeeeeeeeeeeeeeeee

G
etting the Picture

M
odeling and Sim

ulation in  
Secondary Com

puter Science Education
Nataša G

rgurina

565438 N Grgurina Cover en kaartje.indd   1565438 N Grgurina Cover en kaartje.indd   1 14-09-21   11:0314-09-21   11:03





Getting the Picture

Modeling and Simulation in Secondary  
Computer Science Education

Nataša Grgurina

565438 N Grgurina.indd   1565438 N Grgurina.indd   1 14-09-21   17:0414-09-21   17:04



© Nataša Grgurina, 2021
All rights reserved. No part of this publication may be reproduced or transmitted 
in any form or by any means, electronic or mechanical, including photocopy, 
recording, or any information storage or retrieval, without permission in writing 
from the author.

Layout:			   Ferdinand van Nispen, my-thesis.nl
Cover design:	 Rein Scholte, www.rwscholte.com
Print:				    GVO drukkers en vormgevers, proefschriften.nl, Ede, NL

Digital version: https://www.my-thesis.nl/grgurina/

The work on this research project was supported by the The Netherlands 
Organisation for Scientific Research grant nr. 023.002.138.

565438 N Grgurina.indd   2565438 N Grgurina.indd   2 14-09-21   20:0314-09-21   20:03

http://www.rwscholte.com/


Getting the Picture

Modeling and Simulation in Secondary Computer Science 
Education

PhD thesis

to obtain the degree of PhD at the
University of Groningen 
on the authority of the

Rector Magnificus Prof. C. Wijmenga
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on 

Thursday 28 October 2021 at 16.15 hours 

by 

Nataša Grgurina
born on Februari 23, 1966 

in Zagreb, Croatia

565438 N Grgurina.indd   3565438 N Grgurina.indd   3 14-09-21   17:0414-09-21   17:04



Supervisors
Prof. K. van Veen
Prof. E. Barendsen
Prof. B. Zwaneveld

Assessment Committee
Dr. M. Helms-Lorenz
Prof. C. Schulte
Prof. V. Dagienė

565438 N Grgurina.indd   4565438 N Grgurina.indd   4 14-09-21   17:0414-09-21   17:04



565438 N Grgurina.indd   5565438 N Grgurina.indd   5 14-09-21   17:0414-09-21   17:04



Table of contents

List of figures 7
List of tables 7

Chapter 1 Introduction 10

Chapter 2 Twenty Years of Computer Science in Dutch 
Secondary Education 

33

Chapter 3 Defining and Observing Modeling and Simulation in 
Computer Science

63

Chapter 4 Investigating Computer Science Teachers’ Initial 
Pedagogical Content Knowledge on Modeling and 
Simulation 

79

Chapter 5 Assessment of Modeling and Simulation in 
Secondary Computing Science Education

97

Chapter 6 Modeling and Simulation: Students’ Understanding 
and Difficulties Related to Verification and Validation

121

Chapter 7 General Conclusions and Discussion 147

Chapter 8 Nederlandse samenvatting 
Modelleren en simuleren binnen Informatica in het 
voortgezet onderwijs

171

References 185
Appendix A 2007 Dutch Secondary CS Curriculum 198
Appendix B: 2019 Dutch Secondary CS Curriculum 201

Abbreviations 211
Curriculum Vitae 212
Research Output 214
Acknowledgment 217

565438 N Grgurina.indd   6565438 N Grgurina.indd   6 14-09-21   17:0414-09-21   17:04



List of figures

Figure 1 Structure of this research project. 30
Figure 2 The Dutch educational system. 36
Figure 3 UML class diagram for vehicle 106
Figure 4 State diagram for vehicle 107
Figure 5 Cases and scores of the HAVO groups 115
Figure 6 Cases and scores of the VWO groups 115
Figure 7 Validating a model 125
Figure 8 Constructing a model 125
Figure 9 Testing a model 126
Figure 10 Testing a model — various techniques 127
Figure 11 Validating a model with others 128
Figure 12 Reflecting on a model 128
Figure 13 Coding categories 129

List of tables

Table 1 CODI program 43
Table 2 CS teachers’ survey results on the question of a national exam 46
Table 3 Frequencies of simulation modeling elements per data source 

per team or student.
72

Table 4 Teachers’ PCK on modeling cycle 85
Table 5 Distinct groups of teachers 91
Table 6 Mean scores and significance levels of differences in the 

performance of the HAVO groups compared to the VWO 
groups.

115

565438 N Grgurina.indd   7565438 N Grgurina.indd   7 14-09-21   17:0414-09-21   17:04



565438 N Grgurina.indd   8565438 N Grgurina.indd   8 14-09-21   17:0414-09-21   17:04



Preface

As a beginning computer science (CS) teacher in secondary school, I had a 
vague notion that familiarity with computer science was going to be important 
for my students because it was going to somehow empower them, and fun to do 
anyway. During the two decades since, computer science, its impact on all aspects 
of our lives, and, ultimately, my thinking about the goals and aims of teaching 
computer sciences evolved drastically. 

Throughout my career as a computer science teacher in secondary education, 
my primary drive has always been to provide my students with knowledge, skills 
and a curious mindset which would be useful to them for the rest of their lives. I 
find teaching modeling and simulation to be perfectly aligned with this goal.

In this thesis, I describe my journey to explore pedagogical aspects of teaching 
modeling and simulation within the elective Computer Science course in the 
upper grades of secondary education in the Netherlands.
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Chapter 1

Introduction

This chapter introduces the research aim of this thesis and outlines its content. 
First, we give a brief overview of computer science education and look at 
computational thinking (CT) and its relation to computer science (CS). We 
introduce four components of content specific pedagogy as a lens through which 
we look at teaching CT and then motivate and explicate our research questions. 
Finally, we present the overview of the thesis.
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1.1	 Computer Science Education

Since the emergence of computers in the 1950’s, learning about them is 
considered important: hence the introduction of computer science (CS) education 
in K-12 worldwide. In this introductory chapter, we portray the aims of teaching 
CS, illustrate these with examples of CS education in K-12 from several countries, 
and describe the exploding interest in teaching some aspect of CS to all students 
with the reintroduction of the notion of Computational Thinking (CT) in the 
2000’s. We then zoom in on modeling and simulation, an aspect of CT that 
has barely been touched upon in the context of Computer Science Education 
Research (CSER) and describe how we look at teaching modeling and simulation 
in secondary CS education in the Netherlands through the lens of pedagogical 
aspects of teaching a particular subject that is derived from the notion of 
Pedagogical Content Knowledge (PCK).

So, why do we teach computer science (CS)? The purpose to teach anything 
can be seen as threefold: (1) qualification — to provide students with knowledge 
and skills to enable them to do something, (2) socialization — to become part of 
existing culture and tradition, and (3) subjectification — to develop autonomous 
and individual thinking and acting (Biesta, 2015). 

The rationales for teaching CS evolve together with CS itself. In the early days 
of computing in the 1950’s, when computers were scarce and difficult to use, the 
focus lay on training for technical jobs — thus providing qualification to students. 
With the increased development and availability of computers in the second half 
of the 20th century, the focus shifted to training for software development and 
use in academia. Nowadays, when computers in all possible shapes and forms 
permeate every pore of our professional, social and private life, the socialization 
and subjectification purpose of learning CS are gaining significance. The motives 
to teach CS refer not only to preparing students for the labor market, but also 
to promoting computational thinking (i.e. “computer scientists’ ways of thinking, 
heuristics and problem-solving strategies”) and computational literacy (i.e. “a set 
of material, cognitive, and social elements that generate new ways of thinking 
and learning”), supporting equity of participation (Blikstein & Moghadam, 2019; 
Vogel et al., 2017), as well as bringing up broader issues of citizenship and civic 
life; scientific, technological and social innovations, school improvement and 
reform, and finally, fun, fulfillment and personal agency (Vogel et al., 2017).
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To meet these needs, computer science is taught worldwide in K-12 education 
in many various forms in an increasing number of countries. In some cases, as 
an independent subject, either as a compulsory subject or as an elective, and in 
other cases integrated in other school subjects. Furthermore, as various as the 
motives are to teach it, so are the interpretations of what is understood under CS. 
In our view, CS — often referred to as informatics or computing science as well— is 
the discipline dealing with scientific and mathematical approach to information 
processing and computation, and design of computing machines. However, 
when it comes to teaching CS, as we will see from several examples below, the 
interpretations of what is understood to be CS vary greatly. CS is considered to 
be about the scientific discipline — in line with our definition, or about digital 
and computer literacy; or about computational thinking, information and 
communication technologies; or about a combination of these (Guerra et al., 
2012).

Illustrative are the examples of countries with various forms of CS education.
Many East European countries introduced CS into secondary schools in the 

1980’s. The aims of teaching CS and the curriculum evolved greatly since then. 
For example, in the current Lithuanian curriculum, CS is a compulsory subject 
in grades 5 - 10 and its focus lies on digital and computer literacy. Additionally, 
there are elective courses on algorithms and programming in the higher grades of 
secondary school (Dagienė & Stupuriene, 2016b). 

In Croatia, a lot has changed since the 1980’s with first programing lessons 
in BASIC and Pascal on the four computers available in a progressive school 
specializing in math and computer science. In 2016, an expert group proposed a 
new comprehensive CS curriculum spanning all grades of primary and secondary 
education and covering four domains: information and digital technologies, 
computational thinking and programming, digital literacy and communication, 
and finally, e-society (Brodjanac et al., 2016). 

In Denmark, CS was a secondary school subject since the late 1960’s. As in 
other countries, it evolved greatly since then, and in the current secondary school 
curriculum, first implemented in 2011, its content is described through seven 
knowledge areas: importance and impact, application architecture, digitization, 
programming and programmability, abstraction and modeling, interaction design, 
and finally, innovation (Caspersen & Nowack, 2013a). In 2016, CS entered all 
Danish secondary schools, as a compulsory subject in certain types of secondary 
schools and as elective in others. A year later, primary schools followed with CS 
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being an optional subject in grades 7-9 (Caspersen & Nowack, 2013a; Vahrenhold 
et al., 2017). 

In Germany, with its sixteen federal states, each with their own educational 
system, the situation concerning teaching CS varies per state. In Bavaria, for 
example, CS has been taught since the 1960’s and currently, as of 2004, it is taught 
in secondary education in grades 6  12 in grammar schools (i.e. gymnasia). In 
the 6th and 7th grade it is compulsory for all students, and in the 9th and 10th 
grades for students in the science and technology track. Additionally, there are 
elective CS courses in the 11th and 12th grade. These courses focus predominantly 
on computing as scientific discipline (Hubwieser, 2012). 

After the dramatic appeal in the Royal Society of England report (Furber, 
2012), the school subject called Computing was introduced in England in 2013 
as a compulsory subject for all students in primary and secondary schools. This 
subject is about computer science, information technology and digital literacy 
(Barendsen et al., 2015). 

France is in the process of introducing CS into primary schools, as an 
integral part of math and technology courses. In 2012, a computer science 
course was introduced for scientific Baccalauréat students only, and since 2014 
a broader computer science course was offered as an optional subject in other 
types of secondary education. Yet, the French Academy of Sciences in their 2013 
report expresses the concerns that “In the computing field, Europe and France 
in particular are far behind, both conceptually and industrially, compared to 
more dynamic countries such as the United States and certain Asian nations” 
and recommend compulsory CS courses emphasizing the concepts, science and 
techniques of computing to be introduced into primary, secondary and tertiary 
education (Teaching computer science in France: Tomorrow can’t wait, 2013). The 
newest development is that in 2020, the two courses in France are replaced by a 
new compulsory course in grade 10 — Digital Sciences and Technology (in French: 
Sciences numériques et technologie (SNT)) and an elective specialist course in 
grades 11 and 12 - Digital and Computer Sciences (in French: Numérique et 
sciences informatiques (NSI)) (School Education in France - Éduscol, 2020).

In the USA, local authorities are in charge of education, and teaching CS varies 
greatly from state to state and within the states. In 2010, a joint report written by 
Computer Science Teacher Association (CSTA) and Association for Computing 
Machinery (ACM) expressed great concern about the failure to teach CS and 
recommends that CS becomes a core academic subject with a curriculum focusing 
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on algorithmic/computational thinking concepts (Wilson, 2010). Subsequently, 
the federal government has put forward and funded a number of initiatives to 
support and advance the CS education, for example Every Student Succeeds Act 
(Every Student Succeeds Act (ESSA), 2015) and President Obama’s CS For All (CS 
For All, 2016).

In the Netherlands, CS has been an established elective subject in the higher 
grades of secondary education since 1998, as described in detail in chapter 2. In 
addition to this subject focusing on computing as a scientific discipline, in the 
lower grades of secondary education, in the late 1990’s and 2000’s, there used 
to be a course focusing on ICT which often got integrated in other courses and 
in the long run died out. In 2012, The Royal Netherlands Academy of Arts and 
Sciences (in Dutch: De Koninklijke Nederlandse Akademie van Wetenschappen, 
further abbreviated as KNAW) published a report expressing their concerns 
about teaching CS and recommended to not only overhaul the existing elective 
CS subject, but also to introduce a new compulsory subject Information & 
communication in the lower grades of secondary education (KNAW, 2012). The 
Dutch situation is described in greater detail in chapter 2.

The situation in the few countries described here is illustrative of the evolution 
of CS education both from the point of view of institutionalized education reforms 
— ranging from no CS education to introduction of mandatory CS education for 
all students, as well as the related intertwined changing and evolving aims and 
objectives of teaching CS — from specialist professional training to fundamental 
life skills. We also see that, as omnipresent and multifaceted the computers and 
their usage are in our modern world, so is the discussion about the necessity and 
aims of teaching CS and the position CS courses get in the curriculum. This great 
variation notwithstanding, the spirit of time is clearly visible in the desire to make 
the CS education available to all students in K-12 and to focus on computational 
problem-solving (Tedre et al., 2018).

This spirit, expressing the desire to empower all students by teaching them 
certain aspects typical for CS, was captured in the 2006 seminal article by Wing 
who rekindled the notion of computational thinking (CT) first introduced by 
Papert (1980) by asserting that, “to reading, writing, and arithmetic, we should 
add computational thinking to every child’s analytical ability” (Wing, 2006). Wing 
globally sketches what CT is and what it is not in her view and stresses that it is 
about attitude and a skill set for everyone, not just computer scientists.
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CT brings together the subject matter from a particular scientific discipline 
— or even from everyday life — seeking to solve a particular problem or find 
an answer to a question, and computing which helps solve that problem or find 
the answer. This CT problem-solving process involves three steps (Barendsen & 
Bruggink, 2019). First, that problem or question is expressed in computational 
terms such as data or processes, thus allowing for use of computing to solve 
it. Second, a computational solution is constructed, either by using existing 
applications or by devising new algorithms and writing new programs. Essential to 
the nature of CT is that this solution should be executable (Martin, 2012). Finally, 
that computational solution is interpreted in terms of the original subject matter, 
thus providing the solution to the original problem or answering the question. 

Wing’s perceived need to teach CT struck a chord with educators and 
researchers who sought to formulate a precise description of this concept and 
devise ways to teach it.

1.1.1	 Definitions of Computational Thinking
There have been numerous efforts to obtain a clear-cut definition of 

computational thinking.
In 2010 in the USA, the National Research Council held a workshop on the 

nature and scope of Computational Thinking (CT). While there was a broad 
consensus on the importance of (teaching) CT, the workshop did not result in an 
exclusive definition of this concept (Thinking & Council, 2010). The Computational 
Thinking Task Force of the Computer Science Teachers Association (CSTA) in the 
USA did, however, suggest an operational definition of CT tailored to the needs of 
K-12 education. In their framework, they describe CT as follows:

�CT is a problem-solving process that includes (but is not limited to) the following 
characteristics:
•	 Formulating problems in a way that enables us to use a computer and 

other tools to help solve them
•	 Logically organizing and analyzing data
•	 Representing data through abstractions, such as models and 

simulations
•	 Automating solutions through algorithmic thinking (a series of ordered 

steps)
•	 Identifying, analyzing, and implementing possible solutions with the 

goal of achieving the most efficient and effective combination of steps 
and resources
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•	 Generalizing and transferring this problem-solving process to a wide 
variety of problems.

In addition to this definition, they touch upon necessities for students’ learning of 
CT and add:

These skills are supported and enhanced by a number of dispositions or attitudes 
that are essential dimensions of CT. These dispositions or attitudes include:
•	 Confidence in dealing with complexity
•	 Persistence in working with difficult problems
•	 Tolerance for ambiguity
•	 The ability to deal with open-ended problems
•	 The ability to communicate and work with others to achieve a common 

goal or solution. 
Furthermore, a vocabulary of CT is supplied, describing CT in terms of its core 

concepts: data collection, data analysis, data representation, problem decomposition, 
abstraction, algorithms & procedures, automation, simulation and parallelization 
(CSTA Computational Thinking Task Force, 2011).

This view of CT as a problem-solving process puts emphasis on the construction 
of a computational solution for a given problem after that problem is expressed in 
computational terms.

While this definition is intended to portray CT across disciplines and is by no 
means meant to be limited to CS, there are also initiatives to define CT specifically 
with CS in mind.

The Carnegie Mellon Center for Computational Thinking (CMCCT), with its 
mission to develop computing research, developed a CT framework describing 
CT as consisting of three aspects: making use of abstraction and modeling, thinking 
algorithmically, and understanding scale (Carnegie Mellon Center for Computational 
Thinking, 2010).

Brennan and Resnick observed activities of Scratch programmers and 
derived a definition of CT through its three dimensions: computational concepts 
(i.e., sequences, loops, events, parallelism, conditionals, operators and data), 
computational practices (i.e. being incremental and iterative, testing and debugging, 
reusing and remixing, and, abstracting and modularizing), and computational 
perspectives (i.e. expressing, connecting and questioning) (Brennan & Resnick, 
2012).

In an effort to find common ground in various definitions of CT, Selby 
and Woollard (2013) describe CT as “a focused approach to problem solving, 

565438 N Grgurina.indd   18565438 N Grgurina.indd   18 14-09-21   17:0414-09-21   17:04



1

Introduction

19

incorporating thought processes that utilize abstraction, decomposition, 
algorithmic design, evaluation, and generalizations” — thus emphasizing those 
steps of CT problem-solving process which express the original problem in 
computational terms and interpret the computational solution in the domain 
where the problem originates (Barendsen & Bruggink, 2019).

The discussion about the precise definition of CT is still going on (Grover & 
Pea, 2018; Guzdial, 2018) and there are many authors who express their vision 
about the importance of CT and the definition as they see it (Allan et al., 2010; 
Caspersen & Nowack, 2013b; Fletcher & Lu, 2009; Henderson, 2009; Hu, 2011; 
Kafai & Burke, 2013; Malyn-Smith et al., 2018; Wing, 2006, 2008, 2014).

However, not everyone is convinced about the idea of CT. Some authors are 
troubled by the lack of consensus on a precise definition of CT and the unresolved 
question on how exactly is CT different from, for example, mathematical thinking 
(Jones, 2011) or problem solving (Glass, 2006). Hemmendinger (2010) warns not 
to get carried away with the newest fad and says many elements of CT are not 
unique or exclusively reserved for CS. Denning (2009) agrees and sees another 
problem with CT: that it might be seen as characterization of CS, which is 
most definitely not the case in his view; “Computational thinking is one of the 
key practices of computer science. But it is not unique to computing and is not 
adequate to portray the whole of the field.” Then, together with Tedre (2016), 
he goes on to examine a number of threats to CT initiatives, as so does Guzdial 
(2015) from a practical point of view.

1.1.2	 Instructional Approach and Assessment
Regardless of the critical sounds, CT has gained a huge momentum and 

there are many initiatives to weave it into the school curricula. The idea that CS 
education — which could arguably be considered a natural habitat for CT — and 
more specifically, various forms of programming education — could contribute 
to the development of students’ CT is very common (Bers et al., 2014; Davies, 
2008; Gouws et al., 2013a; Grover, 2011; Howland et al., 2009; Kafai et al., 2013; 
C. C. Selby, 2014; Walden et al., 2013; Weintrop & Wilensky, 2013). However, Lu 
& Fletcher (2009) add that, conversely, students proficient in CT might be more 
inclined to major in CS and there are even initiatives to teach a CT for CS course 
to students without prior CS knowledge (Kafura & Tatar, 2011).

Looking from a different perspective, since CT can form a bridge between 
CS and an application domain, there are numerous suggestions to employ CT 
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to advance the learning of science outside the CS education. Examples include 
incorporating CT into middle school life science classes (Cateté et al., 2018; 
Gendreau Chakarov et al., 2019) and then using sensors to observe mold growth 
(Gendreau Chakarov et al., 2019); or, for science majors, by integrating CT into 
a bioinformatics course (Qin, 2009) or by focusing of computational principles 
in scientific inquiry (Hambrusch et al., 2009). Learning science can be supported 
through the use of modeling and simulation — an integral aspect of CT — too: 
for example, by developing computational models and simulation for science in 
grades 4-6 (Basu et al., 2013, 2014; Dwyer et al., 2013) or for physics in grade 9 
(Aiken et al., 2012), often by employing tailor-made software (Basawapatna et al., 
2013). It is suggested that CT can help put modeling — a core aspect of engagement 
in science (Justi & Gilbert, 2002) — within the reach of K-12 students (Sengupta 
et al., 2013; Wilensky, 2014; Wilensky et al., 2014). Teaching CT found its way 
also into, for example, games where children specify the algorithms describing the 
behavior of the characters in a game (Weller et al., 2008); music with musical live 
coding in Scratch (Ruthmann et al., 2010), and journalism where middle school 
students together with their teachers develop news stories and present them as 
text, video and animations in Scratch (Wolz et al., 2010). There are also suggestion 
to promote CT through contests. Bebras is an international contest for primary 
and secondary schools where tasks are categorized according to concepts they 
cover and it is suggested they can be incorporated into curriculum to promote CT 
(Dagienė & Sentance, 2016).

In parallel with these specific endeavors, comprehensive frameworks are 
being developed to inform and guide the integration of CT into K-12 curricula, 
with special attention given to classroom techniques, focusing on instructional 
approach. For example, by introducing into K-6 education various CT programs, 
courses or modules based on generic CT framework containing CT skills 
abstraction, generalization, decomposition, algorithmic thinking and debugging, 
through a holistic design approach (Angeli et al., 2016). Curzon et al. (2014) provide 
a framework with examples to help teachers teach CT, consisting of four stages: 
(1) definition, (2) concepts (algorithmic thinking, evaluation, decomposition, 
abstraction, generalization), (3) classroom techniques with examples of learners’ 
behavior, and (4) assessment which can be performed with an adapted version of 
assessment used for the subject Computing. For higher education, Perkovic et al. 
(2010) developed a framework to be used at their university “by faculty without 
formal training in information technology in order to understand and integrate 
computational thinking into their own general education courses” and provide 
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examples for CT implementation in various courses. While this example is not 
from K-12 education, it is illustrative of the challenges facing educators who are 
about to engage in teaching CT.

Lee et al. (2011) formulated suggestions for instructional strategies supporting 
the development of CT, too. First, they advise to have students work in rich 
computational environments, and second, to scaffold interactions into a three-
stage progression that describe the stages of engagement of learners in these rich 
computational environments: use — modify — create. Touretzky et al. (2013) 
suggest a progression from simple to more complex programming language in a 
CS course in order to bring students closer to true CT.

Teaching goes hand in hand with assessment, so when CT finds its way into 
the education, the question arises how to assess it. There are already numerous 
attempts to do so: for example, Koh et al. (2014) developed Computational 
Thinking Pattern Analysis to analyze CT patterns in games submitted by students 
and found that a promising approach. Werner et al. (2012) looked at the games 
produced by their students too and based their assessment on the CT framework 
developed at CMCCT (Carnegie Mellon Center for Computational Thinking, 2010). 
They asked middle school students to modify and fix existing Alice programs 
in order to assess the first two aspect of the CMCCT framework (making use of 
abstraction and modeling, and thinking algorithmically) and concluded that this 
was a promising strategy for assessment (Werner et al., 2012). Similarly, Brennan 
and Resnick (2012) — after having developed their framework that describes CT 
in terms of computational concepts, computational practices and computational 
perspectives — tried three approaches to assess the development of CT of young 
people programming in Scratch. They describe strengths and limitations of these 
approaches, conclude that none of them was particularly effective, and finally 
formulate six suggestions for assessing CT via programming (Brennan & Resnick, 
2012):

1.	 assessment should support further learning
2.	 creating and examining projects should be an integral part of the 

assessment
3.	 the project designer should illuminate the design process
4.	 (formative) assessment should take place at multiple moments 

during the project development
5.	 value multiple ways of knowing
6.	 include multiple viewpoints.
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Lye and Koh (2014) then used the framework suggested by Brennan and 
Resnick — describing CT in terms of computational concepts, computational 
practices and computational perspectives — to analyze 27 intervention studies 
about development of CT in CS courses in K-12. Their findings were that most 
of these interventions focus on computational concepts while computational 
practices and perspective barely get any attention, and they go on to recommend 
an instructional approach described as “a constructionism-based problem-solving 
learning environment, with information processing, scaffolding and reflection 
activities, could be designed to foster computational practices and computational 
perspectives.”

1.1.3	 Teachers
With all this attention to CT, it is important to facilitate the teaching itself. 

There are voices expressing concerns whether teachers are ready to teach CT 
without specific preparation (Perković et al., 2010). Bort and Brylow (2013) 
set out to measure the integration of CT core concepts into lesson plans of the 
teachers attending their Computer Science for High School (CS4HS) workshops 
and found that, while the teachers were enthusiast, there was ample room 
for improvement of the lesson plans the teachers produced. Digging deeper, 
Czerkawski (2013) surveyed six instructional designers on their ideas how to 
promote the ideas of CT in the curriculum, with instruction based on ADDIE 
model (Analysis, Design, Development, Implementation and Evaluation) and 
particular emphasis on analysis and design phases. The findings are described 
in terms of: dispositions and characteristics of the learners, teaching strategies, 
learning outcomes, pedagogical considerations, adult learning considerations, 
user experience, instructional prototype & curriculum design, and finally, 
visual and multimedia design. Together with Xu, they provide a sample activity 
plan for CT in educational technology courses (Czerkawski & Xu, 2012). Yadav 
et al. (2014, 2011) observed that most of the efforts to familiarize teachers with 
CT are focused on CS teachers and turned their attention to pre-service teacher 
training of primary and secondary teachers of other disciplines. They introduce 
a compulsory CT module into the teacher education and observe that it results 
in a positive attitude of the students towards CS and integration of computing 
into their teaching. To further advance teacher preparation, they recommend to 
redesign courses on educational technology and methods to better develop future 
teachers’ competencies in CT, and to have education and CS faculty jointly work 
on these efforts (Yadav et al., 2017). 
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As a part of growing body of research resulting in recommendations 
concerning teaching CT, there is also a budding interest to look specifically at 
CS teachers (Mara Saeli et al., 2012; Yadav & Berges, 2019) by examining their 
Pedagogical Content Knowledge (PCK) — subject matter knowledge for teaching 
(Shulman, 1986). PCK represents teacher’s thoughts about teaching a particular 
topic and it can be described with various granularity, taking into account a range 
of circumstances influencing teaching (Carlson & Daehler, 2019; Grossman et al., 
2005; Loughran et al., 2004; Magnusson et al., 1999). 

The most cited model of PCK is that of Magnusson et al. (1999), defining five 
knowledge components of the construct of PCK. Four of these correspond to the 
following elements of content-specific pedagogy, which we will refer to as M1, 
M2, M3 and M4: 

•	 M1: goals and objectives for teaching this particular content; 
•	 M2: students’ understanding of this content, including requirements 

for learning and their difficulties;
•	 M3: instructional strategies connected to this content;
•	 M4: methods of assessing students’ understanding of this content.
Most definitions and operationalizations of PCK share their recognition 

of the above components. Magnusson et al. (1999) also proposed ‘orientations 
to teaching science’ as a fifth knowledge component. We do not include this 
component in our analyses, as it is considered less content-specific, and moreover, 
it is presented as an underlying type of knowledge influencing M1 to M4 (cf. 
Henze & Barendsen, 2019). 

In this thesis, we will use M1 to M4 to indicate the pedagogical aspects of 
specific content, as well as to characterize components of teacher’s PCK for 
teaching that content.

1.1.4	 Computer Science Education Research
The above scientific developments are illustrative of the emerging Computer 

Science Education Research (CSER) — a research field inspired and building 
upon rich traditions of related research fields (Guzdial & Boulay, 2019; Malmi et 
al., 2010). Following the call from the students, parents, educators, institutions, 
governments and other stakeholders to advance CS education (Furber, 2012; 
Gander et al., 2013; KNAW, 2012; Teaching computer science in France: Tomorrow 
can’t wait, 2013; Wilson, 2010), researchers see a role for themselves to support CS 
education by supplying solid theoretical underpinnings for its implementation. 
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To the CSER researchers, students’ learning is traditionally of interest, and this 
topic is accompanied by interest in teaching methods, pedagogy and learnability; 
assessment issues and learning analytics; tools, and curricular aspects. Moving 
outside the classroom, we see interest in professional development of teachers; 
participation and equity issues, blended and informal learning experiences; and 
social and global challenges in CS education. Furthermore, we observe a growing 
demand for academic rigor in CSER and a continuous encouragement to conduct 
a sound academic debate on new or unresolved issues. 

1.2	 Situation in the Netherlands

We turn our attention to the Netherlands to explain the situation of the 
educational context where this project was carried out and to motivate the specific 
research questions.

We see that teaching CT problem-solving skills did not get enough attention 
from policy makers and was hardly represented in school curricula in general 
(Barendsen & Zwaneveld, 2010), and that the situation of the elective Computer 
Science (CS) course in the upper grades of secondary education was far from 
thriving, as described in chapter 2. However, recent developments are promising: 
since the fall of 2019, the Computer Science (CS) course in the upper grades 
of secondary education is taught according to a new curriculum (described in 
more detail in section 2.3.3). For the K-9 education (i.e., elementary schools 
and lower grades of secondary education — see figure 2), there is a plethora of 
initiatives to advance digital literacy, media wisdom, ICT skills, information skills, 
computational thinking, programming, coding, and any combination of these. 
One of them is the nationwide curriculum.nu1 initiative where teachers and 
school administrators cooperate on a project to overhaul the whole of the K-9 
curriculum and define it in terms of nine connected and coherent domains; one of 
them is to be the new domain Digital literacy. 

Digital literacy is described in terms of big assignments that express the essence 
of the discipline: Communicating and collaborating, Digital citizenship, Data 
and information, Using and managing, Applying and designing, Digital economy, 
Security and privacy, and finally, Sustainability and innovation. All of these big 
assignments encompass four perspectives: dealing with, thinking over, creating 
with, and, knowledge of. These perspectives are all connected to the interpretation 

1   Https://curriculum.nu

565438 N Grgurina.indd   24565438 N Grgurina.indd   24 14-09-21   17:0414-09-21   17:04



1

Introduction

25

of digital literacy by the Dutch National institute for curriculum development 
(Dutch: Stichting leerplanontwikkeling, SLO), which is described as containing 
four elements: ICT skills, Media wisdom, Computational thinking and Information 
skills (Computational thinking, 2020; Thijs et al., 2014a). The big assignments are 
situated in three contexts: personal life, society, and, education and profession. 

It is expected that this curriculum.nu initiative — and in particular its domain 
digital literacy — will fill the gap signaled in the report by The Royal Netherlands 
Academy of Arts and Sciences (2012) by providing the desired subject Information 
& communication in the lower grades of secondary education, albeit under a 
different name. It is also presumed that digital literacy will seamlessly tie into 
the Computer Science (CS) course in the upper grades of secondary education 
(described in detail in chapter 2), as recommended in the new 2019 curriculum 
for the Computer Science (CS) document (Barendsen & Tolboom, 2016).

One might think that students who follow a computer science course would 
become proficient at computational thinking spontaneously — a wish harbored 
by many a secondary school computer science teacher. Furthermore, secondary 
CS education should cater not only to those of the students who plan to pursue 
careers in computer science or some related field, but first and foremost to the 
majority of the students who will chose to do something else (Guzdial, 2019). 
Therefore, the question arises, what aspect of computational thinking tends to be 
underexposed in the typical CS classroom, as well as important and meaningful to 
all of the secondary CS students, thus deserving more of our attention. The answer 
is modeling and simulation — a set of new learning objectives introduced in the 
2019 secondary CS curriculum in the Netherlands. As described in section 3.1, 
this curriculum unites modeling and simulation under the name Computational 
Science2 and provides the following description: “Modeling: The candidate is 
able to model aspects of a different scientific discipline in computational terms” 
and “Simulation: The candidate is able to construct models and simulations, and 
use these for the research of phenomena in that other science field.” Additionally, 
modeling itself is to be a part of the compulsory core curriculum, described as 
“Modeling: The candidate is able to use context to analyze a relevant problem, limit 
this to a manageable problem, translate this into a model, generate and interpret 
model results, and test and assess the model. The candidate is able to use consistent 
reasoning.” (Barendsen & Tolboom, 2016).

2   In this thesis, we use terms modeling, modeling & simulation and Computational Science 
interchangeably, unless explicitly stated otherwise.
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1.3	 Research Questions

As seen in the examples in section 1.1, there are numerous attempts to employ 
CT aspects modeling & simulation within courses other than CS to support the 
learning of the subject matter in those courses. Modeling & simulation is considered 
to be a fundamental part of CT (CSTA Computational Thinking Task Force, 2011): 
modeling builds a bridge where a problem in a particular discipline meets CS 
by expressing the original problem in computational terms and interpreting the 
computational solution in the domain where the problem originates. (Barendsen 
& Bruggink, 2019). To run a simulation with that model, a computational solution 
is constructed, either by using existing applications or by devising new algorithms 
and writing new programs, thus clearly engaging in typical CS activities.

We embrace this idea of using CT aspects modeling & simulation to support 
the learning of the subject matter of various disciplines, but we choose to do so 
from within a CS course, taking the learning objectives of Computational Science 
in the Dutch 2019 secondary CS curriculum as our starting point.

There are ample courses that teach modeling, and ample courses that teach 
scientific inquiry, and ample courses that teach programming. However, we are 
not aware of research into teaching a combination of these in a CS course, where 
all three steps of the CT problem-solving process get sufficient attention — in 
other words, where expressing a problem in computational terms and interpreting 
computational solution in terms of the original subject matter get as much 
attention as the construction of an executable computational solution.

Considering our interest in teaching modeling and simulation, we see that 
a research project that looks into curricular issues, students’ learning, teaching 
methods, assessment, and professional development of teachers regarding 
modeling and simulation within a secondary CS course would fit seamlessly into 
the contemporary CSER program. We are, then, interested in teaching modeling 
and simulation as described in the new Dutch curriculum, i.e., as generic scientific 
competences within a CS course meant to equip the students with skills to 
perform scientific inquiry in any discipline of their interest. We therefore engage 
in a research project with the main objective to explore the pedagogical aspects 
of Computational Science and the CS teachers’ PCK for teaching Computational 
Science.
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As announced earlier, we will use Magnusson’s (1999) components M1 to 
M4 to characterize these pedagogical aspects, as well as the respective categories 
within teachers’ PCK. 

M1	 goals and objectives 
M2	� students’ understanding (including requirements for learning 

and their difficulties) 
M3	 instructional strategies 
M4	 methods of assessment.

We translate our main objective into four research questions: 
RQ1	� What computational thinking activities constitute the problem-

solving process associated with Computational Science? This 
question is aims to find an operational definition of the learning 
goals and objectives of Computational Science. (M1) 

RQ2	� How can the students’ understanding of modeling activities 
be portrayed in terms of their requirements for learning and 
difficulties they encounter? (M2)

RQ3	� What are characteristics of a valid and reliable assessment 
instrument for Computational Science? (M4)

RQ4	� How can the teachers’ PCK for teaching Computational Science 
be portrayed in terms of the four components M1 to M4 of PCK?

We will address instructional strategies for Computational Science (M3) by 
designing a learning activity for Computational Science in the context of RQ3.

1.4	 Structure of the Dissertation

In this section, we describe the structure of this thesis. We list the studies 
we performed to depict the context where this research project took place and 
the studies of the research project themselves, together with specific research 
questions they aim to answer and how the findings from particular studies inform 
the consequent studies.

After the introductory chapter, chapter 2 of this thesis reports on a context 
study portraying the birth and the first decade of the elective computer science 
course in higher grades of senior secondary education (in Dutch: HAVO) and 
pre-university education (in Dutch: VWO) in the Netherlands. It sketches the 
Dutch educational system, the position of computer science within the secondary 
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school curriculum, the objectives of this course and the intended assessment. 
Furthermore, the in-service teacher training for the first ever CS teachers is 
described together with their experiences and practices in teaching this new 
subject. The first part of the chapter concludes with the discussion of the many 
challenges and concerns faced by computer science in secondary education in 
the Netherlands during its first decade. The second part of this chapter describes 
the second decade of the computer science course in secondary schools in the 
Netherlands. It describes the events and processes that led to the renewal of the 
curriculum for this course, the curriculum itself with the principles it is based on 
and its aims, the current process of the teaching material development, the related 
research, the teacher training, curriculum reform in primary and lower secondary 
education, and the current situation of computer science as an upper secondary 
school subject, together with the challenges it still faces. This chapter is based on 
the articles The First Decade of Informatics in Dutch High Schools (Grgurina 
& Tolboom, 2008) and The Second Decade of Informatics in Dutch Secondary 
Education (Grgurina, Tolboom, et al., 2018).

Chapter 3 zooms in on modeling and simulation. Under the name 
Computational Science, modeling and simulation is included as an elective theme 
in the new 2019 Dutch secondary school computer science curriculum. This 
chapter is primarily devoted to answering our first research question related to 
Magnusson’s component M1: What computational thinking activities constitute 
the problem-solving process associated with Computational Science? It presents 
our first study that focuses on establishing an operational description of the 
intended learning outcomes of Computational Science describing the activities 
a student engages in when exploring a phenomenon of their choice through 
modeling and simulation. Furthermore, it reports what data sources are found to 
be suitable to monitor students’ learning outcomes when engaging in modeling 
activities — Magnusson’s component M4 — thus setting the stage to answer our 
third research question: What are characteristics of a valid and reliable assessment 
instrument for Computational Science? Finally, this chapter explores what specific 
challenges do the students experience when engaging in modeling activities — 
Magnusson’s component M2 — thus touching upon our second research question: 
How can the students’ understanding of modeling activities be portrayed in terms 
of their requirements for learning and difficulties they encounter? This chapter 
is based on the paper Defining and Observing Modeling and Simulation in 
Informatics (Grgurina et al., 2016)
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Informed by the findings from the previous study, chapter 4 describes our 
second study that portrays computer science teachers’ initial pedagogical content 
knowledge (PCK) on modeling and simulation — Magnusson’s component M3 
— thus answering our fourth research question: How can the teachers’ PCK of 
teaching Computational Science be portrayed in terms of the four components 
of PCK? This chapter is based on the paper Investigating Informatics Teachers’ 
Initial Pedagogical Content Knowledge on Modeling and Simulation (Grgurina 
et al., 2017).

In chapter 5 we describe our third study focusing on the development of an 
assessment instrument as a part of a lesson unit on Computational Science, to 
monitor the levels of understanding in the learning outcomes of students engaging 
in modeling projects. Here we focus on Magnusson’s component M4 and on 
answering our third research question: What are characteristics of a valid and 
reliable assessment instrument for Computational Science? The development of 
this assessment instrument and the teaching materials for the lesson unit is based 
on the findings of the two previous studies which provided us with an operational 
description of the intended learning outcomes of Computational Science — 
Magnusson’s component M1 — and with CS teachers’ initial PCK on modeling 
and simulation that specifically contributed to our understanding of suitable 
instructional strategies — Magnusson’s component M3. This chapter is based 
on the paper Assessment of Modeling and Simulation in Secondary Computing 
Science Education (Grgurina, Barendsen, Suhre, Zwaneveld, et al., 2018). 

Chapter 6, our final study, looks into students’ understanding — Magnusson’s 
component M2 — while they work on computation science assignments with 
the teaching materials which we developed using the findings of the first two 
studies which informed us about suitable instructional strategies — Magnusson’s 
component M3. Here we focus on our second research question: How can the 
students’ understanding of modeling activities be portrayed in terms of their 
requirements for learning and difficulties they encounter? In particular, we focus 
on the students’ understanding of the model validation in terms of validation 
techniques they employ to ensure the development of valid models.

Figure 1 depicts the structure of this research project. The first study (chapter 
3) informed the second study (chapter 4). Together, they informed the third and 
the fourth study — chapter 5 and chapter 6.
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Figure 1: Structure of this research project.
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Chapter 2

Twenty Years of Computer Science 
in Dutch Secondary Education 

Computer science (CS) is currently being taught in secondary education all over the 
world. In the Netherlands, where all students were expected to become computer 
literate in the lower grades of secondary education (Hulsen et al., 2005) it has been 
decided not to consider computer literacy as being part of CS. What, then, should 
be the content of the CS curriculum taught in the higher grades? What should be 
taught, how and to whom? How should students’ achievements be assessed? The 
answers to these questions completely depend on defining what the objectives of 
teaching CS are. In the first part of this chapter, these objectives are discussed, 
along with the content of the Dutch secondary education CS Curriculum when 
the course was first introduced in 1998, and the experiences resulting from the 
initial implementation of this curriculum during its first decade, including the 
setting in which CS found itself.
In the second part of this chapter, we describe the second decade of CS in the 
Netherlands: CS reached adulthood with established teacher training programs 
and a new curriculum which is introduced in 2019. Here we describe the events 
and processes that led to the renewal of the curriculum, the curriculum itself with 
the principles it is based on and its aims, the current process of teaching material 
development, the related research, the teacher training, curriculum reform in 
primary and lower secondary education, and the current situation of CS as an 
upper secondary school subject, together with the challenges it still faces. From 
this description of the educational context in the Netherlands also follows the 
rationale for our research. 

This chapter is based on articles Grgurina, N., & Tolboom, J. (2008). The First 
Decade of Informatics in Dutch High Schools. Informatics in Education, 7(1), 55-
74 and Grgurina, N., Tolboom, J., & Barendsen, E. (2018), and The Second Decade 
of Informatics in Dutch Secondary Education. In International Conference on 
Informatics in Schools: Situation, Evolution, and Perspectives (pp. 271-282). 
Springer, Cham.
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2.1	 The Dutch Educational System

Figure 2 shows the organization of the Dutch Educational System (Jansen, 
2007). After completing elementary school at the age of twelve, the students go on 
to different kinds of secondary education. The VMBO3 type of school, lasting four 
years, leads to vocational education. The HAVO4 type of school (senior secondary 
education) lasts five years and prepares students for higher professional education, 
while the VWO5 type of school (pre-university education) lasts six years and is 
geared toward further education at a university. Secondary education ends with 
national exams covering nearly all the subjects taught. In this thesis, we will be 
focusing solely on senior secondary education and pre-university education. In 
these schools, every student has the same curriculum in grades seven through nine. 
While in the ninth grade, a student then chooses the curriculum to be followed in 
the subsequent higher grades. In 1998, education in these higher grades (10 and 
11 for senior secondary education; 10 through 12 for pre-university education) 
went through major modifications (College voor Toetsen en Examens, 1998). It 
was decided that the curricula for all existing courses needed to be re-examined 
and that several new ones should be introduced, one of these being CS. Previously, 
in 1995, the Course Developer Group had been assigned the task of developing a 
curriculum for a CS course to be taught in grades ten and higher (Ginjaar-Maas, 
1994). In this re-examination, all courses were categorized as either compulsory 
(e.g. the Dutch language, physical education) or profile courses belonging to one 
of the four profiles a student can choose from (Culture and Society; Economy and 
Society; Nature and Health; Nature and Technology). In addition, there were to 
be elective courses available to all students, one of these being CS. A student first 
chooses one of the four profiles. Then, in addition to these compulsory and profile 
courses, every student then takes one or two courses of his/her own choice, either 
a profile course from another profile or a “free” course.

3   VMBO: Voorbereidend middelbaar beroepsonderwijs: prevocational education
4   HAVO: Hoger algemeen voorbereidend onderwijs: senior secondary education
5   VWO: voorbereidend wetenschappelijk onderwijs: pre-university education
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Figure 2: The Dutch educational system. The shaded blocks represent those grades in which the students 
can choose CS

2.2	� The First Decade of Computer Science in Dutch 
Secondary Education

In the first part of this chapter, we describe the introduction of CS as an elective 
subject in the higher grades of pre-university and senior secondary education in 
the Netherlands.

2.2.1	 The birth of Computer Science Education in the Netherlands
Before CS was introduced in the higher grades of the secondary education in 

1998, only a few schools offered some form of CS education, and in those cases, it 
was organized by teachers on an individual basis. Only since the Course Developer 
Group was assigned the task of developing a curriculum for a CS course to be 
taught in grades ten and higher (Hacquebard et al., 1995), has structural attention 
been paid to CS in secondary education.
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2.2.1.1	 Objectives
The curriculum for this new CS course, regarded as a science discipline, was 

developed with several underlying principles in mind. Its aim was to provide 
students with an understanding of information technology concepts, and to give 
them a sense of the potential and limitations of their use in the community as 
a whole, and, more specifically, of their use in their future careers (Hacquebard 
et al., 2005). The course was designed to be well within the capabilities of all 
students, regardless of whether the rest of their curriculum followed the social 
or the scientific profile. The result produced a course with a multidisciplinary 
nature, which exemplified how this nature could be applied to complex problems 
and structures. Furthermore, since CS was not a prerequisite for any subsequent 
study at the university/college level, there was no need for a national exam; all 
assessment was to take place in the school itself. These considerations led to the 
following general objectives: 

The CS course at the [...] secondary education level would be focused on 
providing students with: 

•	 a view of CS and IT, and the relationship between these fields and 
other subject areas, as well as how they related to technology and 
society as a whole 

•	 a picture of the role CS and IT would play in their education and 
career 

•	 hands-on experience with CS and IT through: 
•	 learning the basic concepts and skills of the subject 
•	 studying CS problems
•	 studying the structures of data processing systems
•	 working on system development in groups 

•	 and all this within the context of how CS could be applied in society 
as a whole (Hacquebard et al., 1995).

2.2.1.2	 The Position of Computer Science in the High School Curriculum
CS is not a compulsory course as every school can decide whether to offer 

it not, nor does choosing to take it depend on any other courses in a student’s 
curriculum. Since its introduction in 1998, it has consisted of 240 study hours 
for senior secondary education students, and 280 study hours for pre-university 
education students. These study hours include all the time spent on learning in the 
classroom, as well as elsewhere. CS course is designed to be taught no earlier than 
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the tenth grade; that said, schools are free to decide in what grade(s) it should be 
taught6.

2.2.1.3	 The Computer Science Curriculum 
All these considerations resulted in a curriculum that drew its inspiration from 

the 1994 UNESCO/IFIP curriculum (Weert & Tinsley, 1994); it was recommended 
that this curriculum cover four themes: 

•	 Theme A: CS in perspective: CS should be examined from several 
vantage points (science and technology, society as a whole, education 
and career perspectives, and, finally, from a personal perspective); 
the result should then provide a student with a general overview. 
This theme was not intended to be taught on its own, but as an 
integral part of other themes. 

•	 Theme B: Terminology and skills: in order to be able to develop 
CS skills, a student needs to acquire adequate knowledge and skills 
pertaining to hardware, software, organization, as well as to data and 
information and communication. 

•	 Theme C: Systems and their structures concerns general information 
issues, various types of data processing systems, and the situations 
where these are normally used. It covers system theory, computer 
systems, real-life applications, information systems and new 
developments. 

•	 Theme D: Usage in a context takes a look at practice. The study of 
system development and project management, including their social 
aspects, deals with the relationships between an “information issue” 
on the one hand, and the development and implementation of IT 
applications at all kinds of institutions, enterprises and application 
areas, on the other. This theme is all about letting the students 
themselves work with CS and IT, and encouraging the intertwining 
of their CS knowledge and skills with those skills acquired in other 
subjects in their curriculum (Hacquebard et al., 1995).

6   The secondary school where the first author taught computer science at the time, interpreted 
this as follows: in senior secondary education there were two weekly 45-minute lessons in the 
tenth and eleventh grades; in pre-university education two weekly 45-minute lessons in the 
eleventh grade and three in the twelfth grade
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Taking these recommendations into account, the four themes were broken 
down into 53 specific terms, which would then comprise the CS curriculum7 
(College voor Toetsen en Examens, 1998). A list of these terms is not included 
in this thesis because their description is quite extensive and substantial, but, 
more importantly, because they were in the process of becoming obsolete. They 
were being condensed into a shorter list of eighteen terms that comprised the 
curriculum for students entering the tenth grade from the fall of 2007 onwards 
(Schmidt, 2006). Here we give a short overview of the four themes and the eighteen 
terms comprising the curriculum. The full description of the 2007 curriculum is 
listed in appendix A.

2.2.1.4	 Computer Science Curriculum HAVO/VWO (senior secondary education/
pre-university education) 

Theme A: Computer science in perspective 
A1: Science and Technology
A2: Society 
A3: Study and Career
A4: The Individual

Theme B: Terminology and skills 
B1: Data representation in a computer
B2: Hardware 
B3: Software 
B4: Organizations

Theme C: Systems and their structures 
C1: Communication and Networks 
C2: Operating Systems
C3: Systems in Practice
C4: Development of Information Systems 
C5: Information Flow
C6: Information Analysis

7   The 1998 curricula for the two types of secondary school mentioned in this chapter, as far 
as the content is concerned, differed only in the details of a small number of terms. However, 
it was suggested that in the HAVO type of school the emphasis should be placed on practical 
work, while in the VWO type of school the approach should be more abstract and theoretical 
(Stuurgroep Profiel Tweede Fase Voortgezet Onderwijs, 1995)
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C7: Relational Databases
C8: Human-Computer Interaction
C9: System Development Lifecycle

Theme D: Usage in a context 
D. The student should be familiar with the methods and procedures of project 
management, as well as the project aspects of system development (Schmidt, 
2006).

It has been suggested that the 2007 curriculum be implemented in the form of 
a number of core modules that are the same for both senior secondary education 
and pre-university education, along with a number of distinct enrichment 
modules (Schmidt, 2006).

It is interesting to note that, although programming (the practical translation 
of “algorithmics”) is considered a dominant theme in CS by the CS community 
worldwide (Gal-Ezer et al., 1995), this is not reflected in the Dutch curriculum. 
Even in the best-case scenario, less than one quarter of the time available is 
supposed to be dedicated to programming.

2.2.1.5	 Teaching Computer Science in the Classroom
In 1998 the major modifications made to education in the upper grades of 

secondary education came with recommendations for organizing classroom 
work in a different manner. The students were to be given more freedom and 
responsibility for their own learning process. Furthermore, obtaining factual 
knowledge was no longer to be the sole objective of attending school. Acquiring 
skills and competences became an objective as well (Ginjaar-Maas, 1994). This 
approach to teaching was a good fit for CS. Students, it was suggested, should 
spend a lot of time doing practical work and working on projects, mainly solving 
CS problems. IT applications, in fact, are found in a wide range of areas in 
“society,” and they are always about processing, organizing and communicating 
large amounts of relevant data. Moreover, IT problems in practice are so intricate 
and extensive that one person cannot solve them alone, even when the issues 
in question are relatively simple. Keeping in mind that CS education was not 
primarily meant to mirror professional practice, these five starting points for 
classroom teaching were suggested: 
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CS education should be about students: 
1.	 Learning about the field of CS through the acquisition of factual knowledge 

and skills relative to the ways of thinking and working methods found 
within CS 

2.	 Learning to apply CS through solving CS problems, using the CS knowledge 
and skills acquired 

3.	 Learning to deal with interdisciplinary problems: learning to use CS 
knowledge and skills in an interdisciplinary context 

4.	 Learning to cooperate: learning to practice CS in a structured collaborative 
way 

5.	 Learning to reflect: learning how to learn from the previous four points 
independently [...] (Ginjaar-Maas, 1994).

2.2.1.6	 Assessment 
These points of view are reflected in the way the curriculum prescribes 

assessment and this in turn influences the way CS is taught in the classroom. There 
is no national exam and all assessments take place at the school level in the form 
of a so-called school exam. A student’s CS school exam is a portfolio containing 
the following parts8:

A.	 Written examination. 
B.	 Practical assignments. The student is to do practical work and come up 

with a result. When relevant, the process itself is taken into account by 
giving credit for the documentation describing the processes involved. 

C.	 Project: system development. This is a larger practical assignment to be 
carried out in groups of at least three students. Each student is expected to 
work for approximately sixty hours on this project. 

D.	 Activities. Taking part in activities intended to provide a picture of the 
educational and career perspectives in which IT plays an essential role. 

The first version of the 1998 curriculum explicitly states that Part A should 
contribute forty percent towards the final grade, Parts B and C thirty percent each, 
while Part D only needs to be covered up to a satisfactory level (College voor 
Toetsen en Examens, 1998). Soon, however, this was all to change and nowadays 
the assessment is as follows: Part D, activities, has been removed. Part C, project, 
has become optional. And Part A, written examination, now contributes to up 

8   For senior secondary education, see http://www.eindexamen.nl/9336000/1/j9vvgodkvkzp4d4/vg41h1jt-
pgy4/f=/bestand.doc (retrieved August 2007) For pre-university education, see http://www.eindexamen.
nl/9336000/1/j9vvgodkvkzp4d4/vg41h1jtpgy5/f=/bestand.doc (retrieved August 2007)
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to fifty percent of the final grade (College voor Toetsen en Examens, 1998). The 
practical nature that the course in CS was intended to have is thus emphasized 
once again by prescribing that practical assignments and/or a project should 
contribute to at least fifty percent of the final grade. 

For the 2007 curriculum it was suggested that the assessment should contain 
the following parts: 

A.	 Written examination. 
B.	 Practical assignments. 
C.	 Project. 
Part A should contribute at least ten percent and at most fifty percent towards 

the final grade, and part B/C at least fifty percent and at most ninety percent. 
The grade for part B/C is the arithmetic mean of the grades for parts B and C 
(Schmidt, 2006).

2.2.1.7	 Teacher Training
Prior to the 1998 modifications to the educational system in the Netherlands, 

there was a small number of teachers teaching CS at their own initiative. These 
lessons were optional and consisted mostly of programming activities. The 
teachers developing these activities were usually mathematics or science teachers 
(Tolboom, 1999). There was no formal CS teacher training. When the decision 
was taken to introduce CS in the upper grades of senior secondary education and 
pre-university education, there were a lot of concerns. One of the most urgent was 
that there were no teachers to teach this course. In considerable haste, CODI9, a 
consortium of 12 universities and universities of applied science, was set up to join 
forces in training teachers, who were to be responsible for the implementation of 
the CS course in their schools. In the period between 1998 and 2005, those schools 
that planned to introduce CS sent a teacher each for in-service training. Whereas 
elsewhere prospective CS teachers were expected to possess extensive knowledge 
of the subject (Gal-Ezer, 1995), these teachers were by no means required to have 
any prior knowledge of CS and were only expected to be computer literate at a 
satisfactory level. In order to obtain their teaching license for CS, they had to 
complete a two-year program of about 45 ECTS. This program consisted of the 
following parts: (MinOC&W, 1998).

9   CODI is the Dutch acronym for the Computer Science Teacher Education Consortium (in 
Dutch: Consortium Omscholing Docenten Informatica).
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Course ECTS 
Orientation on CS 3,5 
Computer Architecture and Operating Systems 0,7 
Visual Programming with Java 5,7 
Information Systems: Modeling and Specifying 5 
Databases 0,7 
Telematics 3,5 
Software Engineering 5 
Human-Machine Interaction 1,4 
Programming Paradigms and Methods of Information System Development 1,4 
Didactics of CS 5,7 
CS Projects 2,8 
Practical Teaching Assignment 10 

Table 1: CODI program

For a description of this curriculum from the perspective of the practice of 
teaching, see Dirks and Tolboom (2000). In 2005, CODI was dismantled leaving 
a void since no other way was set up to train and license CS teachers. As of 2006, 
five universities in the Netherlands offer secondary school CS teacher education 
as a Master’s degree program.

2.2.2	 The First Decade of Teaching Computer Science 
With all these various objectives, points of view, considerations, 

recommendations, as well as the curriculum itself in mind, one question arises: 
how does this all work in practice? 

CS education has been monitored from the very outset in 1998, and there 
have been five detailed reports describing the resulting state of affairs (Hartsuijker 
et al., 2003; Hartsuijker, Kuipers, et al., 2001; Hartsuijker, M.A.G, et al., 2001; 
Hartsuijker & Westland, 2004; Schmidt, 2007). Other than these reports, there has 
been no significant scientific research into any of the aspects of CS education in 
secondary education in the Netherlands. 

In the Netherlands, not all schools offer the CS course. During the period 
2002-2006, out of about 474 independent schools, the percentage of schools 
that do offer CS has remained fairly constant at around sixty percent. There are 
indications that since 2007, this percentage has been rising (Schmidt, 2007). 
During the CODI era, 369 candidate CS teachers began their studies, and 336 
(91%) graduated (Zwaneveld et al., 2007). 
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During the period 2000 – 2006, the number of secondary education graduates 
with CS has been on the decrease and seemed to be stabilizing at around ten 
percent (of the total student population) (Schmidt, 2007). 

Setting aside the start-up difficulties in the beginning, a clear picture of the 
problems encountered and of the accomplishments realized has emerged. From 
the teachers’ point of view, the curriculum was ostensibly too broad and extensive 
(in terms of available teaching time), forcing them to skip parts of it. Concerning 
this same issue, they experienced difficulty in judging the amount of attention 
and time to be given to particular terms. The three textbooks10 (Bergervoet et 
al., 2001; Meijer et al., 2001; Van der Laan et al., 2001) on the market did not 
help much in solving this problem, since each of them had different approaches 
to the subject matter. Therefore, many teachers were forced to resort to writing 
their own teaching material (much of which has now been made available to other 
teachers through the online community on www.informaticavo.nl). This situation, 
however, was not just perceived as a problem; it was also seen as an opportunity to 
pay more attention to the subject matter that students and/or teachers themselves 
found interesting. With this in mind, many teachers were happy that there was 
no national exam putting pressure on them to work out minutely all of the 53 
curriculum terms in the class. In a country where we are used to national exams 
that ensure the level of students’ accomplishments and then serve as gateways to 
higher education, this has caused quite understandable concerns. What guarantees 
are there that students attending different schools will end up acquiring a similar 
body of knowledge? At the moment, since CS is not a prerequisite for any study 
in higher education, this does not really matter. However, there is an occasional 
discussion about whether there should be a national exam for CS. The details of 
this discussion will be described in the section 2.2.3, Discussions. 

Bearing in mind that virtually all of the CS teachers come from a non-CS 
background, it is not surprising to see differing interpretations of the curriculum. 
In some cases, CS in the classroom has ended up being treated as an exact science, 
and in some cases the emphasis is put on the use of particular software applications, 
none of which is in line with curriculum objectives. The picture that students, their 
parents, and even guidance counselors and other school officials had about CS was 
often limited and did not fit the broad perspective it was supposed to provide. The 
experiences of the authors of the original paper (Grgurina & Tolboom, 2008) are 

10   These textbooks all consisted of several separate volumes and were accompanied by CD - 
ROMs and dedicated websites.
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a good example: while teaching CS in the tenth grade, they encountered students 
who expected to spend the lessons doing “computering,” by which they meant 
doing unspecifiable stuff, with the Internet playing a major role in whatever this 
was. When asked what they expected to learn in CS, they could not formulate a 
clear answer. And then there were those students who already knew so much that 
they didn’t even consider taking CS because they thought they already knew it all. 
A solution to this problem was sought by providing instructive lectures (Http://
Www.informaticavo.nl/scripts/voorlichting.php.2006) to ninth-grade students 
about the CS course right at the very moment when they were set to decide which 
courses to take in the higher grades. 

Another difficulty encountered came out of the very foundation upon which 
the whole CS course was built. On the one hand, this course was meant to be 
accessible to all students without any prerequisite. On the other, however, the 
students were supposed to acquire an overview of and hands-on experience with 
all aspects of CS. When it came to programming, for example, many students 
had difficulties with complex programming languages such as Java, as had 
many of their teachers without a CS background when they had been faced with 
learning this programming language during the CODI training (Tolboom, 1999). 
Information modeling using a CASE tool for FCO-IM11 (Bakema et al., 2002) 
was another stumbling block where many students went astray. Obviously, then, 
occurrences such as these have played a part in making teachers choose their own 
interpretations of the curriculum. 

Looking on the bright side, both teachers and students appreciated this practical 
approach to teaching. The practical assignments were highly motivating, and 
proved to be very valuable by encouraging students to cooperate with each other 
and take responsibility for their own achievements. They made differentiation 
among the students possible. They were also illustrative of the practical nature of 
CS. The way CS is taught in the classroom is a fine example of the new didactic 
approach behind the modified secondary education system introduced in 1998. 

One can get an impression of what is going on in classrooms all over the country 
by taking a look at the quite lively online community on www.informaticavo.nl. 
The growing diversity of topics found there is remarkable. A quick look at the 
collection of tests on programming submitted to the site, for example, shows that 
the subject is apparently being taught using Visual Basic, Logo, NQC for Lego 
Mindstorms, Java, Gamemaker and Delphi. The practical assignments submitted 

11   FCO-IM stands for Fully Communication-Oriented Information Modelling
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also show large variations as well, for example, Build a Company Website; Make 
a Database for the Administration of a Football Club; Build a User-Friendly 
Interface for an Information System; and from the first author’s own classroom: 
utilize the debating skills acquired in language classes to debate a particular ethical 
issue concerning IT. 

This diversification and growth are not surprising in a discipline undergoing 
such rapid changes and new developments, and so now is a good time to pose the 
question: where do we go from here?

2.2.3	 Discussions 
Concerns about the future of CS education in Dutch secondary education were 

reflected in a number of discussions that were going on at that moment, in the first 
decade of this millennium. One of the hot issues was the question of whether or 
not to introduce a national exam. In the 2007 report on the implementation of the 
CS course (Schmidt, 2007), a survey of CS teachers reported the following results:

Answer Score 

As far as I am concerned, a national exam is out of the question 29.2% 

As far as I am concerned, a national exam is only to be considered under strict conditions 26.1% 

I am not an advocate of a national exam, but I’m not against it either 16.9% 

I can see the advantages of a national exam 13.8% 

I truly believe in a national exam 13.8% 

Table 2: CS teachers’ survey results on the question of a national exam

When asked about their reasons, the great majority of those opposing answered 
that they feared losing the freedom to design the content of the subject they taught, 
followed by the argument that CS was not a prerequisite for any subsequent study at 
the higher-education level. The advocates of a national exam posited that it might 
help strengthen the position of this school subject in the curriculum alongside all 
the other school subjects. They also felt that it would lessen the differences in the 
levels of accomplishment found in students. As a result, higher education would 
have a better picture of what to expect from first-year students who had taken 
CS during secondary education. The advocates assumed that only about sixty 
percent of the subject matter needed to be examined by means of a national exam, 
because only a limited number of curriculum terms were suitable for practical 
examination. Furthermore, aspects of the curriculum, such as cooperation, task-

565438 N Grgurina.indd   46565438 N Grgurina.indd   46 14-09-21   17:0414-09-21   17:04



Twenty Years of Computer Science in Dutch Secondary Education 

47

2

sharing and working on projects, were difficult to examine in a national exam. 
Therefore, a national exam could, just as in the case of many other school subjects, 
contain about 60% of the curriculum (Schmidt, 2007). 

CS teachers were obviously not in favor of a national exam, but they were not 
the only party involved in this discussion. Universities did advocate one. National 
politics, with its tendency to want to exercise a controlling influence on the output 
quality of secondary education, saw a national exam as a suitable instrument to 
do just that. 

Still another discussion surrounding CS was the question of whether to 
make CS compulsory. A slight majority of CS teachers thought that CS should 
be compulsory in the lower grades of secondary education so that students 
would have a better picture of this subject when they choose their profile and 
the curriculum to follow from the tenth grade on. CS in the higher grades would 
then be able to consist of several modules, since the students would already have 
a foundation to build on. In addition, this would create a continuous trajectory 
from elementary school all the way through to the higher grades of secondary 
education. About one quarter of the teachers, however, were opposed to this idea. 
Other scenarios, such as a common core course for all students, with separate 
modules for each profile, or even a distinct CS course for each of the profiles, can 
count on roughly equal numbers of advocates and opponents, or just simply a 
majority of opponents.

As of the fall of 2007, education in the higher grades of secondary education 
in the Netherlands has once again been subjected to certain modifications. 
The leitmotif was that schools should be granted more autonomy and choice 
in the way they organize education, and so make the whole of education more 
manageable for schools through, among other things, streamlining the amount 
of time each course is allocated. Again, these modifications were favorable for CS 
course in general and for individual schools in particular. To begin with, the hours 
allocated to the whole of the CS course increased to 320 for senior secondary 
education and 440 for pre-university education. Furthermore, the curricula for all 
the subjects have been simplified so as to decrease the number of terms, and the 
terms themselves are no longer described in such great detail. For CS this means 
that, following recommendations based on classroom experience (Hartsuijker 
& Westland, 2004), no new terms have been added. The result was that the new 
curriculum consisted of the eighteen terms listed in section 2.2.1.4. 
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There was more good news for CS. Not only were schools being given 
total freedom in designing their assessment procedures, they were also being 
encouraged to teach topics that extend, deepen, and go beyond the curriculum 
terms (Tweede Fase Adviespunt, 2006). 

And last but not least, there is news from the research side. The Technical 
University of Eindhoven (TUE) and the Open University of the Netherlands have 
begun a research project to analyze and summarize the relevant research literature 
for pedagogical content knowledge (PCK) for CS teachers and to link this PCK 
to practice in the Dutch classroom. The aim is to create an inventory of research-
based best-practice characteristics. 

In spite of all this good news for the CS course in general, the prospects for a 
bright future were hampered by various problems.

The publishers of two of the three textbooks (Bergervoet et al., 2001; Meijer 
et al., 2001) have decided to cease publication of their textbooks. The authors of 
these textbooks took steps to continue development of the teaching materials and 
to make them available online. There were university-based projects aimed at 
developing teaching materials as well. However, together these initiatives did not 
provide enough teaching material to meet the needs of the increased number of 
study hours, leaving the teachers to their own devices once again. 

There were many non-licensed teachers teaching CS –—an estimated two 
out of five — the same as was reported in Israel back in the 1990’s (Gal-Ezer, 
1995), and this situation did not look like it was going to be changing any time 
soon (Schmidt, 2007). Despite the fact that since the fall of 2006 there were five 
universities in the Netherlands — Utrecht University, University of Groningen, 
University of Twente, Delft University of Technology and Eindhoven University 
of Technology— where one could become a licensed secondary education CS 
teacher, the numbers of students did not nearly match the demand from schools. 
The reasons for this were numerous and complex. In order to become a licensed 
CS teacher, as a rule one needs to have a Bachelor’s degree in CS, and then follow 
a Master’s in Education and Communication. Almost none of the CS Bachelor’s 
students took this route because a career in education was often perceived as 
being of low social status, coupled with low pay and presenting almost no career 
prospects, while the booming economy had so much more to offer. On top of all 
that, a typical school did not have enough weekly CS lessons scheduled to offer 
full-time employment to a CS teacher. On the other hand, a lot of the people who 
did want to become licensed CS teachers had an IT background and/or were 
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licensed to teach other subjects, but did not qualify for the Master of Education 
and Communication due to the lack of a formal CS Bachelor’s degree. Needless to 
say, this paradoxical situation did no good for CS education as a whole. 

Another problem, probably the toughest of them all, and experienced 
internationally as well (Downes, 2007), is the perception of CS held by the whole 
of the population, with education policy makers regrettably being no exception. 
Two examples illustrate this unfortunate situation: 

The Ministry of Education was looking ahead and considering the future of 
educational innovations and reforms, and to this end it set up an advisory board 
and asked it to formulate a vision for future educational developments. This 
board consisted of 33 members, mostly university professors, several secondary 
education teachers, along with a few policymakers and students. None of them 
had any CS background, which, in our opinion, is regrettable, because the advice 
the board presented to the Ministry paid scarcely any attention to CS education, 
barely mentioning it at all. The 232-page document mentioned mathematics 263 
times, and CS 10 times (Society, 2005). 

Another example was even more serious in our opinion. One of the new 
courses introduced as part of the educational modifications in 2007 is NLT 
(Nature, Life and Technology). It is meant to be a cross-subject science course 
offered to those students choosing one of the Nature profiles (see section 2.1). 
Even though the proposed NLT curriculum12 contained terms pertaining to IT 
and bioinformatics, CS teachers were not licensed to teach it, while the teachers of 
mathematics, physics, chemistry, biology and geography were.

2.2.4	 Concluding Remarks about the First Decade of Computer Science
During the first decade of teaching CS in Dutch secondary education, the 

objectives outlined in the 1990s do seem to have been achieved. What CS 
education was going to look like in its second decade depended on the outcome of 
the discussions about the introduction of a national exam and whether to make it 
a compulsory subject, as well as on the repercussions from the fact that many CS 
teachers were not licensed and/or adequately trained. Furthermore, it was not yet 
clear whether the government intended to reform education in the upper grades 
of secondary education again, and if so, what consequences this will have for CS 
education. And, last but not least, we believe that clearing up the misconceptions 
surrounding CS and bringing proper attention to bear on its significance would 
contribute to a bright(er) future for CS education.

12   For a description of the NLT curriculum, see http://www.betavak-nlt.nl.
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2.3	 The Second Decade of Computer Science in Dutch 
Secondary Education

In this second part of the chapter, we report on the second decade of the CS 
course in Dutch secondary education: it did not become compulsory and no 
national exam was introduced. However, there was a CS curriculum reform, new 
technologies have changed our lives in ways unforeseen ten years earlier and 
these developments have led to a whole new set of discussions and challenges 
surrounding CS. 

Here we focus on the events that led to the curriculum reform, the curriculum 
itself, the current situation of the CS course, and on other developments related 
to CS education such as an advised introduction of a foundational module in 
lower secondary education (KNAW, 2012) focusing on digital literacy. In the 
Netherlands, digital literacy is considered to consist of four skills: basic ICT-skills, 
media literacy, information literacy and computational thinking (Thijs et al., 
2014b), as described in section 1.2.

2.3.1	 Situation in Practice
In this section, we describe the present situation of the CS course in secondary 

education in the Netherlands. Beginning with the most recent figures from 2017, 
we present the results of the 2014 research project charting the actual situation in 
schools, describe the events leading to the new 2019 curriculum, and finally, we 
discuss the newest developments.

2.3.1.1	 Schools, Students and Teachers
Looking at the numbers of schools offering the CS course and numbers 

of students following it, we see that during the period 2002-2006, out of about 
474 independent schools, the percentage of schools that do offer CS was fairly 
constant at around sixty percent with about ten percent of students following it 
(Schmidt, 2007), cited in (Grgurina & Tolboom, 2008). In the period 2011-2017 
out of approximately 500 schools, the percentage of schools offering CS dropped 
from 55% to 47%, while the proportion of students following it remained fairly 
constant at around 11% for HAVO and around 12% for the VWO type of school 
(DUO, 2018). 

In 2013, the government commissioned an inquiry and a report by the 
Netherlands Institute for Curriculum Development (in Dutch: Stichting 
leerplanontwikkeling, SLO) to explore the teachers’ ideas about the necessity to 
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change the CS curriculum. In this section we present the data that were collected 
concerning the teachers and their ideas about desired curriculum changes. and 
in the section on the curriculum (section 2.3.2), we report extensively about the 
results of this inquiry (Tolboom et al., 2014). Regarding the teachers themselves, 
89% are male and 11% are female. Almost two out of three are the sole CS teachers 
in their schools, with 31% of schools having two teachers and 4% having three 
teachers. The majority — 55% — teaches another subject as well, both in science 
(mostly mathematics) and in humanities and other subjects (e.g. geography, 
history, economy, arts and languages). When teaching CS, almost two-thirds of 
them cooperate with the teachers of other subjects, mostly physics, mathematics 
and business, but also from other sciences, humanities and, notably, arts. Most of 
the teachers — 62% — have been teaching CS for more than six years. Concerning 
education they attended to qualify them to teach CS, 52% of the teachers said they 
attended the CODI in-service program (see the first part of this chapter), 18% 
followed a university educational master, and 36% did something else. Since these 
numbers add up to more than 100%, we suspect that a number of teachers took 
several educational routes. Most teachers actively engage in staying up-to-date 
by following in-service training courses (67%), participating in teacher networks 
(65%), reading professional literature (81%) and engaging in other activities 
(39%). Still, most of them — 62% — find the in-service training courses offered to 
be insufficient and see that as a problem threatening the quality of CS as a school 
subject (Tolboom et al., 2014). 

When it comes to teaching materials they use, we see that the online books 
offered by the three publishers are often combined with each other and with other 
teaching material, either found elsewhere or written by the teachers themselves 
(Tolboom et al., 2014). Competitions have made their way into the classroom 
too: The CS Olympiad13 including CodeCup14 and the international Bebras 
competition (Dagienė & Stupuriene, 2016a).

When asked about their opinion on the CS curriculum, 7% of the teachers said 
they were not familiar with it. One out of four teachers did not find it useful, 38% 
would like it to contain less or other learning objectives, and 36% were satisfied 
with it. When asked what learning objectives to strike from the curriculum, 
almost half of the teachers — 45% — said none but added that they would like 
the curriculum to offer more guidance. Other teachers, those wishing to strike 
some learning objectives, most often mentioned those related to business aspects 
13   http://www.informaticaolympiade.nl
14   http://www.codecup.nl/intro.php
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of CS (organizations and information flow) and information analysis. When asked 
what they were missing in the curriculum, they most often mentioned (more) 
programming, social and professional aspect of CS, security aspects, and networks 
and communication (Tolboom et al., 2014).

2.3.1.2	 Teacher Training
Eight years after the introduction of the CS course in secondary education, 

regular pre-service teacher training was established first at the University of 
Groningen in 2006, and then another four universities followed. As pre-service 
university teacher training for other subjects, this is a two-year educational master. 
Specifically, for CS, only students with a university bachelor degree for CS (or 
an equivalent) are admitted. During this master, the students both deepen their 
subject matter knowledge and learn about teaching through extensive internships 
at school and accompanying theoretical underpinnings concerning CS didactics, 
pedagogy and educational science (Barendsen & Tolboom, 2016). For those who 
already possess a master’s degree in CS, a one-year program is available. The 
number of students obtaining this degree and thus becoming qualified CS teachers 
in the years 2008-2013 was nation-wide six on average; in 2014 and 2015 there 
were four, and in 2016 there were three. These numbers do not come anywhere 
near the perceived need: the expected unfulfilled vacancies are estimated to be 36 
in 2018, 52 in 2020 and rising to 86 in 2025 — implying that roughly a third of 
schools offering CS might not be able to find qualified teachers (Adriaens et al., 
2016). 

While the number of regular university students interested in becoming 
teachers is tiny, every year in the meetings of CS teachers’ educators from the five 
universities involved, we hear about dozens of professionals with a background 
in IT industry who show interest in becoming CS teachers. However, due to the 
strict requirements, only a few get admitted to the teacher training straight away.

To help people with university degrees in technology or science to meet the 
teacher training admission requirements, in 2015 the beta4al15 project was started 
for chemistry (chem4all), and in 2016 physics (natk4all) and CS projects were 
added: inf4all.16 Beta4all project is a result of a cooperation of universities offering 
teacher training (i.e., educational master) where a number of courses are offered 
to interested candidates as well as to interested teachers, in the form of specifically 
tailored courses of 6 ECTS each. For CS, these courses were Foundations, 
15   http://www.beta4all.nl
16   http://www.beta4all.nl/prog_inf4all.htm
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Algorithms, Advanced Object-Oriented Programming, Networks, Databases and 
Information Retrieval; Media, Games and User experience; Artificial Intelligence, 
and finally, Internet of Things. The courses are taught biweekly during one 
semester in the form of three-hour lectures on Fridays in Utrecht, in the center 
of the Netherlands, thus allowing people from all over the country to participate. 

The admission procedure is then as follows: a candidate interested in 
becoming an CS teacher approaches the university of their choice where their 
educational background and relevant professional experience are assessed. In case 
the candidate is not admissible yet, a tailored plan is put together consisting of 
appropriate inf4all courses (and possibly other courses taught at the university 
itself) to be taken.

2.3.2	 Curriculum Reform and Curriculum
Here we describe the events leading to the CS curriculum reform and the new 

curriculum itself.

2.3.2.1	 The Royal Netherlands Academy of Arts and Sciences Report (KNAW 
report)

Ever since the late 2000’s, in the Netherlands, just like in the international 
field of experts (Gander et al., 2013), several stakeholders have been expressing 
concerns about outdated curriculum and position of CS as a school subject 
in general and advocated a curriculum revision. However, the government 
refused to draw consequences from periodic evaluations (Schmidt, 2007) and 
the Ministry of Education, Culture and Science maintained that there was no 
apparent need for a curriculum reform since there were no complaints “from the 
field”. In 2012, triggered by serious concerns expressed by a number of influential 
CS education specialists, The Royal Netherlands Academy of Arts and Sciences 
(in Dutch: Koninklijke Nederlandse Akademie van Wetenschappen, KNAW) 
formed a committee to investigate the situation of CS in secondary education. 
This committee wrote a critical report containing five recommendations aimed at 
improving CS education in general, reaching far beyond the scope of the current 
CS course. The report recommends to “Completely overhaul the optional subject 
CS in the upper years of HAVO and VWO” and suggests to make it modular 
and flexible, relevant and attractive to all students. Furthermore, it recommends 
to “Introduce a new compulsory subject Information & communication in the 
lower years of HAVO and VWO” and goes on to make recommendations about 
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encouraging “interaction between these subjects and other school subjects”, 
adequately training teachers, instructing higher education to collaborate in this 
regard and, finally; to “promote instruction in digital literacy” to help achieve 
the goals set in the nation’s ICT policy concerning innovation and economic 
development (KNAW, 2012). 

Even though this report was received with great enthusiasm by the CS field, 
the government was still reluctant to initiate a curriculum reform

2.3.2.2	 The Netherlands Institute for Curriculum Development Report
In 2013, under pressure from the stakeholders, the government commissioned 

an inquiry and a report by the Netherlands Institute for Curriculum Development 
(in Dutch: Stichting Leerplanontwikkeling, SLO) in order to assess (1) what is 
needed to realize a modern and attractive CS education in upper grades of senior 
secondary education and pre-university education and (2) in case it turns out that 
a change of curriculum is required, what should that change entail. The Institute 
appointed a team of three researchers for this job. First, they conducted a literature 
study about the importance of CS education, both nationally and internationally. 
Then they invited CS teachers to fill in an online questionnaire about their current 
CS teaching practice and about their wishes and suggestions concerning possible 
changes in the CS curriculum. Subsequently, they conducted in-depth interviews 
with a small number of these teachers. Finally, they consulted a large number of 
CS experts, not all of them involved in secondary CS education.

This investigation resulted in early 2014 in a report containing three 
recommendations and a description of four factors playing a decisive role in 
subsistence of CS in secondary education. First of all, the report recommends to 
design a new CS curriculum aimed at a diverse student population, varied enough 
to be relevant and attractive to all students. The second recommendation instructs 
to design a curriculum containing a limited number of compulsory learning 
objectives and a number of objectives from which a student can choose. Finally, it 
recommends to keep the assessment as it is (i.e. at the school level only, rather that 
introducing a national final exam which most other subject have). Furthermore, 
the report lists four critical factors which need to be addressed in order to make 
and keep CS a viable school subject: 

1.	 quality of the assessment (with no national final exams, there is no quality 
control across different schools);

2.	 development of modular teaching material in order to provide for rapid 
advances of the discipline;
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3.	 in-service training of the teachers;
4.	 training of adequate numbers of new teachers (Tolboom et al., 2014). 
Within weeks of the publication of this report, the government appointed a 

committee of nine members — teachers, CS specialists, experts from higher 
education, and curriculum and assessment specialists —to redesign the CS 
curricula for the HAVO and VWO types of schools, that was formulated as follows:

•	 The committee’s task is to design a new curriculum for the elective 
course CS in the upper grades of HAVO and VWO types of school.

•	 The purpose of the new curricula is to enhance the quality of this 
course by updating and modernizing the its learning objectives.

•	 The curricula need to be formulated globally: for the teachers it 
needs to be clear what the curricular goals are, while at the same 
time the schools keep sufficient room for their own interpretation.

•	 There is sufficient distinction between the HAVO and VWO 
curricula without them being two separate curricula.

•	 Each curriculum contains a number of compulsory core components 
and elective components. The elective components are related to 
the educational tracks the students follow (either one of the two 
humanities tracks or one of the two science tracks), yet they are 
within reach of all the students choosing CS, regardless of the track 
they actually follow.

•	 The curriculum design is to follow the context-concept approach.
Furthermore, when formulating the new curriculum, the committee needs to 

take into account the following requirements: The assessment should remain as it 
is, consisting of a school exam only and no national exam. This curriculum is to 
be aligned with the curricula in lower secondary and primary education, which 
are to be developed in the near future. The study load needs to remain the same. 
The curriculum should not be overloaded and it must be possible to implement it 
within the available time. The curriculum does not favor any particular didactical 
approach; it describes the “what” and not the “how”. The new curriculum needs 
to be able to count on the wide support of the teacher community. The textbook 
publishers need to be kept informed on the progress in order to enable them 
to prepare the teaching materials in time (Opdracht vernieuwingscommissie 
informatica 2014-2015, 2014).
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2.3.2.3	 Lorentz Workshop
At the same time when The Netherlands Institute for Curriculum Development 

inquiry took place in 2013, but independently of it, a number of leading Dutch 
scholars proposed to organize a Lorentz Workshop.17 By the time the workshop 
took place in September 2014, the committee for the reform of the CS curriculum 
had already been appointed.

The aim and goal of the Lorentz workshop were described as follows: “secondary 
education on CS and digital literacy urgently needs thorough improvement. 
The workshop intends to develop a contemporary design for the discipline, 
following and learning from similar efforts in other countries.” The attendees were 
international experts from Belgium, France, Germany, Israel, Lithuania, UK and 
USA and Dutch computer scientists, teachers, education specialists, students and 
policy makers. During the five-day workshop, the international experts presented 
their country reports and various topics were discussed in focus groups:

•	 Definition: what comprises an ideal curriculum for a “digital 
literacy” course in the lower grades of secondary education and an 
“CS” course in the upper grades;

•	 Sustainability: how to make “the curriculum sustainable in a rapidly 
developing field”;

•	 Concepts and contexts: context-based teaching approach similar to 
the one adopted for other science subjects;

•	 Diversity: catering to the needs of students with different educational 
backgrounds and interests;

•	 Integration with other subjects in secondary education;
•	 Teacher training (Center for Scientific Workshops in All Disciplines 

- Computing in Secondary Education, 2014). 
On the final day, the results of the workshop were presented and discussed in 

a meeting with a representative of the Ministry of Economic affairs, a member 
of parliament specialized in education, a representative of the Dutch CS teacher 
association,18 representatives from higher professional education and universities, 
a CEO from industry and the chairman of the KNAW committee who authored 
the KNAW report (2012).

17   “The Lorentz Center is an international center that coordinates and hosts workshops in 
the sciences, based on the philosophy that science thrives on interaction between creative 
researchers.” http://www.lorentzcenter.nl/aim.php
18   http://ieni.org
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2.3.3	 The New Computer Science Curriculum

2.3.3.4	 Design Principles
The new curriculum is based on a number of design principles intended 

to make it modern and robust, and to cater to the needs of all those involved 
in its use. To ensure the relevance of the new curriculum in the long term, the 
curriculum committee decided to follow the so-called concept-context approach 
— a pedagogical principle that was already applied to several science subjects, 
for example chemistry (Bennett & Holman, 2002). The fundamental concepts 
— that were described concretely — were separated from the contexts described 
generically. In order to deal with the diversity of students, stemming from their 
varying interest in CS, the educational track they follow (science or humanities), 
and the fact that division into HAVO and VWO type of school is not always 
reflected in students’ achievements for CS, it was decided to divide the curriculum 
into a core curriculum that is mandatory for all students taking the CS course 
and a number of elective themes. Furthermore, as many see CS as a constructive 
discipline where one engages in creation of artifacts, ‘design and development’ is 
positioned as a central skill in the new curriculum. Finally, in order to balance 
guidance and freedom experienced by the CS teachers, the committee drafted 
comprehensive learning objectives: 30 of these are in the core curriculum and 
the other 34 in the elective themes, thus allowing the schools to shape their CS 
educations according to their preferences (Barendsen et al., 2016; Barendsen & 
Tolboom, 2016).

2.3.3.5	 Learning Objectives
The learning objectives of the new curriculum are organized in six compulsory 

domains forming the core curriculum and twelve elective themes from which 
a HAVO student needs to choose two and a VWO student four. The domains 
forming the core curriculum are: (A) Skills, (B) Foundations, (C) Information, (D) 
Programming, (E) Architecture, and (F) Interaction. The elective themes are: (G) 
Algorithms, computability and logic, (H) Databases, (I) Cognitive computing, (J) 
Programming paradigms, (K) Computer architecture, (L) Networks, (M) Physical 
computing, (N) Security, (O) Usability, (P) User Experience, (Q) Social and 
individual impact of CS, and (R) Computational Science (Barendsen & Tolboom, 
2016). The full text of the curriculum is listed in appendix B.
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2.3.4	 Teaching Materials for Elective Themes
In this section we describe the project in which teacher teams develop 

teaching materials for the elective themes. We first provide the general description 
of this project and then focus on one particular team — the one working on 
Computational Science.

2.3.4.1	 Teacher Teams Developing Teaching Materials
The curriculum specifies only high-level learning objectives and does not 

provide further details about them, nor about the instruction or assessment. In 
line with the Dutch tradition, this is left to the educators and authors of teaching 
materials, usually employed by publishing companies. In the Netherlands, there 
are three publishers of teaching materials for the CS course. With 11 to 12 percent 
of the students in HAVO and VWO schools electing to take this course (DUO, 
2018), the market for the publishers is rather small. This situation, combined with 
the fact that elective themes in the new curriculum will inevitably be chosen by 
even smaller numbers of students, means that the publishers have no financial 
incentive to develop teaching materials for the elective themes and are only 
interested in developing teaching materials for the core domains. To alleviate 
this problem, the Ministry of education provided financial means and asked the 
Netherlands Institute for Curriculum Development (SLO) to coordinate a project 
where teams of teachers would develop teaching materials for elective themes. 
SLO developed a procedure describing the participants and stakeholders in 
the project, the guidelines outlining the process they engage in, and finally, the 
products to be delivered. In accordance with this procedure, for each of the twelve 
elective themes a team should be formed, consisting of at least two CS teachers, an 
expert and a teacher educator specialized in didactics of CS. First, the team writes 
a global description of the module they work on, which specifies the intended 
learning outcomes, target audience, planning and other relevant details. Then they 
engage in the actual writing of the module which needs to satisfy the following 
criteria:

•	 suitable for self-study because not all teachers are expected to 
possess adequate expertise for that particular domain

•	 embed the intended learning outcomes in rich and relevant contexts
•	 incorporate at least one of the three basic skills in the curriculum, 

namely: design and development, using CS as a perspective, and 
finally, cooperation and interdisciplinarity
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•	 suitable for both the HAVO and the VWO students, yet provide for 
their differences

•	 suitable to be published online
•	 accompanied by teachers’ instruction and a suitable form of 

assessment (e.g. a test or a practical assignment). 
When a module is finished, it should be tested in at least two schools. The 

feedback from the teachers and their students who engage in testing of a module 
should then be collected, and a new version of a module should be written. 
The final version of the module should be presented to an external expert and 
a certifying body for final approval. This certification serves as quality control 
in multiple ways, not the least to partly compensate the lack of a national exam 
and corresponding lack of quality control and lack of ways to compare students’ 
achievements across different schools.

2.3.4.2	  Development of Teaching Materials for Computational Science
This process is illustrated with the example of teaching materials being 

developed for the elective theme R: Computational Science which is the focal 
point of this thesis. As a teacher educator specialized in didactics of CS and a 
researcher, I lead a team developing teaching materials and assessment for 
Computational Science. The results of the research presented in this thesis — the 
operationalization of the intended learning outcomes of Computational Science, 
suggestions for suitable data sources to monitor students’ learning outcomes, 
awareness of students’ challenges when engaging in modeling activities (all 
described in section 3.5), teachers’ ideas and suggestions about instruction and 
assessment as well as our insight into their PCK (described in section 4.3), together 
with our assessment instrument (described in chapter 5) — supplemented with 
the decision to employ the 4C-ID instructional design (Kirschner & Merriënboer, 
2008), form the starting points for the team and thus insure that the teaching 
materials, accompanying assessment instruments and teachers’ manuals will be 
set up upon solid theoretical foundations. All aspects of the implementation in 
schools will be monitored closely and will form the input for further research into 
the teaching and learning of Computational Science.

2.3.5	 Research
During the last decade, CS education research (CSER) in the Netherlands 

was given a new impulse with the appointment of the first full professor in CS 
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education. He set up a nation-wide research group conducting research on 
various aspects of teaching and learning of CS in primary, secondary and tertiary 
education. The research topics in secondary education include programming, 
design-based CS education, assessment, context-based teaching and learning of 
fundamental concepts including algorithms, and finally, Computational Science 
— the research project described in this thesis. In all of the research projects 
mentioned here, specific attention is given to the teachers and their pedagogical 
content knowledge (PCK).

We consider this as a special and a beneficial situation when aiming at research-
based CS curriculum development.

2.3.6	 Computer Science Curriculum Reform in Primary and Lower 
Secondary Education

One of the recommendations of the 2013 report by The Royal Netherlands 
Academy of Arts and Sciences (2012) was to introduce digital literacy into 
the Dutch lower secondary education. The report led to the chain reaction 
described earlier in this chapter, thus mainly focused at what already existed in 
the curriculum: CS in upper secondary education. Nevertheless, both primary 
and secondary schools started experimenting with integrating digital literacy in 
their school-based curriculum. Very interesting initiatives emerged, deployed 
by creative and innovative teachers at primary and secondary schools. While 
experimenting, the question arose at schools, from teachers, students and parents: 
is what we are doing now aligned with the formal national curriculum? The 
answer to this question was: yes, but only because in this formal curriculum — 
outside upper secondary education — the relevant learning objectives are global 
and non-specific. 

The somehow strange situation — where educators were asking for guidelines 
that did not exist — was resolved in March 2018, when the curriculum.nu project 
(mentioned in section 1.2) was started: design teams consisting of selected teachers 
and school administrators started to rethink the whole of the curriculum. One of 
the domains to be inspected is digital literacy. A national system for feedback was 
implemented in order to facilitate revision of and wide support for the vision. This 
project is planned to end in the fall of 2019 with an advice by the design team on 
how to revise the Dutch primary and secondary curriculum with respect to digital 
literacy. This may lead to the introduction of learning goals with respect to digital 
literacy in primary and lower secondary education.

565438 N Grgurina.indd   60565438 N Grgurina.indd   60 14-09-21   17:0414-09-21   17:04



Twenty Years of Computer Science in Dutch Secondary Education 

61

2

We see that CS, now clearly visible in the upper secondary education, has 
gained that much momentum, that it could possibly contribute to reforms in the 
Dutch educational system.

2.3.7	 Conclusion and Discussion
In this chapter, we described the present situation of the elective CS course in 

upper secondary education in the senior general secondary education (HAVO) 
and the pre-university education (VWO) in the Netherlands, the CS curriculum 
reform together with the events leading to it and we sketched the developments 
related to teaching CS in primary and lower secondary education. We see that on 
one hand, significant progress has been made with five universities offering regular 
teacher training (in the fall of 2019 joined by both universities in Amsterdam: the 
University of Amsterdam and the VU Amsterdam), a nation-wide research group 
performing research of international relevance and a grassroots movement with 
parents, teachers, headmasters and other stakeholders demanding more, earlier 
and broader CS education. On the other hand, the teacher population forms one 
of the weak spots in the CS ecosystem: many teachers are underqualified, far too 
few new CS teachers are being trained, and it is not clear who should teach CS or 
digital literacy if it gets introduced into primary and lower secondary education. 
Some stakeholders see the CS curriculum reform as a missed opportunity to make 
CS a mandatory subject or for the introduction of a national exam. Finally, it is 
not clear yet what will happen with the desire and all the initiatives employed to 
introduce CS, in whatever form, into the primary and lower secondary education. 

However, in 2015, when the contours of the new 2019 CS curriculum 
became visible and it was clear that it was going to contain the elective theme 
Computational Science, we decided to embark on this research project to explore 
the pedagogical aspects of teaching Computational Science in the Computer 
Science course in secondary education in the Netherlands, and the result is this 
thesis.
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Chapter 3

Defining and Observing Modeling 
and Simulation in Computer 

Science
In this chapter, we describe our first study focusing on the Computational Thinking 
aspect modeling and simulation. We conducted a case study analyzing the projects 
of 12th grade secondary education CS students in which they made models and 
ran simulations of phenomena from other disciplines. We constructed an analytic 
framework based on literature about modeling and analyzed students’ project 
documentation, recordings of student groups at work and during presentations, 
survey results and interviews with individual students. We examined how to 
discern the elements of our framework in the students’ work. Moreover, we 
determined which data sources are suitable for observing students’ learning. 
Finally, we investigated what difficulties students encounter while working on 
modeling and simulation projects. Our findings result in an operational definition 
of the learning objective Computational Science19 contained in the 2019 Dutch 
secondary CS curriculum, and provide input for future development of both 
assessment instruments and instructional strategies.

This chapter is based on the paper Grgurina, N., Barendsen, E., Zwaneveld, B., van 
Veen, K., & Suhre, C. (2016). Defining and observing modeling and simulation 
in informatics. In International Conference on Informatics in Schools: Situation, 
Evolution, and Perspectives (pp. 130-141). Springer, Cham.

19   In this thesis, we use terms modeling, modeling & simulation, simulation modeling and 
computational science interchangeably, unless explicitly stated otherwise.
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3.1	 Introduction

Following the increasing availability of computers in schools, several initiatives 
have been employed to support students’ learning in various disciplines through 
the use of computer models (Blikstein & Wilensky, 2009; Pfefferova, 2015; Taub et 
al., 2014). Caspersen and Nowack (2013b) argue why they „believe understanding 
and creating models are fundamental skills for all pupils as it can be characterized 
as the skill that enable us to analyze and understand phenomena as well as 
design and construct artifacts.” Wilensky argues, “Computational modeling has 
the potential to give students means of expressing and testing explanations of 
phenomena both in the natural and social worlds” (Wilensky, 2014). Granger 
claims: „Modeling is the new literacy” (2015). This belief is also expressed in the 
fact that as of 2019, modeling and simulation (together called Computational 
Science), will be included in the new Dutch secondary education CS curriculum, 
described by the following high level learning objectives: “Modeling: The candidate 
is able to model aspects of a different scientific discipline in computational terms” 
and “Simulation: The candidate is able to construct models and simulations, and 
use these for the research of phenomena in that other science field.” Modeling 
itself will be a part of the compulsory core curriculum, described as “Modeling: 
The candidate is able to use context to analyze a relevant problem, limit this to a 
manageable problem, translate this into a model, generate and interpret model 
results, and test and assess the model. The candidate is able to use consistent 
reasoning.” (Barendsen & Tolboom, 2016)

Modeling and simulation can be viewed as aspects of Computational Thinking 
(CT) (Wing, 2006) as they involve decomposition of open-ended problems and 
the construction and evaluation of models that simulate the nature of these 
problems in order to be able to provide solutions to those problems.

Prior to this study, we refined the CSTA definition of CT (Grgurina, 2013), 
explored teachers’ PCK (Grgurina et al., 2014a, 2014b); and made an initial 
exploration of the computational modeling process (Grgurina et al., 2015).

3.1.1	 Aim of the Study 
In this study, we focus on CT skills related to modeling and simulation and we 

explore highly cognitively complex set of students’ activities related to modeling, 
in particular as an aspect of CT rather than as an aspect of e.g. mathematics 
(Maaß, 2006). Our primary goal is to establish an operational description of the 
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learning objectives of Computational Science — Magnusson’s component M1 (i.e. 
goals and objectives), and additionally to determine what data sources are suitable 
to monitor students’ learning outcomes when engaging in modeling activities, 
and finally to explore what specific challenges do the students experience when 
engaging in modeling activities. 

We address the following research questions: 
1.	 How can the intended learning outcomes of Computational Science 

(modeling and simulation) be described in operational terms? 
2.	 What data sources are suitable to monitor students’ learning 

outcomes when engaging in modeling activities? 
3.	 What specific challenges do the students experience when engaging 

in modeling activities?
The first question addresses Magnusson’s component M1 — goals and 

objectives. The second question contributes to Magnusson’s component M4 — 
methods of assessment — as we plan to use our findings as input for a later study 
into a CT assessment instrument (see chapter 5). The third question addresses 
Magnusson’s component M2 — students’ understanding as our findings will help 
to design teaching materials for modeling and simulation and thus indirectly 
contribute to Magnusson’s component M3 — instructional strategies.

3.1.2	 Related work 
Previous work on characterizing modeling is done mainly in the areas of 

mathematics and natural sciences; see the following section. Research on making 
students’ learning process and outcomes visible has focused mostly on CT 
aspects such as algorithmic thinking or programming. The employed assessment 
instruments range from tests with closed questions (Gouws et al., 2013b), tests 
with open questions (Meerbaum-Salant et al., 2013; Werner et al., 2012), surveys 
(Werner et al., 2012), recordings or observations of students at work (Meerbaum-
Salant et al., 2013), examination of programming projects (Brennan & Resnick, 
2012; Meerbaum-Salant et al., 2013; Werner et al., 2012) to interviews with 
students (Brennan & Resnick, 2012; Grover, 2011) and teachers (Meerbaum-
Salant et al., 2013). In particular, Brennan and Resnick (2012) “are interested in 
the ways that design-based learning activities […] support the development of 
computational thinking in young people” and they explore three approaches to 
assessment of the development of CT of the children engaged in such activities. 
They discuss strengths and limitations of each of these approaches extensively 
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and subsequently advocate a comprehensive approach to assessment that utilizes 
several data sources — an approach that we explore in this study too.

3.1.3	 Context of the study 
Our exploratory case study was carried out during a project-based lesson series 

within the CS course in the 12th grade of secondary education (in Dutch: VWO 6) 
where students studied modeling and simulations. They used NetLogo to program 
models of phenomena from other disciplines and to explore them through running 
simulations. During a six-weeks period they studied Modeling and Simulations 
with NetLogo. The first three weeks were dedicated to studying the instructional 
materials from a regular textbook (Heuvelink, A. et al., 2008). During the rest of 
the period, the fourteen students comprising this class worked in seven groups on 
a practical assignment where they investigated a phenomenon of their choice by 
making a model in NetLogo and exploring it through running simulations. When 
necessary, students were assisted in formulating their hypotheses or research 
questions. The entire process was strictly planned and contained milestones when 
the students turned in the required project documentation. At the end of the 
period, each group presented its model to the rest of the class and the students 
were encouraged to discuss their models, results, design choices, programming 
issues and other relevant questions. After the presentations, they turned in the 
final part of the project documentation where they described the feedback they 
got and their reaction to it. A few days later, twelve students (six groups) who 
finished their projects, turned in their final reports and NetLogo programs.

3.2	 Modeling and Simulation

There is extensive literature on modeling in science and especially in 
mathematics. We take the latter as starting point and discuss modeling in 
mathematics first, and then simulation modeling (in section 3.2.2) as a special 
case of modeling.

3.2.1	 Modeling 
Van Overveld et al. (2015) distinguish two purposes of modeling: scientific 

research and technological design, and lists a number of goals that can be obtained 
through modeling: explanation, prediction, compression, abstraction, unification, 
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analysis, verification, communication, exploration, decision, optimization, 
specification, steering and control, and finally, training. The mathematical 
modeling process can be viewed as a problem-solving activity (cf. (Polya, 2008)). 
We adopt the operationalization by Van Overveld (2015):

1.	 Definition stage: the problem is stated and researched in the context 
domain (this is also considered a core aspect of CT (Wing, 2006)). 
The purpose of the model is formulated and a study is planned.

2.	 Conceptualization stage: Data are collected and a conceptual model 
is constructed and validated. In the process of abstraction, it is 
decided what details to highlight and what details to ignore. 

3.	 Formalization stage: the conceptual model is transformed into a 
formal model.

4.	 Execution stage: the model is being used for its purpose: this means 
solving the (mathematical) problem. 

5.	 Conclusion stage: the results of the execution stage are analyzed and 
translated back into the problem domain, involving the presentation 
and interpretation of the results. 

In addition, Perrenet and Zwaneveld (2012) explicitly distinguish between the 
non-mathematical world containing the definition stage, conceptualization stage 
and conclusion stage on the one hand, and the mathematical world containing 
the formalization and execution stages on the other hand. Following each of these 
stages, reflection needs to take place: to check if any revisions are necessary by 
repeating that stage, to validate and verify the model, to assess the plausibility 
of the result and answer the initial purpose, to communicate the results and to 
learn from what one has done. After the completion of the modeling process, a 
reflection takes place and the whole process is possibly repeated. Hence, modeling 
can be seen as a cyclic process (Overveld et al., 2015; Perrenet & Zwaneveld, 2012).

3.2.2	 Simulation Modeling
Simulation modeling can be seen as a special case of modeling in which the 

model consists of a computer program and therefore is executable. In comparison 
to the mathematical modeling process, the simulation modeling process 
shows a computational — rather than mathematical — interpretation of the 
conceptualization, formalization and execution stages:

1.	 Conceptualization stage: Data are collected and a conceptual model 
is constructed and validated. In the process of abstraction, it is 
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decided what details to highlight and what details to ignore. Problem 
is formulated in a way that enables us to use a computer and other 
tools to help solve them (CSTA Computational Thinking Task Force, 
2011).

2.	 Formalization stage: a computer program is constructed, i.e. 
requirements and specifications are stated and the system is 
implemented and tested (Comer et al., 1989). This includes making 
pilot runs, verifying the program and checking validity of the 
simulation model. If necessary the program is adjusted (Law, 2015). 
Thus, the formalization stage is a cyclic process in itself.

3.	 Execution stage: the model is being used for its purpose: designing 
and running experiments (Law, 2015).

Simulation modeling encompasses three methods: (1) System dynamics, 
associated with high level of abstraction where the individual objects are 
aggregated. The models can be described in terms of differential equations that are 
often non-trivial to solve. (2) Discrete event modeling, where the system modeled 
is considered to be a process, “i.e. a sequence of operations being performed across 
entities”. The level of abstraction is lower. (3) Agent based modeling (ABM), which 
is made possible with recent growth of availability of CPU power and memory, 
does not assume any particular abstraction level. Agents have their properties 
and behavior and one can start building a model by identifying agents and 
describing their behavior even without knowing how a system behaves as a whole. 
ABM makes it possible to model systems that are difficult to capture with older 
modeling approaches (Borshchev, 2013) and it does not require familiarity with 
differential equations or mathematics beyond reach of secondary students. In our 
view, the characteristics of the ABM make it a suitable modeling method for our 
students who often lack deep understanding of the phenomena they model and 
make models specifically to deepen their understanding. To conclude, we consider 
conceptual representation which could be realized through the employment of 
ABM methods and software, in which “you give computational rules to individual 
agents and then observe, explore analyze the resultant aggregate patterns” 
(Wilensky, 2014) suitable for use in a secondary CS class “because the individual-
level behavior of agents is relatively simple, [and] ABMs feature relatively simple 
computer programs that control the behaviors of their computational agents” 
(Wilensky, 2014).
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In simulation modeling, repeating the conceptualization stage or going 
back and forth between the conceptualization stage and formalization stage are 
considered to be an integral part of the modeling process (Law, 2015). In the 
specific case of ABM, the boundaries between all modeling stages are blurred 
and it is considered a good modeling practice to develop a model in minute 
increments, cycling continuously through all modeling stages (Wilensky & Rand, 
2015).

3.3	 Method

The data were collected by the first author during the project-based lesson 
series. In view of existing studies involving algorithmic thinking and programming 
(see the introduction), we decided to use a combination of several data sources as 
a promising approach for our exploration of the students’ activities and learning 
difficulties in their projects. 

During their work in the class and the final presentations, screen and voice 
recordings were made of students’ groups. (No recordings were made of students 
working elsewhere, such as at home). Except for a few corrupted recordings, they 
were all transcribed verbatim. The project documentation of each group was 
collected. After receiving their grades, twelve students filled in an online survey 
individually where they were asked about how they approached the work on this 
project, difficulties they encountered, what they have learned, what they liked or 
disliked, and what suggestions they had for the improvement of the assignment. 
Students were also invited to be interviewed. Five semi-structured interviews were 
conducted with individual students. The students were requested to describe their 
projects and they were asked if they could design a new NetLogo model on the fly 
(i.e., draw a sketch of the interface on paper and describe the model in terms of 
agents and interactions). Finally, they were asked what they learned during their 
work on the projects. The interviews were recorded and transcribed verbatim. 

Using atlas.ti CAQDAS software we performed a qualitative analysis of the 
recordings, project documentation, survey results, and interviews, with coding 
categories based on the elements of our operational definition: purpose, research, 
abstraction, formulation, requirements, specification, implementation, verification, 
validation, experiment, analysis, and finally, reflection. After coding, we ascertained 
the visibility of the modeling elements in each of the data sources (see table 3) 
and examined the students’ activities more in-depth, looking specifically for 
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indications of students’ difficulties connected to each of the elements (see the 
following section).

3.4	 Results

There were seven project teams. Five teams consisted of two students; one of 
three students, and one student opted to work by himself. Six of seven projects 
were successful; Team 5 did not finish theirs and did not turn in all the required 
project documentation.

Team 1 modeled chemical reactions and explored the resulting pH factor. 
Team 2 modeled lottery and explored how long people are willing to keep playing, 
depending on their winnings. Team 3 modeled the propagation of the Ebola virus 
and explored the possible effect of a vaccine on its propagation and the survival 
rate of those infected. Team 4 explored the influence of various factors to the 
length of time people stay at a party. Team 5 — who did not finish their project 
— set out to explore the influence of various factors on ice cream sales. Team 6 
explored the growth and evolution of a colony of bacteria. Finally, team 7 explored 
whether mousetraps were more effective than cats in catching mice.

3.4.3	 Results
We first present an overview of visible occurrences of the elements of our 

modeling operationalization, organized by data source and student (team): see 
table 3. Some elements were combined — see the descriptions below.

We now summarize the findings of our more in-depth analysis, organized 
by the elements of our operational description. We state our findings in general 
terms and illustrate them with characteristic text segments taken from the data.

Purpose. In the project documentation all teams clearly stated the purpose of 
their models. However, in the recordings we saw students tinkering with NetLogo 
and looking at existing models before deciding what phenomenon they wanted 
to model and explore. In answering the survey question whether it was difficult 
to decide what phenomenon to model and explore, four students answered 
affirmative and told us they had difficulties figuring out what could or could not 
be modeled. For S4a, who explored the behavior of partygoers together with S4b, 
the most important lesson learned during his work on this project was that it was 
important to have a clear idea of the purpose of the model before engaging in the 
modeling process — a thought shared by three other students in the survey.
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Team 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 2 ✓ ✓ ✓ ✓ ✓ ✓
Team 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	✓ ✓
Team 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 5 ✓ ✓
Team 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Su
rv
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s

S1a ✓ ✓ ✓ ✓ ✓ 
S1b ✓ ✓ 
S1c ✓ ✓ ✓ ✓ ✓ 
S2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
S3a ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
S3b ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
S4a ✓ ✓ ✓ 
S4b ✓ ✓ ✓ ✓ ✓ ✓ ✓
S5a ✓ ✓ ✓ ✓ ✓ 
S6a ✓
S7a ✓ ✓ ✓ ✓ ✓ ✓ 
S7b ✓ ✓ ✓ 

In
te

rv
ie

w
s S1a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

S2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
S3a ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
S3b ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
S7a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Re
co

rd
in

gs

Team 1 ✓ ✓ ✓ ✓ ✓ ✓ 
Team 2 ✓ ✓ ✓ ✓ 
Team 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Team 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Team 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Team 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Team 7 ✓ ✓ ✓ ✓ ✓ 

  Presentations ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Table 3: Frequencies of simulation modeling elements per data source per team or student. For 
example, Team 3 consists of students S3a and S3b.

Research. In the recordings we saw three students from two groups searching 
the Internet to learn about the phenomena they modeled. Team 3 reported in the 
documentation of their project about the possibilities to control the spread of 
the Ebola virus: “Virus: does not spread through the air but through contact with 
an Ebola patient (sex, blood), slaughtering and eating of a sick animal, non-sterile 
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needles. […] incubation about 21 days, 9 out of 10 people die”, without reporting the 
source. In the survey, S3b mentioned consulting her sister who studied medicine. 
Team 6, exploring the effect of ambient warmth and the presence of food on life 
of bacteria, did not report any research in their project documentation. Others 
did not visibly engage in research but developed their models based on what they 
already knew about the phenomena they modeled (e.g. Team 1 who explored 
chemical reactions — in the survey S1a wrote they learned that in chemistry 
lessons) or their presumptions (e.g. Team 7, who explored whether mousetraps 
were more effective than cats in catching mice, or Team 5, who explored the 
influence of weather on ice cream sales).

Abstraction. All students engaged in abstracting: choosing a level of abstraction, 
based on the decision they made with respect to relevancy of particular features 
and deciding what to include into their models and what to leave out. 

In the recording we observed several students struggling to determine such a 
level of abstraction. For example, Team 1 — who initially neglected the teacher’s 
instruction to study the textbook first — had difficulties understanding the idea 
behind ABM and got ‘stuck’ in the notion of an aggregate state, e.g. thinking 
about pH as a contributing factor in a chemical reaction rather than the result 
of it. During the interview, S7a told us that he wanted his mice to reproduce but 
did not include this feature because he did not know how to implement males 
and females. It did not occur to him that gender of the mice was not relevant in 
his model. Finally, as required, all students who finished the project turned in 
wish lists with features or aspects that were not implemented yet but should be 
considered for the next version of the model, thus demonstrating they were able to 
decide what to include or leave out.

Formulation. The assignment required a description of the behavior of the 
model in a natural language, and all the students who finished their projects 
did that. However, several students needed help to formulate their problems 
appropriately: e.g., only after choosing the right level of abstraction did Team 1 
manage to formulate their problem appropriately and, in the recordings, we heard 
S1a say, “Two of these things have to collide with each other and then something 
needs to happen”.

Requirements and Specification. In the recordings it turned out to be hard to 
observe a distinction between requirements and specifications — see the results 
on Verification and Validation for a comprehensive example.
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A description of requirements and specifications was a part of project 
documentation and all the students who finished their projects provided it. Team 
7 wrote, “The mousetraps need to be placed at random locations since we don’t 
know what the perfect locations would be. If a mouse contacts a mousetrap, then 
the mouse needs to die/disappear.” In their project documentation, Team 1 stated 
requirements: “In our program, two particles react to form two other particles. The 
probability that two particles react can be specified, as well as the reaction speed of 
the particles.” Then they wrote specifications extensively: “If two initial turtles (red 
and yellow) meet, then the current catalyst value (the left slider) determines whether 
they react.” Team 3, who explored the propagation of the Ebola virus, wrote, “In 
our model there is only one [breed of] turtles and it stands for people. These turtles 
can have various properties, such as being ill or healthy. They can be influenced by 
external factors such as medicine and their life span.”

While all students managed to implement something, some of them 
experienced difficulties. In the recordings we heard S1a say, “I know what I want to 
do, but I don’t know how to code it. I don’t think it’s all that difficult, but...” During the 
interview, S7a told us he refrained from including mouse reproduction because he 
did not know how to design this feature and program it. When constructing their 
programs, only one team worked top-down: the others rather engaged in bottom-
up incremental development constantly adding new features to their models.

Verification and Validation. The recordings revealed a complex picture in 
which the distinction between validation and verification was not always clear. 
Team 4’s approach is representative of students’ strategy: they constructed their 
model (program) by cycling among stating requirements and specifications, 
implementing and testing, in minute steps: “We have to do that with time, man, 
that they can only drink one beer in ten seconds or so, otherwise they drink too 
much!” When testing, it was not clear whether they were validating their model or 
verifying their code: often they would run their program, see remarkable behavior 
and subsequently change the code. S4b: “All dead.” S4a: “It begins to deteriorate 
now [in the simulation, the beer is gone and people leave the party quickly]” S4b: 
“But how could they all get the same amount of beer?” S4a: “That’s because of that 
piece of code.” S4b: “Really? Can’t that be changed? How did they do it with the 
sheep? [Referring to an example from NetLogo’s models library]” Subsequently they 
would change their code and continue their work in a similar fashion. Team 6 
worked similarly. It was not clear whether S6b was validating or experimenting: 
“It works now but it is not balanced, so to speak.” S6a: “Yeah.” S6b concluded: “Yeah. 
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That remains to be done” and went on to change the code. Later on they tried 
again. S6b: “And if we make this one a bit lower, say seven or so, then they die, that 
is really abrupt, like, either they live or so, or all dead.”

In the project documentation, all of the students reported that their models 
behaved as expected (validation). Several students described validating their 
models and adjusting when necessary. To this end, Team 1 wrote: “to prevent 
particles from reacting with each other immediately following a reaction, we built in 
a reaction pause. […] That way you prevent particles from being stuck in a constant 
back-and-forth reaction.”

Experiment. Team 7 was the only team who documented systematically 
performed experiments with their model: they reported the initial parameter 
values (e.g. ten cats and nine mice) and included the resulting data plots in 
their project documentation. In the recordings we saw other students engage in 
experimenting to various degrees, but most failed to mention this in the project 
documentation.

Analysis. Not all the students provided an analysis of the results of the 
experiments, but in the project documentation, they all reported answers to the 
purpose of their models. Team 7’s analysis revealed, “The mousetraps were not 
always effective. Some mousetraps go off but the mouse manages to escape.” Finally, 
they concluded that mousetraps were more effective than cats in catching mice. 
In the recordings we saw Team 3 analyze their data, without reporting it in the 
project documentation, and their conclusion was, “We expected that the new 
medicine would decrease the spreading of Ebola. It turned out that the medicine 
worked rather quickly, but that the rate of infectiousness was of influence as well.”

Reflection. As required, all the students reflected on their models in the project 
documentation. Team 7 wrote: “Not everything in our model corresponds with the 
reality. But it is nice to experiment with it. You can make your model as large and 
complex as you wish.” In the survey the students were asked what they learned. S3b 
wrote: “It [modeling] is a good means to predict/research hypotheses. A good aid 
for research. I take chemical reactions as an example. You can make it and thus see 
(visualize) what happens,” a thought reflected by S1a too. S4a learned that it was 
important to have a clear idea of the purpose of the model before engaging in the 
modeling process and that models and simulations never completely correspond 
to the reality. Contrary to S4a’s reply, during the interview S1a expressed his 
astonishment about how easy it was to make a model that “actually reasonably 
corresponded” to what was modeled. He even went on to show it to his chemistry 
teacher.
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3.5	 Conclusion and Discussion

As to the first research question — How can the intended learning outcomes of 
Computational Science (modeling and simulation) be described in operational terms 
— we have obtained an operational description based on literature on modeling 
and simulation. The elements of the description turned out to be suitable to 
classify simulation modeling activities of the students in our study. However, 
some of these had to be grouped together since the separate elements could not 
be distinguished. The resulting operationalization contains the elements purpose, 
research, abstraction, formulation, requirements/specification, implementation, 
verification/validation, experiment, analysis, reflection. This ‘blurring’ of activities 
is also described by Wilensky and Rand (2015).

In answering our second research question — What data sources are suitable 
to monitor students’ learning outcomes when engaging in modeling activities — 
we found that every source enabled us to observe some aspects of the modeling 
process. The interviews provided the opportunity to observe all the aspect of 
the modeling process, closely followed by recordings of students at work. In the 
project documentation, the description of the model and the reflection are well 
represented and experimenting and analysis not so: contrary to the presentations, 
where exactly the opposite happens. The surveys, in their present form, did not 
provide much insight into the modeling stages the students engage in.

We are planning to use our results to develop an assessment instrument. In 
order for such an instrument to be feasible for classroom usage, a combination 
of project documentation and class presentation are promising data sources that 
enabled us to capture all aspects of students’ work. Our findings suggest that the 
instructions for documentation and presentation could be sharpened to improve 
visibility of (systematic) experimentation and data analysis within the model.

Finally, in answering our third research question — What specific challenges do 
the students experience when engaging in modeling activities — we identified some 
difficulties. Many students could not decide what to model exactly, and found it 
hard to decide on the level of abstraction and formulate the problem suitably for 
modeling through ABM. While all students managed to program something, not 
all of them were able to program all they wanted because either they could not 
decide on the relevance of a feature, or they did not know enough NetLogo to 
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code it. During testing it appeared to be difficult to attribute unexpected behavior 
to a fundamental modeling mistake, a programming error, or unexpected 
(i.e. emergent) behavior that was characteristic for the phenomenon under 
scrutiny. Students tend to rely on an incremental trial-and-error strategy while 
implementing their simulation model. Only a few conducted systematic and well 
documented experiments. Most of these experiments, together with the analysis 
of the results, were intermingled with the construction of the models.

This incremental development is consistent with description of the modeling 
practice, for example by Wilensky and Rand (2015). An ad hoc incremental 
development (trial-and-error strategy) is typical for novices (Robins et al., 2003).

General remarks. Although this was a small study with a limited number of 
participants, we learned a lot about students’ understanding of modeling and 
simulation. Also, our findings indirectly informed us about the quality of the 
instruction, which leaves room for improvement. The instructional materials 
used were written with Artificial Intelligence (AI) and the role modeling could 
play in AI in mind. We feel they lacked specific focus and depth needed to teach 
modeling to a satisfactory degree.

Several students told us that through work on this project, they learned about 
the phenomena they modeled, which is in line with earlier findings (Blikstein & 
Wilensky, 2009; Taub et al., 2014). We often heard them laugh during their work 
and we observed that many students enjoyed working on this project. We saw that 
these CS students were able to utilize their CS/CT knowledge and skills to advance 
their learning in other disciplines.

In the subsequent phases of this research project, we will use these findings 
to explore CS teachers’ initial pedagogical content knowledge of Computational 
Science in our second study (see chapter 4), and to develop instructional materials 
which will be used for the study on the assessment instrument (third study, see 
chapter 5) and the study on students’ understanding and difficulties while working 
on Computational Science assignments (fourth study, see chapter 6).

Furthermore, we believe that the results of this research will contribute to the 
development of the CS curriculum in secondary education in the Netherlands, CS 
teacher training and CS education in general.
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Chapter 4

Investigating Computer Science 
Teachers’ Initial Pedagogical 

Content Knowledge on Modeling 
and Simulation 

In this chapter, we describe our second study focusing on the CS teachers’ 
pedagogical content knowledge (PCK) on modeling and simulation. We 
interviewed ten CS teachers and analyzed their PCK, distinguishing its four 
components — knowledge of (M1) goals and objectives, (M2) students’ 
understanding, (M3) instructional strategies and (M4) assessment — and 
investigated potential differential features of their PCK in order to typify teachers’ 
individual PCK. We charted the teachers’ PCK in terms of these four components 
and found differential features related to knowledge of goals and objectives and 
related to knowledge of assessment, dividing these teachers into four distinct 
groups. However, these differential features do not lead to distinct types of PCK, 
thus not providing a typification that would allow to match each teacher’s PCK to a 
distinct type of PCK. Our findings will be used to explore the future development 
of teachers’ PCK and they will contribute to the development of teaching materials, 
assessment instruments and teacher training courses on modeling. 

This chapter is based on the paper Grgurina, N., Barendsen, E., Suhre, C., van 
Veen, K., & Zwaneveld, B. (2017). Investigating informatics teachers’ initial 
pedagogical content knowledge on modeling and simulation. In International 
Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp. 
65-76). Springer, Cham.
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4.1	 Introduction

Modeling plays a significant role in the development and learning of science 
(Justi & Gilbert, 2002) and CS provides the means for students to actively engage 
in learning science by providing tools and techniques to engage in modeling. 
The new 2019 Dutch secondary education CS curriculum recognizes this and 
includes an elective theme comprised of modeling and simulation, together 
called Computational Science. It is described by the high-level learning objectives: 
“Modeling: The candidate is able to model aspects of a different scientific discipline 
in computational terms” and “Simulation: The candidate is able to construct 
models and simulations, and use these for the research of phenomena in that other 
science field.” Modeling itself will be a part of the compulsory core curriculum, 
described as “Modeling: The candidate is able to use context to analyze a relevant 
problem, limit this to a manageable problem, translate this into a model, generate 
and interpret model results, and test and assess the model. The candidate is able 
to use consistent reasoning.” (Barendsen & Tolboom, 2016). The curriculum does 
not provide further details about these objectives, instruction or assessment. In 
line with the Dutch tradition, this is left to educators and authors of teaching 
materials. The elaboration of this learning objective, the development of teaching 
materials, assessment tools and teacher training courses are already taking place 
and the studies described in this thesis are an integral part of that effort.

Following Magnusson et al. (1999), we distinguish four components of content-
specific pedagogy: (M1) goals and objectives, (M2) students’ understanding and 
difficulties, (M3) instructional strategies, and (M4) assessment. 

In our first study, we obtained an operational description of the intended 
learning outcomes of the learning objective Computational Science — thus 
focusing on Magnusson’s component M1 about the goals and objectives, observed 
students working on modeling tasks — focusing on Magnusson’s component M2 
about students’ understanding, and established what data sources were suitable 
for assessment — Magnusson’s component M4 about methods of assessment (see 
chapter 3).

4.1.1	 Aim of this Study 
In this study, we turn our attention to teachers and focus on teachers’ PCK on 

modeling. We address the following research questions: 
1.	 How can the teachers’ PCK be portrayed in terms of the four 

components of PCK? 
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2.	 What differential features of PCK can be used to identify patterns of 
individual PCK in terms of the four components of PCK?

The answer to the first question will serve as input to the second question that 
seeks to determine whether it is possible to recognize distinct types of PCK and 
subsequently match each teacher’s PCK to one of these types.

Our findings will serve as input for the subsequent studies on designing 
teaching materials and assessment instruments, the development of teachers’ 
PCK, and they will contribute to the development of teacher training courses.

4.1.2	 Related Work
The construct of PCK has proven to be a powerful one to help capture teachers’ 

views and knowledge on teaching various topics — both in STEM and in other 
disciplines — such as models and modeling in science (Justi & Gilbert, 2002) and 
as a part of public understanding of science (Henze et al., 2007), programing in 
CS (M. Saeli, 2012) and designing digital artifacts in CS (Rahimi et al., 2016), to 
expose the relation between the quality of teachers’ PCK and their subject matter 
knowledge (M. Saeli, 2012; Sanders et al., 1993) to explore the PCK repertoire of 
beginning teachers (E. Lee et al., 2007) and to chart the development of teacher’s 
PCK as the experience with teaching a particular topics increases (Henze et al., 
2008).

We investigate PCK through the lens of the operational description of the 
intended learning outcomes of the learning objective Computational Science 
obtained in our previous study, describing the modeling cycle for simulation 
modeling through its elements purpose, research, abstraction, formulation, 
requirements/specification, implementation, verification/validation, experiment, 
analysis, and reflection obtained in our first study (see chapter 3.4).

4.2	 Method

We conducted individual semi-structured interviews with ten CS teachers 
from the local CS teachers’ network who replied to our invitation to be 
interviewed. Four of the teachers have an CS background and three of these are 
qualified teachers with an MSc degree in CS education while the fourth one is still 
studying to get this qualification. Out of the other six teachers, one has no teacher 
qualification, one is qualified for mathematics only, and other four are qualified 
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teachers for other subjects — such as physics or history — who additionally 
attained teacher qualification for CS through in-service training CODI scheme, 
described in chapter 2. The teaching experience of these ten teachers ranges from a 
few months to several decades. Eight of these teachers were about to take a course 
on agent-based modeling. Interviews lasted between half an hour and an hour, 
depending on the extent of a particular teacher’s PCK. In our interview protocol, 
we first enquired about the teachers’ educational and professional background 
and whether they had already taught modeling. We then asked detailed question 
arranged around the four PCK components described by Magnusson, that were 
inspired by Justi and Gilbert (2002, 2003), Rahimi (2016) and Henze et al. (2007).

•	 M1: Knowledge of goals and objectives
What comes to mind when you hear the word ‘model’? In which context(s) 

does this word make sense to you? (Justi & Gilbert, 2003) What are models for? 
In which circumstances are they used? (Justi & Gilbert, 2003) What do you expect 
to be your main objective in teaching modeling and simulation in CS? (Henze et 
al., 2007) Why do you intend to teach this to your students in CS? What do expect 
you will like or dislike about modeling projects by your students? (Rahimi et al., 
2016)

•	 M2: Knowledge of students’ understanding
Do your students need any specific prerequisite knowledge to be able to 

learn about modeling and simulation in CS? (Henze et al., 2007) What sorts 
of skills do students need to acquire in order to be able to develop models and 
run simulations? (Rahimi et al., 2016) What do you expect to be successful for 
your students? (Henze et al., 2007; Rahimi et al., 2016) What do you expect to 
be difficulties for your students? (Henze et al., 2007; Rahimi et al., 2016) What 
do expect your students to actually learn from their modeling (and simulation) 
projects? (Rahimi et al., 2016)

•	 M3: Knowledge of instructional strategies
In what activities and in what sequence do you expect your students to 

participate in the activities of learning modeling and simulation? What to teach 
students to achieve the modeling objectives? (Rahimi et al., 2016) How to teach 
students to achieve the modeling objectives? (Rahimi et al., 2016) What do you 
expect to be your role as a teacher when teaching about modeling and simulation? 
(Henze et al., 2007) What do you expect are going to be the teaching difficulties/
problems concerned with the modeling projects in your classroom? (Rahimi et al., 
2016) What technological tools do you intend to use in your classroom? (Rahimi 
et al., 2016)
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•	 M4: Knowledge of assessment
How do you intend to assess your students’ learning and achievement during 

their modeling projects? (Rahimi et al., 2016) How do you intend to establish 
whether your students reached the learning goals with regard to modeling and 
simulation? How would you know? (Henze et al., 2007)

The interviews were recorded and transcribed verbatim. We first coded the 
transcripts using the coding categories derived from our operational description 
of modeling: purpose, research, abstraction, formulation, requirements/specification, 
implementation, verification/validation, experiment, analysis, and reflection 
obtained in our first study (see chapter 3). We then classified the interview 
transcripts using Magnusson’s four components of PCK (Magnusson et al., 1999) 
as main coding categories. Within these categories, we applied inductive coding 
to characterize the teachers’ responses. In an axial coding process (Cohen et al., 
2007), the codes were grouped and merged where necessary. We used the codes 
to describe the teachers’ PCK in the results section (section 4.3). In a subsequent 
analysis, we tried to identify differential features in terms of Magnusson’s 
components M1 through M4 in order to typify teachers’ individual PCK.

4.3	 Results

In this section, we first present the results of our characterization of the 
teachers’ PCK organized around the four components of PCK (M1 through M4). 
Subsequently, we then explore differential features in order to distinguish types of 
teachers’ PCK.

4.3.1	 Knowledge about Goals and Objectives (M1)
No teacher has taught Computational Science as a separate topic in the context 

of the CS course yet and only one of them taught system dynamics modeling in a 
physics course. Since we did not enquire about the modeling process explicitly, we 
performed a detailed analysis of the interviews through the lens of our theoretical 
framework on the modeling cycle and thus reconstructed the teachers’ content 
knowledge (CK) pertaining to the aspects of Computational Science obtained in 
our first study (see chapter 3), as shown in Table 4. 
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Aspect                           Teacher 1 2 3 4 5 6 7 8 9 10

purpose x x x x x x
research x
abstraction x x x
formulating x x x x x x
requirements/ specification x x
implementation x x x x
verification/ validation x x x x x x x
experiment x x x x x
analysis x x x x
reflection x x x x x x x

Table 4: Teachers’ PCK on modeling cycle

Concerning the nature of models, six teachers said that models were a 
simplified representation of reality, three reported that models were something 
to be used for calculations, two saw models as something for visualization and 
communication, and one also mentioned physical models. Regarding the contexts 
for the use of models, the teachers mentioned information systems, scientific 
research and cited several examples (e.g. exploring group forming on ethnical 
basis). Several teachers stressed the fact that CS served other disciplines — an idea 
that persistently permeates their thinking about modeling and teaching modeling. 

According to the teachers, the objectives of teaching modeling are twofold:
•	 Conceptual objectives: these objectives emphasize learning to 

master skills associated with CS subject matter. Teachers mention 
CT aspect automation, software design cycle, the necessary 
research skills, analysis of the world the students live in, linking and 
translating reality to model through abstraction, building a model 
and, in words of teacher 9, “using it […] so that you can predict things 
or test things, or … ehm …, understand things”.

•	 Motivational and practical objectives: these objectives focus 
on students’ engagement, motivation, attitude, skills, practical 
benefits, insight and awareness about relevance. Teachers mention 
perseverance, building confidence about students’ own ability, 
developing self-reliance, and realizing that models are useful tools 
that can be used in specific situations. In this light, learning to model 
helps to enhance students’ insight, it helps develop cooperation and 
communication skills, it is interesting or fun, it serves as preparation 
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for the future, and it concerns “soft CS”. Furthermore, modeling lays 
a connection between CS and other disciplines and models could be 
useful for students’ subsequent studies. In words of teacher 10, “… 
that you need to be able to design a test setup with CS, ehm, digital 
means so that you can get a lot of results, but processing these results is 
no more CS, that’s physics.”

4.3.2	 Knowledge of students’ understanding (M2)
The prerequisite knowledge needed to learn modeling and skills needed to 

make models are related to:
•	 Student’s characteristics: such as age and development, mindset, 

attitude, and other skills. For example, teacher 6 believes “it is all 
very complex, they [students] are only 15 years old” and teacher 7 
is reminded of Bloom’s taxonomy and fills in “it gets easier as they 
get older”. Fantasy, creativity and an analytical mindset also play a 
role. Attitude is important: several teachers stress the significance of 
perseverance. Some mention differences among students: teacher 6 
expects to see different skill levels when it comes to tackling practical 
assignments.

•	 Student’s knowledge pertaining: the other discipline, programming 
or computational thinking, and modeling aspects. Teachers 4, 5, 6 
and 8 expect the students to know something about the phenomenon 
from other discipline they are modeling. Almost all the teachers 
expect their students to be familiar with programming before they 
embark on modeling. However, teacher 9 also sees the possibility 
to use modeling as a vehicle to teach programming. Teachers 4, 8 
and 10 expect their students to be familiar with several modeling 
aspect such as being able to explain how a particular model works, 
abstraction, and in words of teacher 8, “you need to learn to recognize 
the actors and you need to be able to see the relations among them, to 
…ehm … to describe them, to translate them into a model”.

•	 The chosen teaching approach: teacher 8 mentions the interplay 
between the teaching materials used and the necessary prerequisite 
knowledge and says “but you need to sense what extras you should 
offer” and adds, ”It’s quite abstract so I think about the 12th grade, 
but if you present it simply enough, then you could teach it in the 10th 

565438 N Grgurina.indd   86565438 N Grgurina.indd   86 14-09-21   17:0414-09-21   17:04



Investigating CS Teachers’ Initial PCK on Modeling and Simulation

87

4

grade as well, without ever having taught any CS before that”. He also 
stresses the importance of re-activating the knowledge the students 
already possess.

The issues teachers regard as successful: 
•	 Relevance: through modeling, learning about familiar phenomena 

encountered in other courses (e.g. biology, economy) rather than 
distant ideas. As teacher 6 puts it: “You concoct nice stories about 
nuclear power plants, but how many children end up in there?” 

•	 Perception: attitude, experiencing success, interest and fun, 
and student’s characteristics. Several teachers expect students’ 
confidence would grow through their perseverance when facing 
problems and experiencing success by making a model on their 
own. Teacher 2 admits that achieving this with his students poses 
a challenge. Numerous teachers expect these aspects, together with 
the relevance experienced by students and the possibility to come 
up with creative solutions and implementation of students’ own 
ideas, to make modeling interesting and fun. Teacher 10 mentions 
Gardner’s multiple intelligences to explain why he expects students 
in science tracks to perform differently than students in humanities 
tracks.

•	 Skills: programing and computational thinking. Most teachers 
expect that programming the models would not pose a problem.

•	 Organizational issues: teaching strategies to meet students’ needs. 
Several teachers describe how to contribute to the students’ success 
by choosing a suitable teaching approach. A number of teachers who 
intend to use NetLogo to teach modeling prize its user-friendliness 
and see this as a success factor. 

•	 Interest and fun: Teacher 5 says, “even if I never teach this, I still 
find it fun for myself ” and goes on to reflect how to transfer this 
enthusiasm to his students.

•	 Finally, teachers 1, 3, 4 and 9 do not know what to say. As teacher 4 
puts it, “I’ve never taught modeling, so I wouldn’t know what would be 
a success.”

The issues teachers regard as difficult: 
•	 Technical issues: programing and computational thinking, aspects 

of modeling and development. For example, the meaning of the 
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term parameter in physics or mathematics differs from the meaning 
in a simulation model and that might be confusing. Students who 
follow physics course are already familiar with models, as opposed 
to students in humanities tracks. Teacher 2 expects that in the 
beginning, students will have difficulties understanding existing 
models and how their components interact. Teacher 4 expects her 
students to have problems getting used to the programming language 
and subsequently to have problems programming. Numerous 
teachers expect that modeling aspects such as abstraction – deciding 
what is relevant for a model and what to leave out — will be difficult. 
Some teachers expect problems with implementation — translating 
conceptual model into program code. Teacher 7 expects his students 
could be too ambitious with the models they want to make and 
suggests keeping an eye on his students all the time to be able to 
intervene and help in case they encounter any of these problems.

•	 Perception: attitude, skills, interest or fun, relevancy, age and 
development. Teacher 9 expects problems with motivation if the 
students do not see the relevance of modeling. He also mentions 
lack of perseverance and inability to go on after getting stuck. 
Teacher 6 believes that abstract aspects of modeling are difficult for 
the students of this age – 16 years old. He also mentions students not 
using common sense.

•	 Approach: work method, possibility to work on their own case. 
Some teachers expect problems with students who dive right into 
building their models without giving it sufficient thought first, and, 
with students who lack oversight and do not know where to begin. 
According to teacher 9, the last problem could be alleviated by good 
teaching material. Several teachers believe some students would 
have difficulties coming up with a suitable case to model. 

Again, some teachers do not know what to say.

4.3.3	 Knowledge about instructional strategies (M3)
When asked about their teaching approach, some teachers are cautious about 

replaying due to lack of experience, but in the end all the teachers have similar 
ideas that can be summarized as follows: during a period ranging from six to 
twelve weeks, scaffold learning by beginning with an introduction about models 
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in general, show and explain the working of few models and their code, then give 
students several assignments to expand existing models or develop simple models 
from scratch, possibly differentiate to account for students interests, level (HAVO 
or VWO) or the track they follow (humanities or science), and finally, engage 
them in a large (group) project where they develop a model from scratch during 
several weeks. While describing their teaching approach with various degree of 
detail, the teachers report about:

•	 Their role as a teacher: to coach, to explain, to show, to help, to 
encourage, to keep an eye on students’ progress, and simply to be 
there. Teacher 9 says, “and then you come in there to steer. And if it 
gets stuck, not just to answer the question, but to help them find the 
answer themselves”. Teacher 5 is cautious: “well, when they’re working 
on a new model, I don’t always have a ready-made answer.” Teacher 
7 would have his students recreate a small program to check their 
understanding before they embark on the large project. During the 
project, he would have a double role, both as the teacher and as a 
client. As the teacher, he would keep an eye on the progress of the 
whole project. As the client, he would come in every two weeks and 
tell his students things like “hey, you have things that make no sense” 
and have students fix the problems themselves.

•	 Assignments the students work on: open and closed problems and 
making models. Teacher 6 would have a number of closed problems 
together with answers for students to practice before embarking on 
the open problem they have to work on as their final project. For the 
final project, most teachers would let their students come up with 
their problems themselves, but would also have a list of problems 
available for those who cannot think of something themselves.

•	 Student’s characteristic to take into account: level and the track 
they follow. Teacher 8 would have different assignments for students 
to practice on, catering to their needs and preferences, depending 
on the educational track they follow. Teacher 2 would not require his 
HAVO students to develop a model from scratch, but would rather 
have them expand and adjust an existing model.

•	 Organizational aspects: the daily teaching practice, planning, 
organizing, SCRUM20, rapid prototyping and playing the role of the 

20   https://www.scrum.org
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client. Teacher 3 teaches 60-minutes lessons and would start each 
lesson with a short central instruction and let the students work 
for themselves the rest of the time. He would use Trello boards for 
planning and, like teacher 9, employ SCRUM to organize the work. 
Teacher 10 would send his students to a teacher of a different subject 
who would then pose as a client, while he himself would be a process 
supervisor. Teacher 9 would pose as a client himself. 

•	 Difficulties and problems: technical problems, problems related 
to teaching materials and other problems. Teacher 9 warns that no 
matter how simple the software used is, there is always a possibility 
of getting an error message, not understanding it and then getting 
stuck.

4.3.4	 Knowledge about Assessment (M4)
When asked about assessment, all teachers agree that the large practical 

assignment the students worked on to learn modeling could serve for the 
assessment purpose as well. Teacher 9 could possibly give his students a written 
exam instead. Teacher 8 would use a small written exam to ascertain the students 
learned enough about modeling before they are allowed to start working on a 
large project. When talking about assessment, the teachers report on:

•	 Assessment form: written exam — formative and summative, 
project to be done individually or in groups. 

•	 Problems to work on: given by the teacher or provided by the 
students themselves, open or closed, opportunity for differentiation.

•	 Organizational issues: SCRUM and rapid development.
•	 Assessing the work: quality of the end product and project 

documentation, aspects of modeling cycle, teacher’s impression 
about the students’ activities in the lessons during work on the project. 
When assessing the results of the final project, most teachers want to 
look into the quality of the model — and some of them the code too 
— as described by the students in the project documentation they 
are required to turn in. The teachers mention various aspects of the 
modeling process as relevant for the assessment. However, no clear 
quality criteria are elaborated and teacher 1 would simply estimate 
the quality of the project. Teacher 8 adds that technical aspects are 
easy to assess, but it is difficult to see if the students realize the full 
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spectrum of possibilities the modeling offers to them. Some teachers 
would rely mainly on their observation of students while they work 
on the projects, again without elaborating on specific quality criteria. 
Additionally, teacher 10 would talk to his students to ascertain 
whether they understand what they are doing. Teacher 6 would also 
assess the quality of the report the students wrote for the customer. 
Teacher 7 would have his students present their models, he would 
assess the product (i.e. model and project documentation) and 
additionally the process (SCRUM) and he stresses the importance of 
reflection, together with number of other teachers. He adds, “even if 
they didn’t succeed, I find you can’t say they don’t know what modeling 
is”. Teacher 5 is not sure what to say: “if the model works, is that 
sufficient?”

4.3.5	 Differential Features and Typification
We found two characteristics that distinguish among teachers: 
•	 Knowledge of goals and objectives (M1). Teachers 1, 2, 4, and 6 

stress the importance of conceptual objectives such as learning how 
to employ programming or how to make models, while teachers 3, 
5, 7, 8, 9 and 10 put more emphasis on broader motivational and 
practical objectives such as enhancing insight or preparing for the 
future.

•	 Knowledge of assessment (M4). Teachers 1, 2, 4, 8, 9 and 10 
predominantly put to use product-based assessment stressing the 
quality of the students’ product, while teachers 3, 5, 6 and 7 prefer 
process-based assessment stressing the importance of the employed 
working procedures.

Combining these two differential features leads to four groups of teachers as 
shown in Table 5: 

M1

Conceptual objectives Practical and motivational objectives

M4
Product 1, 2, 4, 8, 9, 10

Process 6 3, 5, 7

Table 5: Distinct groups of teachers
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Our analysis revealed, however, that the knowledge of students’ understanding 
(M2) and instructional strategies (M3) varies within each of these four groups, 
so the above differential features do not give rise to a typification of the teachers’ 
overall PCK that would allow to match each teacher’s individual PCK to a distinct 
type of PCK.

4.4	 Conclusion

In answering the first research question — How can the teachers’ PCK be 
portrayed in terms of the four components of PCK? — we portrayed each of these 
components:

Concerning teachers’ knowledge about goals of objectives on teaching 
modeling, we charted teachers’ content knowledge and described learning 
objectives in terms of conceptual, and motivational and practical objectives. 

Concerning the knowledge about students’ understanding, the teachers 
reported on the prerequisite knowledge, attitudes, skills, abilities and various 
approaches students have to learning, in line with Magnusson et al. (1999). 
However, when talking about the difficulties, they mentioned problems due to 
the abstract nature of modeling and inefficient students’ strategies, but no teacher 
mentioned misconceptions. 

Concerning the knowledge about instructional strategies, we see an 
agreement about subject-specific strategies (Magnusson et al., 1999) — scaffolding 
learning with a final project which serves both to give students the opportunity to 
learn how to develop a model from scratch and as assessment. 

Concerning knowledge of assessment, there is an agreement about a suitable 
form — a large practical assignment. Teachers mentioned a range of assessment 
criteria focused on the quality of students’ products and teachers’ impressions of 
the students work process. In contrast to the uniformity regarding the form of 
assessment, there is a great variation in granularity and depth of their description 
of assessment criteria. We saw similar diversity regarding the knowledge of 
dimension to assess (Magnusson et al., 1999), i.e. the aspects of modeling process. 

In answering the second research question — What differential features of PCK 
can be used to identify patters of individual PCK in terms of the four components 
of PCK? — we found two characteristics that distinguish among teachers: their 
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focus on conceptual versus motivational and practical objectives (M1) and their 
emphasis on product-based versus process-based assessment (M4) leading to four 
distinct groups of teachers. However, none of these differential features leads to an 
overall typification of the teachers’ PCK.

4.5	 Discussion

Reflections on findings. As a possible explanation for the variations found 
in the teachers’ PCK, we explore the relation with the teachers’ background. Not 
surprisingly, we saw that teachers 1, 2, 4 and 9, who all have a background in CS, 
displayed rich knowledge of modeling. Teachers 1 and 4 — both young teachers 
— had limited idea about what to expect from their students beyond the general 
remarks about students needing to plan before acting and lack of perseverance. 
On the other hand, teachers 2 and 9 exhibited rich knowledge of students’ 
understanding and related their extensive knowledge of instructional strategies 
to it. Teachers 6, 7, 8, and 10 possess rich and well-connected PCK. Finally, we 
saw that teachers 3 and 5, despite their limited content knowledge, were able to 
relate their general knowledge of their students to their teaching strategies. The 
knowledge of their students’ understanding and difficulties was the strongest 
component of their PCK. Other components of their PCK were weaker and so 
were the relations among these components too. 

Regarding the instructional strategies, the teaching approach described here is 
in line with prevailing CS teaching practices in the Netherlands (Schmidt, 2007). 
The extent of knowledge of topic-specific strategies (Magnusson et al., 1999) varies 
across teachers and seems to be related to their subject matter knowledge and 
teaching experience. The findings about young teachers 1 and 4 are in line with 
the results by Lee et al. (2007) who found that “a strong science background does 
not guarantee a proficient level of PCK.” The more experienced teachers sometimes 
behave like novices too, — e.g., teacher 5 — while in others, their extensive PCK 
seems to sustain them in the non-familiar area of modeling, in line with results of 
Sanders et al. (1993) who found in a similar situation that rich PCK for general 
science topic seems to sustain teachers “in whatever content they are teaching”. 

We observed two characteristics allowing us to distinguish among teachers 
that were observed by Rahimi et al. (2016) as well — in the knowledge of goals 
and objectives (M1), with preference for either conceptual objectives or broader 
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motivational and practical objective, and in the knowledge of assessment (M4), 
with preference for either product-based assessment or process-based assessment. 
However, our findings are not completely in line with those findings because in 
our case, for example, teachers 1 and 10, both leaning toward predominantly 
product-based assessment, require students to keep logbooks to document 
the modeling problems, difficulties and dead ends they encountered. On the 
other hand, teacher 6 would take customer’s feedback into account and teacher 
7 would have his students present their work in the class, while they both lean 
toward predominantly process-based assessment. Unlike Rahimi et al., we were 
not able to typify teachers’ PCK through relating their knowledge of students’ 
understanding and instructional strategies on one hand, to their knowledge of 
goals and objectives and knowledge of assessment on the other.

Remarkably, despite the great variation of assessment criteria mentioned, there 
is hardly any evidence of quality indicators used to judge to what extent these 
criteria are met and to what extent the students are able to apply the elements of 
modeling to a satisfactory degree.

Limitations of the study. In this study, we charted PCK of a small group of 
CS teachers. However, because of the variations in their educational background, 
teacher qualification and teaching experience we expect that our findings are 
fairly typical for the population of Dutch CS teachers. This is to be confirmed in 
further research.

Implications for educational development. We believe that teachers would 
benefit not only from a course on modeling, but also from the availability of 
teaching materials. We are convinced that the quality of assessment — an issue 
attracting a lot of attention in modern CS education (Alturki, 2016) — would 
improve if teachers get assistance with designing assessment instruments that 
would take into account both product and process.

In the subsequent phases of this research project, we will use these findings 
when we focus on the development of teaching materials (the fourth study, see 
chapter 6) and assessment instrument (the third study, see chapter 5). In parallel, 
in-service teacher training based on these findings will be offered to interested 
teachers. Finally, all the participants in this study will be followed to chart the 
development of their PCK of Computational Science in the future — an endeavor 
that falls beyond the scope of this thesis.
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Chapter 5

Assessment of Modeling and 
Simulation in Secondary 

Computing Science Education

Using the findings from the first two studies, we developed a curriculum 
intervention including a practical assignment and an accompanying assessment 
instrument consisting of grading rubrics based on the SOLO taxonomy. In this 
chapter we focus on the assessment instrument. We describe its development 
and report on a pilot study carried out in the secondary computing science 
course implementing the curriculum intervention. The instrument proved to be 
reliable and effective in tracing high and low levels of the students’ achievements 
in modeling and simulation projects and exposed the expected differences in 
performance levels of various groups of students, which renders it useful for 
both formative and summative assessment. Furthermore, our application of the 
instrument has provided new insights into the needs of specific groups of students 
to receive instruction prior to and during the work on the assignments.

This chapter is based on the paper Grgurina, N., Barendsen, E., Suhre, C., 
Zwaneveld, B., & van Veen, K. (2018). Assessment of modeling and simulation in 
secondary computing science education. In Proceedings of the 13th Workshop in 
Primary and Secondary Computing Education (pp. 1-10) (Grgurina, Barendsen, 
Suhre, Zwaneveld, et al., 2018).
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5.1	 Introduction

The new 2019 secondary computer science curriculum recognizes the 
importance of modeling and includes an elective theme comprised of modeling 
and simulation, together called Computational Science. It is described by the 
high-level learning objectives: “Modeling: The candidate is able to model aspects 
of another scientific discipline in computational terms” and “Simulation: The 
candidate is able to construct models and simulations, and use these for the research 
of phenomena in that other science field.” (Barendsen & Tolboom, 2016). The 
curriculum does not provide further details about these objectives, instruction or 
assessment. In line with the Dutch tradition, this is left to educators and authors of 
teaching materials. The elaboration of these learning objectives, the development 
of teaching materials, assessment tools and teacher training courses are already 
taking place. We participate in these endeavors with practical assistance to 
teachers developing teaching practices that help to attain these objectives, and 
by monitoring these developments through research described in this thesis. In 
our first study, we obtained an operational description of the intended learning 
outcomes of the learning objective Computational Science — thus focusing on 
Magnusson’s component M1 about the goals and objectives, observed students 
working on modeling tasks — focusing on Magnusson’s component M2 about 
students’ understanding, and established what data sources were suitable for 
assessment — Magnusson’s component M4 about methods of assessment (see 
chapter 3). In our second study (see chapter 4), we investigated teachers’ initial 
pedagogical content knowledge on modeling and simulation. We then proposed 
an assessment instrument (Grgurina, Barendsen, Suhre, Veen, et al., 2018) 
pertaining to Magnusson’s component M4 about methods of assessment.

In this study, we further focus on monitoring the levels of understanding in 
the learning outcomes of students engaging in modeling projects — Magnusson’s 
component M4. We aim to examine the agreement and validity of that assessment 
instrument to assess students’ proficiency in modeling a (problematic) situation 
and to provide answers to improve the situation. We seek answer to these 
questions:

1. Can the instrument be used by different teachers without having a 
distinguishable effect on the assessment?

2. Does the instrument allow for a valid measurement of students’ 
proficiency level?
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Two steps are taken to obtain the necessary data to answer both questions. 
First, inter-rater agreement is assessed by having two teachers rate the same 
products and compute the inter-rater agreement. Second, the proficiency levels of 
projects made by students of different education level — HAVO and VWO — are 
compared to investigate whether differences are in the expected direction.

5.2	 Background and Related Work

5.2.1	 Computational Thinking: Modeling
Formulating problems in a way that enables us to use a computer to solve them 

and representing data through abstractions such as models and simulations are 
integral parts of computational thinking (CT) (CSTA Computational Thinking 
Task Force, 2011). With the arrival of computers into schools, new venues are 
created to support students’ learning in various disciplines through the use 
of computer models, i.e. models that are implemented and run as computer 
programs (Blikstein & Wilensky, 2009; Overveld et al., 2015). Wilensky argues, 
“Computational modeling has the potential to give students means of expressing 
and testing explanations of phenomena both in the natural and social worlds” 
(Wilensky, 2014), as do Caspersen and Nowack (2013b). Indeed, modeling plays a 
significant role in the development and learning of science (Justi & Gilbert, 2002) 
and CS equips the students to actively engage in learning science by providing 
tools and techniques to engage in modeling, thus enabling them to provide 
meaning to the learning both of the discipline at hand (Gilbert, 2006) and CS. 

In the new 2019 CS curriculum, for the intended learning outcomes of the 
learning objective Computational Science, in one of our previous studies we 
developed an operational description that describes the modeling cycle for 
simulation modeling through its elements purpose, research, abstraction, 
formulation, requirements/specification, implementation, verification/validation, 
experiment, analysis, and reflection. Furthermore, in that study we advocated to 
use agent-based modeling (ABM) when teaching Computational Science since 
it is a suitable simulation modeling method for use in secondary CS education 
(Grgurina et al., 2016) and here we focus specifically on ABM type of computer 
models.
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5.2.2	 Documenting Models
In order to describe what is the purpose of a model, how does it work and 

other relevant details, it is necessary to document the model. Several techniques 
have been proposed to do this in order to help to understand a model, to facilitate 
completeness of the description, and to make it easier to reproduce a model.

The ODD protocol is specifically devised to standardize the descriptions of 
individual-based and agent-based models (Grimm et al., 2006, 2010). It describes 
a model in terms of its Overview, Design concepts and Details — hence the 
acronym ODD. In the updated ODD protocol, the overview contains the elements 
(1) purpose, (2) entities, state variables and scales, and (3) process overview and 
scheduling. The eleven elements of the design concepts are the basic principles, 
emergence, adaptation, objectives, learning, prediction, sensing, interaction, 
stochasticity, collectives and observation. Finally, the details deal with the elements 
initialization, input data and submodels. However, this approach to documenting 
models has several weaknesses: due its textual nature, it is inherently ambiguous 
and furthermore, it does not allow for documentation of all the relevant details 
and thus hampers the reproduction of models, as noted by Amouroux et.al (2010). 
They charted the strengths and weaknesses of the ODD protocol and suggest the 
addition of an “Execution environment” section to support the model replication. 
A different approach to documenting models recognizes the common traits of 
agent-based modeling and object-oriented programming and suggests to expand 
the Unified Modeling Language (UML) to accommodate the specifics of ABM. The 
UML supports the following kinds of models: static models, dynamic models, use 
cases, implementation models and object constant language (OCL) (Rumbaugh 
et al., 2004). Odell et al. (2000) suggest the agent-based extension AUML, that 
is, “agent-based extensions to the following UML representations: packages, 
templates, sequence diagrams, collaboration diagrams, activity diagrams, and state 
charts.” Similarly, Bauer et al. (2001) propose Agent UML with four agent-based 
extensions to UML representations: packages, templates, sequence diagrams and 
class diagrams. Muller et al. (2014) go a step further to explore the suitability of 
particular types of model descriptions for specific intended purposes. To this end 
they distinguish eight possible purposes of models: communication of the model 
— to peers, for education or for stakeholders; in-depth model comprehension, 
model assessment — to establish its suitability for its purpose, model development 
— design and collaborative, model replication, model comparison, theory building, 
and finally, code generation. They go on to assess how well these purposes are met 
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by the different description types: natural language — either with a prescriptive 
structure, such as ODD protocol, or without it, such as verbal description; 
formal languages — ranging from various ontologies, source code, pseudo code 
to mathematical description, and finally graphics — either formal such as UML, 
or non-formal. In case of communication for education, they suggest that non-
formal verbal description, source code made with the program-level tools (such 
as, for example, NetLogo (Wilensky, 1999)) and non-formal graphics are among 
the most suitable description types, while formal descriptions with ODD protocol 
or UML as well as non-specialized programming languages are less suitable. They 
conclude by suggesting “a minimum standard of model description”.

5.2.3	 Assessment
Brennan and Resnick focused on assessment of the development of CT during 

learning in informal settings and developed a CT framework distinguishing three 
dimensions: computational concepts describing the concepts designers employ 
when programming, namely sequences, loops, parallelism, events, conditionals, 
operators, and data; computational practices describing the practices designers 
employ when engaging with the concepts, namely being incremental and iterative, 
testing and debugging, reusing and remixing, and abstracting and modularizing, 
and computational perspectives describing the perspectives designers form about 
the world around them and about themselves, namely expressing, connecting and 
questioning (Brennan & Resnick, 2012). Zhong et al. (2016) brought these three 
dimensions of CT into the classroom when designing an assessment framework 
for elementary school students and they redefined them as follows: computational 
concepts as ”objects, instructions, sequences, loops, parallelism, events, conditionals, 
operators, and data”; computational practices as “planning and designing, 
abstracting and modeling, modularizing and reusing, iterative and optimizing, and 
testing and debugging”, and computational perspectives as “creative and expressing, 
communicating and collaborating, and understanding and questioning”. Using this 
framework, Lye and Koh (2014) analyzed 27 intervention studies in K-12 aiming at 
the development of computational thinking through programming and found that 
the majority focuses on computational concepts and only six on computational 
practices. In order to promote focus on computational practices and computational 
perspectives in a K-12 classroom, they suggest an instructional approach 
providing “a constructionism-based problem-solving learning environment, with 
information processing, scaffolding and reflection activities.” Brennan and Resnick 
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offer six suggestions for assessing computational thinking via programming, 
among others to make assessment useful to learners, to incorporate creating 
and examining artifacts, and to have the designer illuminate the whole process 
(Brennan & Resnick, 2012). These views are corroborated by the findings in our 
prior study on CS teachers’ pedagogical content knowledge (PCK) of modeling 
and simulation, where we learned that the interviewed teachers mostly suggest a 
hands-on approach to learning and that the preferred assessment form for most 
of them would be a practical assignment lasting several weeks, where student 
groups would construct models and use them to run simulations and conduct 
research while extensively documenting the whole process. At the same time, we 
observed a great diversity in the assessment criteria teachers mentioned, but very 
few corresponding quality indicators used to judge to what extent these criteria 
are met (Grgurina et al., 2017).

In the eyes of the students, the assessment defines the actual curriculum, 
according to Biggs and Tang (2011). In their constructive alignment network, 
the curriculum is stated in the form of clear intended learning objectives (ILO) 
specifying the required level of understanding, the teaching methods engage 
students in doing things nominated by the ILO’s, and the assessment tasks 
address these ILO’s. Learning outcomes can be classified using the Structure of 
the Observed Learning Outcome (SOLO) which describes the learning progress 
through five levels of understanding. The first three levels — prestructural, 
unistructural and multistructural — are considered to be quantitative in the sense 
that prestructural indicates missing the point, unistructural means meeting only a 
part of the task and multistructural shows a further quantitative increase in what 
is grasped: “knowing more”. Relational, on the other hand, indicates a qualitative 
change indicating conceptual restructuring of the components — “deepening 
understanding”, and extended abstract takes the argument into a new dimension 
(Biggs & Tang, 2011). 

Looking into the use of SOLO taxonomy to assess the novice programmers’ 
solutions of code writing problems, Whalley et al. (2011) noted that previous 
research had indicated difficulties in mapping from student code to the SOLO 
taxonomy “since the mapping process seems very context bound and question 
specific”. Indeed, Meerbaum-Salant et al. (2013) remarked that while the strength 
of the SOLO taxonomy lies in the fact that it offers a holistic, rather than a local 
perspective, “using [it] for various types of activities, simultaneously, is not 
straightforward”. When they set out to combine the Revised Bloom taxonomy 
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(Krathwohl, 2002) with SOLO in order to construct assessment for programming 
tasks of novice programmers, they started out with the interpretation of SOLO as 
five ordered categories:

•	 Prestructural: Mentioning or using unconnected and unorganized 
bits of information which make no sense.

•	 Unistructural: A local perspective — mainly one item or aspect 
is used or emphasized. Others are missed, and no significant 
connections are made. 

•	 Multistructural: A multi-point perspective — several relevant items 
or aspects are used or acknowledged, but significant connections are 
missed and a whole picture is not yet formed. 

•	 Relational: A holistic perspective — meta-connections are grasped. 
The significance of parts with respect to the whole is demonstrated 
and appreciated. 

•	 Extended abstract: Generalization and transfer — the context is seen 
as one instance of a general case (Meerbaum-Salant et al., 2013) 

The issue of assessing the learning of the students engaged in larger 
programming projects attracts attention as well. Casto and Fisler (2017) explored 
how to track program design skills through an entire CS1 course at university 
level and suggest a multi-strand SOLO taxonomy, thus corroborating the idea 
that using SOLO taxonomy simultaneously for various types of activities is not 
straightforward. They suggest a multi-strand SOLO-taxonomy without the 
extended abstract level since none of the students in their study reached that 
level (Castro & Fisler, 2017). A multi-strand SOLO taxonomy is in line with 
the idea that one assessment task might address several ILO’s and vice versa, 
one ILO might be addressed by several assessment tasks (Biggs & Tang, 2011). 
Assignments for complex tasks encompassing diverse ILO’s — such as in case 
of Computational Science, thus going through a modeling cycle by formulating 
a problem, pinpointing the research question, designing a model and using it 
to answer the research question — warrant the elaboration of criteria defining 
performance for each of the ILO’s involved.
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5.3	 Assessment Instrument

Based on these findings, we developed constructionist teaching material about 
agent-based modeling with NetLogo meant for the CS students in the 11th and 
12th grades of both HAVO and VWO who are preferably no novice programmers 
but rather somewhat experienced, probably in other programming languages. The 
teaching material covers all the aspects of the ILO’s of Computational Science we 
identified earlier (Grgurina et al., 2014b), and addresses not only computational 
concepts such as programming to implement the model, but also computational 
practices such as the validation of the model and computational perspectives such 
as formulating the research question to be answered through the use of the model. 
Together with this teaching material, we also developed an assessment instrument 
on which we focus here.

Following the teachers’ suggestions about the desirable form of assessment 
(Grgurina et al., 2017) and our findings about suitability of various data sources for 
assessment confirming the suitability of project documentation (Grgurina et al., 
2016), we developed an assessment instrument consisting of a practical assignment 
where students design models and use them to conduct research of phenomena 
in another science field, and accompanying rubrics for assessment based upon 
the project documentation and models themselves (i.e. program code). Guided by 
the suggestions for the rubrics construction by Wolf and Stevens (2007), from the 
modeling cycle we first identified the criteria that defined performance as: stating 
the case and the research question, designing the model and implementing it, 
validation, experiment, analysis, answering the research question, and reflection. 
Subsequently, we designed a practical assignment that provides several cases 
and research questions for students to choose from, a detailed description of the 
modeling process they need to engage in, and a corresponding rubrics based on 
SOLO taxonomy. 

An example of the cases provided is the question whether sustainable human 
life is possible on Mars. The students are pointed to the websites of NASA and 
SpaceX to learn about the current state of affairs and subsequently have to explore 
whether, after the initial supplies and shelter were delivered, it would be possible 
to produce sufficient water, air and food to survive and thus whether it would be 
possible to found a sustainable human colony on Mars. Among other cases are 
the questions, what is better for traffic flow on a junction: a roundabout or traffic 
lights, and to investigate the optimal number and task division of bank counters as 
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to minimize the waiting time of the customers with various needs. In line with our 
dedication to stimulate student engagement, the students are allowed to come up 
with their own research questions instead. 

While these assignments allow students to make their own choices and 
decisions when designing their models, we needed a standard that allows 
educators using our assessment instrument to easily assess the quality of their 
students’ models. To set such a standard, for each case we constructed a minimal 
expert model — a description of a minimal model that fulfills the stated purpose 
and contains all the necessary agents with their correct behavior and interactions. 
Since we wanted these minimal expert models to be described on a conceptual 
level only, we refrained from implementing them in NetLogo because we believed 
that that would hinder the assessment process rather than contribute to it. Instead, 
for the models that our students are expected to make — two-dimensional, 
containing only a few types of agents, no links and no advanced behavior such as 
learning or sensing — we devised our own format to describe them. This format 
is partly narrative, borrows aspects of class diagrams from UML and exploits the 
idea of graphical representation of timed automata where it is possible to require 
that particular state transitions are allowed only under certain conditions, or only 
synchronously with other state transitions (Vaandrager, 2011). Here we illustrate 
this approach with the description of our minimal expert model of the roundabout. 
First of all, there is the agent type21 vehicle with its representation — inspired by 
UML class diagram — stating that an agent of this type has properties22 current 
position and target position, and behavior consisting of actions show up, wait, 
move and leave. 

Vehicle
current position
target position
show up
wait
move
leave

Figure 3: UML class diagram for vehicle

Then there is a graphical representation of a state diagram of a vehicle (figure 
4) which is interpreted as follows: during the NetLogo setup procedure, the first 

21   NetLogo speaks of breeds of agents, but we use the term type to cater for those not familiar 
with NetLogo.
22   NetLogo speaks of agent’s own variables
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transition from the state begin to the state ready occurs, and that is the action show 
up. The NetLogo go procedure then runs repeatedly until the program stops and 
according to our convention, every time it runs, exactly one transitions originating 
from the ready state takes place, and when the procedure has finished one run 
the vehicle is back in the ready state unless it reached the gone state. This is not 
to say that during one run of the go procedure an agent may engage in one state 
transition only: rather, it means that one full cycle of actions emanating from the 
ready state takes place. For each transition, there might be conditions that need to 
be met in order for the transition to occur, and properties could be updated. For 
example, move only occurs if the position in front of the vehicle is free and then its 
property current position is updated. State transitions could be synchronized with 
each other as well, such as in the famous Wolf Sheep Predation model: a wolf can 
eat only if one of the sheep simultaneously dies (Wilensky, 1997).

Begin Ready GoneShow up Leave
Guard:

current position == target position

Move

Guard: the position in front is free
Update: update current position

Wait

Guard: the position
in front is not free

Figure 4: State diagram for vehicle

Finally, there is an additional textual description of a number of relevant 
aspects of the model. It mentions that a roundabout itself can be modeled as well 
while that is not strictly necessary since the vehicles know where they are through 
their current position property; that the show up action does not necessarily 
require a vehicle to stop in front of an empty roundabout, and that it is up to the 
modeler to decide on design details such as how far can a vehicle move during one 
run of the go procedure.

As elaborated in the section on assignment (section 5.3.1), the evidence the 
students provide about their models is twofold: the textual descriptions they 
formulate when designing the model and the implemented model, i.e. NetLogo 
program code (Müller et al., 2014). Our description format helps educators to 
distil the relevant aspects of the models from the descriptions and code students 
turn in and to employ the rubrics based on the SOLO categories.
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With our format in mind, for the characterization of these SOLO categories we 
followed the local-to-global perspective. The first three levels describe quantitative 
progression. Prestructural indicates not answering the question at all or missing 
the point. Unistructural indicates fragmentary knowledge from a local perspective 
like mentioning only some of the relevant aspects — such as only a few agents or 
only some of their states — or missing important details. Multistructural indicates 
a more complete and coherent multi-point picture of the aspect under scrutiny 
— like listing all necessary agents and their states — but missing significant 
connections and without substantiating, clarifying, analyzing or explaining. These 
activities, however, are characteristic for the last two levels that add qualitative 
aspects: the relational level requires additionally the understanding of the relations 
among the parts of the aspect under scrutiny, such as recognizing all the actions 
an agent can perform, properly identifying conditions for these actions to occur 
and acknowledging their consequences. Finally, generalizing or theorizing — 
what if? — about aspects indicate going beyond what was given and typify the 
extended abstract level (Biggs & Tang, 2011; Meerbaum-Salant et al., 2013). In 
section 5.3.2, we elaborate the description of the SOLO levels for each criterium 
defining performance in detail.

5.3.1	 Assignment
The assignment consists of a number of questions the students need to answer 

in writing while designing their model and using it to answer their research 
question, and of course, the task of implementing the model. After forming groups 
and choosing a case to model, the students answer the following questions:

Case and research question. Describe what you are going to model and with 
what purpose:

1.	 What do you know about this phenomenon? If need be, carry out 
the necessary research.

2.	 What part of your phenomenon would you like to build a model of?
3.	 What do you hope to observe from this model? (Questions 2 and 3 

suggested by Wilensky and Rand (2015).)
Design the model. Design and describe the model following the questions 

listed here. Report the considerations and choices you make. (E.g., “The sheep 
can reproduce. If two sheep meet, there is a chance of 20% that a new sheep will be 
breed. We decided not to take into account the gender of the sheep because that is not 
relevant in this case.”)
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1.	 What are the principal types of agents involved in this phenomenon?
2.	 In what kind of environment do these agents operate? Are there 

environmental agents? 
3.	 What properties do these agents have (describe by agent type)? 
4.	 What actions (or behaviors) can these agents take (describe by agent 

type)? 
5.	 How do these agents interact with this environment or each other?
6.	 If you had to define the phenomenon as discrete time steps, what 

events would occur in each time step, and in what order? (All 
questions suggested by Wilensky and Rand (2015).)

Implement the model. Implement the model in NetLogo. Write your code in 
small chunks and keep testing!

Validate the model. 
1.	 Microvalidation: to what extent does the agents’ behavior resemble 

the observations of the phenomenon in reality? If the behaviors are 
(somewhat) dissimilar, is this variation relevant to your research 
question?

2.	 Macrovalidation: to what extent does the behavior of the system as 
a whole resemble the observations of the phenomenon in reality? If 
the behavior is (somewhat) dissimilar, is this variation relevant to 
your research question?

Experiment, analysis and conclusion. Use the model to answer your research 
question:

1.	 Describe the experiment in detail. If you use Behavior Space, report 
the number of experiments conducted and the parameters used.

2.	 Report the findings in an appropriate manner (e.g., a narrative, a 
table, a graph, etc.) 

3.	 Analyze the results.
4.	 Answer the research question.
Reflection. Reflect on your modeling process: 
1.	 What went well and what could be better? 
2.	 Did you make any assumptions which, in retrospect, you would like 

to reconsider? 
3.	 Are there any aspects of your model which you would like to change? 

Are there any aspects of your model (agents or behavior) you decided 
not to include in you model while now you believe they do need to 

565438 N Grgurina.indd   109565438 N Grgurina.indd   109 14-09-21   17:0414-09-21   17:04



Chapter 5

110

be included? Make a wish list of aspect of your model that need to be 
added, removed or changed in the next version of the model.

Students were also asked to log their activities, problems, and successes; 
possible explanations for problems and successes, and, lessons learned.

5.3.2	 Grading Rubrics
After we identified the criteria that defined performance, we created 

performance descriptions (Wolf & Stevens, 2007) to describe the appropriate level 
of understanding for intended learning outcomes (Biggs & Tang, 2011). Here we 
quote these descriptions:

Case and research question. (1) What do you know about this phenomenon? 
If need be, carry out the necessary research.

•	 Prestructural: Nothing or simplistic idea of the phenomenon. 
Performed no research.

•	 Unistructural: Some general description. Performed no research or 
only limited to isolated aspects of the phenomenon 

•	 Multistructural: Performed some research. Able to name more 
relevant aspects of the phenomenon, but mentions no relations 
among these aspects

•	 Relational: Performed research. Complete idea of the phenomenon. 
Able to name relevant aspects of the phenomenon, have insight into 
relations among these aspects 

•	 Extended abstract: Additionally, described the relation of 
this phenomenon to other phenomena in the world and/or 
conceptualized this phenomenon so as to be able to use it other 
contexts restricted and its relevance explained. Stated its relevance 
for other phenomena

(2) What part of your phenomenon would you like to build a model of?
•	 Prestructural: Nothing, or a few non-specific remarks but missing 

the point
•	 Unistructural:  Few isolated aspects of the phenomenon identified
•	 Multistructural: Described what (part of the) phenomenon is being 

modeled. 
•	 Relational:  Clearly explained what (part of the) phenomenon is 

being modeled, together with limits of what is being modeled and its 
significance for the whole. 
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•	 Extended abstract: Additionally, theorize about possible 
generalization of the model or transfer into a different context. 

(3) What do you hope to observe from this model?
•	 Prestructural: Research question not clear
•	 Unistructural: Identified the question from a local perspective
•	 Multistructural: Described the question from a multi-point perspective
•	 Relational: The research question clear and predicts possible outcomes.
•	 Extended abstract: Additionally, theorize about possible 

generalization or transfer into a different context.
Design the model and implement it. 
•	 Prestructural: No agents mentioned
•	 Unistructural: A few agents and actions identified
•	 Multistructural: Several agents and actions described. 
•	 Relational: Agents, actions and interactions correct and substantiated. 

Their contribution to the whole acknowledged.
•	 Extended abstract: Additionally, generalize or hypothesize about 

similar models in different contexts or extend the model beyond the 
minimal requirements.

Validate the model. 
•	 Prestructural: Nothing. No working program.
•	 Unistructural: Identified some resemblances and differences between 

the model and reality. Relevance for the research question not clear.
•	 Multistructural: Described resemblances and differences between 

the model and reality. Relevance of the differences for the research 
question not clear

•	 Relational: Resemblances and differences between the model and 
reality described. Analyzed and explained their relevance for the 
research question.

•	 Extended abstract: Additionally, hypothesized over model 
adjustments to improve its validity for a more general purpose

Experiment. 
•	 Prestructural: nothing
•	 Unistructural: a few model runs (i.e. simulations) without a clear plan
•	 Multistructural: Simulations performed systematically but the 

relevance for the research question not clear (e.g. not clear why 
certain data is gathered)
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•	 Relational: Simulations performed systematically. The relevance for 
the research question is made clear.

•	 Extended abstract: Additionally: The relevance for the research 
question is clear and substantiated.

Analysis. 
•	 Prestructural: nothing
•	 Unistructural: some results reported 
•	 Multistructural: results described in an appropriate manner
•	 Relational: results described in an appropriate manner. The relation 

between the values of model parameters and the output data 
analyzed 

•	 Extended abstract: Additionally, explain or hypothesize about the 
relation between the values of model parameters and the output data

Answer the research question. 
•	 Prestructural: No answer
•	 Unistructural: Simple answer
•	 Multistructural: Elaborate answer, but the coherent picture not 

formed
•	 Relational: Elaborate answer, coherent picture of the parts and the 

whole formed
•	 Extended abstract: Additionally, discussion
Reflection. 
•	 Prestructural: No answer
•	 Unistructural: Few aspects mentioned
•	 Multistructural: Several aspects described
•	 Relational: Aspects analyzed and explained
•	 Extended abstract: Additionally, discuss the possible consequences 

in the future

5.4	 Method

5.4.6	 Educational Context
Four classes participated in this study: one 11th grade VWO class and two 12th 

grade VWO classes which we all treated as one for the purpose of this research, 
and one 11th grade HAVO class. The data were collected in two schools in classes 
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that were taught by two teachers: the thesis author and her colleague who worked 
in both schools. All the students have previously learned to program in Python or 
a similar high-level textual programming language. The course on Computational 
Science lasted eight weeks in total. The first five weeks were dedicated to instruction 
using the teaching material we developed for our curriculum intervention, and 
during the last three weeks, the students formed groups of two or three (a few 
students choose to work alone) and worked on the practical assignment. After 
choosing the cases to model, the students went on to answer the questions form 
the assignment and to develop their models in NetLogo. The students from 
the two 12th grade VWO classes presented their models in the classroom and 
got feedback from other students. In other classes there was no opportunity to 
organize presentations. Finally, the students answered the last questions from the 
assignment and turned in their documentation and models, i.e., Netlogo code. 

We analyzed only the completed projects turned in by sixteen students forming 
eight groups in 11th grade HAVO, fifteen students forming five groups in 11th 
grade VWO and twenty-four students forming twelve groups in 12th grade VWO.

5.4.7	 Data Collection
Both the teachers assessed the students’ work — project documentation and 

program code — using the rubrics presented here, assigning 0 up to 4 points for 
the prestructural up to extended abstract level, respectively, First, they separately 
assessed work of two groups. They compared their scores, and then the scoring 
guidelines and the interpretation of the rubrics were fine-tuned where necessary. 
Additionally, they agreed to take into account the answers students supplied while 
answering other questions — e.g., elaborating on the research of the phenomenon 
under scrutiny while answering the question about validation. Then, one teacher 
assessed the work of all the groups while the other teacher assessed only the work 
of the 12th grade VWO groups in order to establish the inter-rater agreement.

5.4.8	 Analysis
Our aim was to investigate the inter-rater agreement and the discriminative 

validity of instrument. The inter-rater agreement was evaluated by computing 
Krippendorf ’s alpha for each of the criteria. Discriminative validity was assessed 
by comparing the scores of HAVO students and VWO students. While it is to 
be expected that both HAVO and VWO students can be taught to design and 
implement a model equally well, VWO are expected to outperform HAVO 
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students in defining and analyzing the consequences of manipulation of factors 
in problem contexts due to their ample preparation in scientific thinking. One-
tailed t-tests for independent samples were used to evaluate these expectations. 
We expect that the majority of scores vary between score 0 (prestructural) and 
3 (relational). If the projects of VWO students are more often awarded a score 
of 4 (extended abstract) than those of HAVO students, this too can be regarded 
as (partial) evidence that the instrument differentiates satisfactorily between 
students’ level of learning outcomes. In order to see whether the students’ results 
meet our expectations and in search of possible explanation for the observed 
differences in the performance between HAVO and VWO groups, we additionally 
performed qualitative in-depth analysis of the students’ projects.

5.5	 Results

All the results of the assessment using the grading rubrics are visually presented 
in figure 5 and figure 6, and in aggregate form as mean values of scores per school 
type (HAVO or VWO) per criterium in table 6, where the significance levels of 
the t-tests are presented too. In the figures, each row represents the results of one 
student group for the nine criteria assessed, and the height of each block represents 
the score, ranging from 0 for prestructural level to 4 for extended abstract level.

To assess the inter-rater agreement, we computed Krippendorf ’s alpha 
assuming ordinal scale from the scores of the twelve 12th grade VWO project 
assessed by both teachers. The result is 0.78 which is a satisfactory value. Then, 
we used t-tests to find out whether the achievements of all the VWO groups taken 
together differ significantly from the achievements of the HAVO groups. We used 
a one-tailed t-test with significance level of 0.05. The results show that the groups 
differ significantly (printed bold in Table 6) for all the criteria except designing 
and implementing model, and for reflection.

We now examine the students’ projects per criterium and per type of school, 
i.e. HAVO vs. VWO. We state our findings in general terms and illustrate them 
with characteristic text segments taken from the data.
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Total 1.38 1.43 1.68 2.43 2.08 1.58 1.64 1.66 1.77
HAVO 0.88 0.88 1.25 2.25 1.50 0.57 0.71 0.57 1.63
VWO 1.52 1.59 1.79 2.48 2.24 1.83 1.86 1.93 1.81
t-test significance 0.031 0.031 0.049 0.188 0.012 0.002 0.007 0.002 0.284

Table 6: Mean scores and significance levels of differences in the performance of the HAVO 
groups compared to the VWO groups.

Figure 6: Cases and scores of the VWO groupsFigure 5: Cases and scores of the HAVO groups 

565438 N Grgurina.indd   115565438 N Grgurina.indd   115 14-09-21   17:0414-09-21   17:04



Chapter 5

116

Case and research question. While many groups — in HAVO as well as in 
VWO — did not engage in any form of research and relied on their existing 
knowledge of the phenomenon under scrutiny, we see significant differences 
between HAVO groups on one hand and VWO groups on the other. Among the 
HAVO groups, none rose above the quantitative levels of SOLO. For example, the 
group exploring life on Mars (case Mars 2), when answering what do they know 
about it, simply wrote, “that life on Mars will not happen for a long time”. However, 
this group made a good model and showed reasonable performance in the rest of 
the assignment. In the VWO groups, we saw a great variation with some groups 
reaching the relational level of SOLO by performing extensive research (e.g, 
looking up how much carbon dioxide does a person produce) and hypothesizing 
about possible outcomes of the model. For example, when describing what do 
they hope to observe form their model, the VWO group exploring the optimal 
strategy for potato farming (case Potato farm 2) wrote, “we hope to find out what 
factors help increase the profit and what factors do not influence it that much. […] 
Out hypothesis is that fertilizer will really increase the profit but that pesticides have 
little influence on it. To prevent diseases and pests, we believe it is important to have 
large distance between the plants and to remove affected plants immediately.” They 
continue in their logbook, “We discussed what aspects of the phenomenon influence 
the profit. We decided not to take into account the seasons, weather and water. We 
did this because we look at the ideal conditions and other factors will not have a big 
influence.”

Designing and implementing the model. For this part of the assignment, we 
see the highest scores achieved and small variation among the classes. Every 
group managed to design a model and more than half of them arrived at a model 
matching or exceeding our minimal expert model. A small number of groups, 
while succeeding in writing some code, did not manage to write a meaningful 
program and subsequently failed to use it to perform an experiment. An example 
is the VWO group working on case Flood who stated their case and research 
question but failed to implement their model properly.

Validate the model. Here we see a great variation in scores and the VWO groups 
outperforming the HAVO groups significantly. From the HAVO groups only one 
reached relational level and one group did nothing meaningful to validate their 
model. The response from the Cheese barn 3 group is exemplary: “The agents 
simulate the production and sales of a cheese barn, thus the cheese production, the 
sale of cheese, the agents simulated the production and sale of cheese as it happens 
in the real world, so this corresponds well with each other.” All the VWO groups 
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validated their models to some extent and almost a third of them reached the 
relational level, e.g. saying in case of life on Mars (case Mars 4), “… maintenance of 
buildings and solar panels … are not relevant for the results of our model but could 
play a small role for our research question.”

Experiment, analysis and answering the research question. Again, here we see 
a great variation in the scores with the VWO groups significantly outperforming 
the HAVO groups. While 15 out of 17 VWO groups performed an experiment 
and a number of them extensively employed the Behavior Space (a feature of 
NetLogo allowing for systematic parameter sweeping and recording the results 
of each model run), out of the eight HAVO groups only three provided evidence 
of performing an experiment and none of them used Behavior Space. The 
quality of the subsequent analysis of the results and the answers to the research 
question seem to be directly related to the quality of the experiment. Analysis 
and answering the research question are the only aspects of the assignment where 
a total of four VWO groups reached extended abstract level. The VWO group 
exploring the case of bank counters (case Bank 3) notes, “assigning the tasks to 
specific counters leads to specialization of employees … this division of labor leads 
to faster and more efficient performance: by performing the same task all the time, 
the employees become specialized in particular tasks allowing them to carry out 
these tasks quicker. Conversely, non-specialized employees will carry out their tasks 
slower: because they get varying tasks all the time, they lack specific knowledge and 
need to look up things for the customers, causing the task to last longer. Because of 
this, tasks in scenarios 2 and 3 would take longer. However, the question is to what 
extent does this counterbalance the efficient engagement of the bank counters. This, 
then, is something that would require further research.”

Reflection. The HAVO groups and VWO groups perform similarly. Interestingly, 
none of the groups in the 12th grade VWO reached relational or extended abstract 
level. One of the 11th grade VWO groups reaching that relational level explored 
evacuation of a burning building (case Fire 1) and wrote in their wish list, “What 
we’d like to implement in our model is turtles making a clear choice what emergency 
exit to take. … Sometimes they seem to doubt what exit to take, walk back and forth 
between the exits and eventually wait for too long — dead through fire. That’s a pity 
because in reality, they could’ve survived.”

Logbooks. In one of the schools the students were asked to keep a logbook, and 
in the other they were not, so the logbooks were not assessed separately. However, 
following the assessment finetuning guidelines, we read the submitted logbooks 
looking for evidence of answers to other questions.
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5.6	 Discussion and Conclusion

We designed and investigated an assessment instrument for the assessment of 
the intended learning outcomes for Computational Science. The design process 
was all but straightforward due to the fact that some ILO’s of modeling are at the 
core of CS (e.g. implementation of the model), while others are not often seen in 
a CS classroom (e.g. experiment). Even for implementation, which comes down 
to programming, it was not easy to find related work addressing assessment of 
programs at just the right level of abstraction. The same holds true for validation: 
while there is plentiful literature on validation of computational models, we could 
not find any focusing on the assessment of validation in a formal learning setting.

The project documentation and program code proved to be sufficient sources 
for assessment. However, when possible, we suggest to let students present 
their projects in the classroom too, and we encourage the teachers using this 
assessment instrument to take into account their observations of students at work 
when assessing their projects, as suggested by a number of teachers participating 
in one of our previous studies (Grgurina et al., 2017). Indeed, the teacher who 
cooperated in this research noted that, while assessing his students’ work, he 
constantly thought of his impressions from the classroom and wanted to take 
these impressions into account. This might be especially important for students 
who perform poorly when verbalizing their thoughts, as witnessed with many 
HAVO students in the parts of the assignment requiring textual descriptions 
such as stating the case and research question. We saw that none of these students 
achieved extended abstract level, while in the 12th grade VWO one teacher 
found four instances of student groups reaching it. The other teacher, however 
— while assessing the same projects — found none and said, “it was difficult to 
see clearly where the boundary lies between relational and extended abstract levels.” 
Therefore, it could be argued that the extended abstract level is unobtainable for 
HAVO students, which would signify a situation similar to the one described 
by Castro and Fisler who found no instances of extended abstract level in their 
students’ work (2017). Meerbaum-Salant et al. (2013) did not consider it at all and 
designed assessment with only the three intermediate SOLO categories to monitor 
novices’ learning of CS concepts. An issue to consider here is the question, 
what level of understanding is intended for the HAVO students, as opposed to 
the VWO students, and with what purpose are the students learning about 
Computational Science. The HAVO students are following education stressing a 
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hands-on approach and leading to higher professional education and are often 
described as thinking actors (Barendsen & Tolboom, 2016), which could explain 
why there is no significant difference in their performance levels — compared 
to those of the VWO students — when designing and implementing models. 
The VWO students — often described as acting thinkers (Barendsen & Tolboom, 
2016) — prepare for universities in an educational setting embracing a scientific 
frame of mind and it is not surprising that they significantly outperform HAVO 
students when validating their models and using them to conduct research — i.e. 
perform experiments, analyze results and draw conclusion. Therefore, we want 
to encourage teachers using this instrument to put more emphasis on the aspects 
of the modeling process related to the specific needs of their students. Arguably, 
for the HAVO students it might be more important to get a clear picture of the 
phenomenon being modelled and focus on the development — or possibly only 
enhancement — of a model, while for the VWO students, with the whole of their 
education emphasizing the scientific attitude, it might be more important to view 
a model as a vehicle to engage in scientific research and develop and use it as 
such. In order to cater to their needs, we repeat our recommendation to further 
sharpen the instruction about experimentation and data analysis (Grgurina et al., 
2016) and add a suggestion to actively coach students in the first phases of their 
modeling projects when stating the case and research question and performing 
the accompanying research.

In conclusion, our assessment instrument in the form of a practical assignment 
and accompanying rubrics based on the SOLO taxonomy proved to be reliable, 
as indicated by a high rate of inter-rater agreement. Its validity is corroborated 
by exposing the significant differences in the performance levels of the HAVO 
students compared to the VWO students: as expected, the performance levels of 
the VWO students were significantly higher for almost all the criteria.

The results of this study exposed the needs of specific groups of students to 
receive instruction prior to and during their work on the assignments, and they 
informed us about the shortcomings in the curriculum intervention. All of these 
findings will contribute to the further refinement of the instrument itself, to the 
development of the teaching materials — an effort that will be reported elsewhere 
— and to the development of the CS curriculum in secondary education in the 
Netherlands, CS teacher training and CS education in general.
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Modeling and Simulation: 
Students’ Understanding and 

Difficulties Related to Verification 
and Validation

In this final study, we focus on students’ understanding and difficulties while 
working on Computational Science assignments in CS class. We interviewed eleven 
12th grade secondary education students who made models and ran simulations 
of phenomena from other disciplines, and we charted their understanding related 
to modeling aspects research, abstraction, verification/validation and reflection 
together with difficulties they experience. We saw that the initial phases of the 
modeling cycle did not represent great challenge to the students, but that they still 
experience difficulties in the abstraction and verification/validation phases. The 
results of this study will inform the further development of the teaching materials, 
teaching methods and teacher training.
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6.1	 Introduction 

In this final study of our project, we focus on students’ understanding and 
difficulties while working on Computational Science assignments.

In our first study (chapter 3) — focused on Magnusson’s component M1 
concerned with the goals and objectives as well as curricula related to a specific 
topic being taught — we obtained an operational description of the learning 
objective Computational Science that describes the modeling cycle for simulation 
modeling through its elements purpose, research, abstraction, formulation, 
requirements/specification, implementation, verification/validation, experiment, 
analysis, reflection. We also identified specific challenges the students experience 
when engaging in modeling activities: difficulties to decide what phenomenon to 
model, to determine the right level of abstraction, and to formulate the problem 
under scrutiny suitably for modeling through ABM; inadequate programming 
knowledge, inability to correctly attribute unexpected program behavior to either 
errors in the model itself or to emergent behavior of the model, and finally, not 
conducting experiments with their models in a systematic fashion. In our second 
study (chapter 4), we explored computer science teachers’ initial PCK on modeling 
and simulation and in particular, their ideas about instructional approach to 
teaching Computational Science and assessment. The finding of these two studies 
informed the development of our teaching materials, a practical assignment 
and an accompanying assessment instrument. In our third study (chapter 5), we 
focused on the development of that assessment instrument to monitor the levels 
of understanding in the learning outcomes of students engaging in modeling 
projects, thus focusing on Magnusson’s component M4.

In this study, we focus on students’ understanding and difficulties while 
working on Computational Science assignments using the teaching materials we 
developed — Magnusson’s component M2. Our aim is to explore these, with a 
particular focus on their actions leading to the development of valid models. We 
seek to answer the following research question:

1.	 How can the students’ understanding of model validation be 
portrayed in terms of validation techniques they employ to ensure 
the development of valid models?

2.	 What difficulties do the students encounter when verifying and 
validating their models? 
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Our findings will serve to complete our exploration of teaching Computational 
Science in the context of the CS course in Dutch secondary education and they 
will contribute to the further development of teaching materials and teacher 
training courses.

6.2	 Theoretical Background and Related Work

6.2.1	 Modeling Cycle
Building and using a simulation model is an iterative, cyclic process consisting 

of five stages and reflection on modeling process, as described in detail in chapter 3. 
In the definition stage, the intended purpose of a model is stated and the 

modelers perform research about the phenomenon that is being modeled. 
In the conceptualization stage, in the process of abstraction it is decided what 

aspects to include in the model and what to leave out, and the problem is formulated 
in a way that enables us to use a computer and other tools to help solve them 
(CSTA Computational Thinking Task Force, 2011). This leads to the development 
of a conceptual model which is validated to ensure conceptual validity of a model. 
During this validation step, it is determined whether the conceptual model is built 
upon correct theories and assumptions (Sargent, 2013) and the modeler can consult 
domain experts and the customer to ensure this aspect (Law, 2009). If necessary, 
these steps are repeated until the conceptual model is satisfactory (Sargent, 2013). 

In the subsequent formalization stage, a conceptual model is implemented — 
i.e. programmed using software engineering techniques — yielding a simulation 
model which is verified to make sure the programming is correct, i.e. ensuring 
that it really does what the modeler think it is doing (Brade, 2004; Sargent, 2013; 
Sturrock, 2015). Again, this step — and possibly adjusting the conceptual model 
too — can be repeated until a satisfactory simulation model is obtained (Law, 
2015). This simulation model is then subject to operational validation to determine 
whether the model’s output behavior has a satisfactory range of accuracy (Sargent, 
2013). The results of the operational validation process can prompt adjustments 
of the conceptual model or the implemented simulation model, and in that case, 
these steps can be repeated until a satisfactory simulation model is obtained.

In the execution stage, the model is used for its purpose, i.e. to design and run 
experiments.
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Finally, in the conclusion stage, the results of the execution stage are analyzed 
and translated back into the problem domain.

Following each of these stages and upon the completion of the modeling 
process, reflection takes place and the whole process is possibly repeated.

6.2.2	 Validity
While it is impossible to make a perfect model (Rand & Wilensky, 2006; 

Sturrock, 2015), there are many validation approaches and techniques ensuring 
that the produced model is accurate, credible, and fit for the intended purpose 
(Law, 2009). 

The measures modelers can take to contribute to the development of valid 
models include the model construction, testing the models, enlisting the help of 
others and reflection about the models, as illustrated in the figures 7.

"

ValidatingWith others Modelers themselves

Figure 7: Validating a model

During the iterative process of the model development, the construction and 
testing of a model are intertwined. Models are constructed upon assumptions 
(Sargent, 2013) resulting from research into the existing theories and possibly 
historical data concerning the phenomenon to be modelled, and abstraction — 
as described in the section on the modeling cycle (see figure 8). A model can be 
calibrated in order for it to be in harmony with the real world (Carley, 1996).

 

Construct the model Reasoning
Research

Abstraction

Figure 8: Constructing a model

On one hand, the validity of a model can be derived by having confidence in 
on validity by construction, thus relying on philosophy of science — rationalism 
approach which entails that a model is correctly developed from clearly stated 
reasoning (Sargent, 2013).
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 On the other hand, numerous validation techniques rely on testing to judge the 
validity of a constructed model depending on its behavior and outcomes that are 
generated as the input parameters are varied, and then observed and interpreted.

Test the model

Generate outcomes

Observe outcomes

Interpret outcomes

Figure 9: Testing a model

To generate the outcomes, several tests can be performed. Examples of such 
test are stress test (i.e testing with wide range of parameters and random numbers) 
(Carson & John, 2004), parameter variability–sensitivity analysis (i.e. varying the 
values of parameters and observing the resulting outcomes to determine whether the 
relations correspond to those of the real system), extreme condition test (i.e. checking 
that the model’s structure and outputs are plausible for extreme and unlikely 
combinations of the system’s levels of factors) and degenerate tests (i.e. looking into 
the degeneracy of the model’s behavior) (Sargent, 2013). 

To observe the generated outcomes, several methods can be employed. 
The generated outcomes can be observed visually through animation (i.e. 
graphical display of the model’s behavior as it is run) and trace (i.e observation 
of the behavior of a specific entity during the run of the model) (Sargent, 2013). 
Another way to observe the generated outcomes is by making use of quantitative 
measures expressed through operational graphics (i.e. graphical display of various 
performance measures as the model runs) (Sargent, 2013) or numerically through 
various performance measures (Law, 2009). 

Finally, the outcomes are interpreted. Several techniques can be used to 
interpret the model’s outcomes. Examples of such techniques are comparison with 
real data through historical data validation or predictive validation and checking 
for event validity (i.e. comparing the ‘events’ occurring during the model run with 
those occurring in the real system), checking input-output consistency and data 
relationship correctness (i.e. making sure “Data relationship correctness requires data 
to have the proper values regarding relationships that occur within a type of data, 
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and between and among different types of data.”) (Sargent, 2013). Furthermore, a 
model can be compared to other models (Bungartz et al., 2014; Wilensky & Rand, 
2015), and finally, its consistency with previously verified theories can be checked 
(Bungartz et al., 2014). Notably, when a real system does not exist, a model can 
still be considered valid while not accurate (Schmid, 2005).

When interpreting the model’s outcomes, the judgement about the model’s 
validity can be based on objective criteria that use statistical tests on the outcomes 
of a model (Law, 2009; Sargent, 2013), or on subjective criteria.

Figure 10: Testing a model — various techniques

In addition to these techniques, the modelers can involve various stakeholders 
to support the validation process. A peer group can be involved to assess the 
model’s correctness through a structured walkthrough (Law, 2009; Sargent, 2013). 
The customer ordering the model can be asked to participate in the review of the 
model (Carson & John, 2004) or domain experts can be consulted to assess the face 
validity of a model (Sargent, 2013; Wilensky & Rand, 2015) through, for example, 
Delphi test involving a panel of experts (Carley, 1996) or Turing test where experts 

 

Test the model

Generate outcomes

Stress test 

Extreme condition test

Degenerate tests

Observe outcomes

Animation

Trace

Operational graphics

Performance measures

Interpret outcomes

Techniques to interpret data

Checking input - output consistency

Checking consistency with 
previously verified theories 

Approaches to data interpretation
Objectively for example comparizon using 
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Subjectively

Parameter variability – sensitivity 
analysis

Comparison to other models

Comparison to real data
Historical data validation

Predictive validation 

Event validity

Data relationship correctness
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are asked whether they can distinguish the model’s outcomes from the outcomes 
of the real system (Sargent, 2013). 

With othersDiscuss the model

Structured walkthrough

Delphi test

Turing test

Consultation of domain experts

Review

Figure 11: Validating a model with others

Reflecting on the model takes place alongside with technical aspects of 
validation, establishing the degree of confirmation (Naylor & Finger, 1967) — and 
similarly, accuracy (Schmid, 2005) — by determining satisfaction that the desired 
results were sufficiently achieved (Bungartz et al., 2014) and credibility — i.e. 
degree of confidence in the model (Brade, 2004) — play a crucial role. Both the 
modeler and the customer who ordered the model need to be convinced that the 
model is plausible — i.e. its results do not contradict previously validated theories 
— and sufficiently fit for purpose (Brade, 2004; Law, 2009; Sargent, 2013). 

Reflect

Plausibility

Accuracy

Satisfaction

Credibility

Figure 12: Reflecting on a model

As mentioned in the section on the modeling cycle, any of these actions can be 
repeated until a sufficiently valid model is obtained. 
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6.3	 Method

6.3.1	 Educational Setting
The study took place within the regular CS course the first author teaches 

to 12th grade students. For them, this was the last year of their three-year CS 
course. During an eight-week period they studied Modeling and Simulations 
with NetLogo using newly developed teaching materials. The first five weeks 
were dedicated to studying the teaching material and making the accompanying 
assignments. During the rest of the period, the students worked in small groups 
(mostly in pairs) on a large practical assignment where they investigated various 
phenomena by making a model in NetLogo and exploring it through running 
simulations. This process was strictly planed and contained milestones when the 
students produced the required project documentation and kept logbooks. At 
scheduled moments, the students handed in all the documentation through google 
forms. In these forms, they had to describe their phases of the modeling process 
and in particular, they were asked to elaborate on the validation they performed. 
This practical assignment is detailed in chapter 5. At the end of the period, each 
group presented its model to the rest of the class and the students were encouraged 
to discuss their models, results, design choices, programming issues and other 
questions they found relevant. A few days later the students turned in their final 
reports and NetLogo programs. They were encouraged to improve their models 
taking into account the feedback they got during the presentations.

6.3.2	 Participants
Out of the twelve students in the class, one opted out and decided not to 

participate in the study. The eleven participating students — two girls and nine 
boys — formed six groups. The overview below shows the six groups (G1 through 
G6) consisting of students S1 through S11 and the cases they worked on. 

•	 G1 (S1 and S2): Potatoes. A potato farmer wants to maximize 
the profit while taking into account the costs for seed plants and 
fertilizer, contagious diseases and pests whose propagation depends 
on the distance among the plants and the engagement in clearing 
out affected plants. What is the optimal strategy for planting and 
farming potatoes?
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•	 G2 (S3 and S4): Fire evacuation. In case of fire, it is important that 
people are alarmed quickly in order to leave the building on time. 
What are the optimal numbers of alarm bells and emergency exits 
on the ground floor of your school to achieve this goal?

•	 G3 (S5 and S6): Life on Mars. After the initial supplies and shelter 
are delivered to Mars, would it be possible to produce sufficient 
water, air and food to survive? In other words, would be possible to 
found a sustainable human colony on Mars?

•	 G4 (S7 and S8): Ohm’s Law. Check the Ohm’s law for series circuit 
and parallel circuit.

•	 G5 (S9 and S10): Cheese barn: A cheese farmer produces cheese 
and stores it in a warehouse with limited capacity. The older the 
cheese, the high the price it fetches. The farmer can sell the cheese 
to supermarkets with guaranteed purchase and fixed price, or at the 
farmers market for higher price but uncertain sales volume. What 
are the optimal production and selling strategies?

•	 G6 (S11): Bank counters. Investigate the optimal number and task 
division of bank counters as to minimize the waiting time of the 
customers with various needs. 

The purpose of the most of these models was to find an optimal solution for 
a problem through experimentation. Only one of the models — Ohm’s Law — 
had a different purpose, namely, to seek explanation for Ohm’s Law as a result of 
behavior of electrons.

6.3.3	 Data Collection
After the project were graded, these eleven students were interviewed. We 

performed individual semi-structured interviews with them using the protocol 
cited below. While we were primarily interested in verification and validation, for 
the sake of a naturally flowing conversation and completeness, we enquired about 
the entire modeling process and emphasized the part concerning verification and 
validation. To help recollection during interviews, we ran students’ models on a 
computer and presented their documentation. 
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Here we cite the interview protocol we used.

•	 Introduction, stating the purpose of the interviews
•	 Showing the students the documentation and models they turned in 
•	 Discussing their modeling process through the following questions:

1.	 What phenomenon did you model?
2.	 What did you know about this phenomenon beforehand? Have you 

performed any research and what were your findings?
3.	 What did you hope to find out using this model?
4.	 How did you test your model?
	 4.1.	� What did you do to debug and verify your model (i.e., your 

NetLogo program)?
	 4.2.	 Validation
		  4.2.1.	� How did you perform microvalidation to validate the 

behavior of individual agents?
		  4.2.2.	� How did you perform macrovalidation to validate the 

behavior of the entire system?
	 4.3.	� Was this a linear or a cyclic process? What did you encounter? 

Have you been changing code to achieve “better” behavior of 
the model?

	 4.4.	� On what basis did you conclude that your model was valid? 
(note to interviewer: pay attention to: criteria formulated in 
advance, consultation with an expert and common sense.)

	 4.5.	 To what degree are you convinced?
	 4.6.	 To what degree are you satisfied with the validity?
5.	 Were you able to perform experiments with this model?
6.	 Did you obtain useful results?
7.	 Are you satisfied?
8.	 What is you wish list for a next version of your model?
9.	 Please reflect on the whole modeling process you engaged in.

The interviews were recorded and transcribed verbatim and the transcripts 
were used for data analysis.
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6.3.4	 Data Analysis
We performed a qualitative analysis of the interviews and of the documentation 

students turned in. We first identified text segments of documentation and 
interview transcripts in which model validity played a role. The units of analysis 
were coherent chunks of text pertaining to a specific action related to aspect 
contributing to determining validity, and reasoning behind it.

In the first analysis phase, the text segments were classified according to the 
core categories in our validation process model (see Figure 13):

•	 Construct the model through reasoning (by the modelers 
themselves)

•	 Test the model (by the modelers themselves)
•	 Discuss the model (with others)
•	 Reflect
In the second phase, we analyzed the strategies employed by the students 

within each category by means of an open coding process. In subsequent coding 
cycles, we grouped the descriptions of the students’ validation activities into more 
abstract descriptive categories, using the elements of our validation process model 
(see white ovals in Figure 13) whenever possible. 

In the third phase we looked for students’ difficulties and misconceptions 
within each of the resulting categories and classified them in a similar open coding 
process.

In the process of determining the coding schemes for strategies and difficulties, 
the first and second author analyzed parts of the interviews separately and 
discussed their findings until they agreed on the classification.

6.4	 Results

In this section, we portray the activities the students reported employing in 
order to develop validated models while constructing and testing their models, 
and while reflecting. We use our theoretical framework depicted in figure 13 to 
organize the presentation of the results. We state our findings in general terms and 
illustrate them with characteristic text segments taken from the data.
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6.4.5	 Constructing the Model
Models need to be built upon correct theoretical assumptions in order to make 

them conceptually valid, and, ideally, calibrated to fit the empirical data which 
are adequate and correct, thus ensuring data validity. To this end, one needs to 
possess adequate understanding of the phenomenon under scrutiny and engage 
in the process of abstraction.

Research
Adequate understanding of the phenomenon under scrutiny can be obtained 

through active engagement in research, as some of the students did, or by other 
means such as exploiting their own experience or utilizing what they learned at 
school.

In total, students reported relying on three sources of their knowledge of the 
phenomena they modeled. 

1.	 Experience. All students rely on their experience or what they would 
consider common sense to a certain degree when considering 
their understanding of the phenomenon under scrutiny. Some of 
them consider this to be sufficient and feel no need to do extensive 
additional research, such as group G2 and presumably G6. Student 
S3 reported, “well, we had a fire drill once, bur further than that, we 
didn’t know the science behind it” but added that they consulted an 
article on how to model fire drills. Student S11 did not report doing 
any research or using any form of real-world data. 

2.	 Learning at school. With several of the phenomena modeled, students 
involve what they learned at school within some other school subject 
into their modeling either to inform the essential assumptions, or 
for some additional detail. Group G4, who modeled Ohm’s law, 
relied on their existing knowledge of chemistry and physics and did 
not perform any additional research. 

3.	 Research. In addition to their own experience or knowledge from 
school, some students go to great lengths when researching the data 
necessary for their model, and they subsequently calibrate their 
models to fit the data they found. Yet, this still does not guarantee a 
realistic model since some data are hard to find or it does not occur 
to students they need them. Groups G1 and G3 performed extensive 
research about the phenomena thy modeled and group G5 looked 
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up some of the data. Group G1 researched how many tubers a potato 
plant yields, what are the costs of fertilizer and spray, and other 
relevant data for potato farming. However, when asked how come 
their results suggested not to use fertilizer and spray, S1 responded 
that it was difficult to find out how much money a potato earns, and 
how much does it cost to fertilize and spray a single potato plant. 
Similarly, group G3 who modeled sustainability of human colony 
on Mars, investigated how much electricity does a solar panel 
produce, how much oxygen and tubers a potato plant produces, 
how much energy, oxygen and water a person needs to survive, how 
photosynthesis works, and many other relevant details. Student S6 
comments, “we simply looked up many things the way they would 
resemble reality.” On the other hand, group G5 did look up the 
categorization of cheese depending on age (young, mature, etc.) but 
did not investigate specific economic aspects of cheese production 
and sales. Rather, they relied on what they learned in the economy 
class about market forces in general.

Abstraction
All students pay careful attention to build their models upon correct theoretical 

assumptions and thus engage in the process of abstraction (Grgurina et al., 2016) 
where they decide which aspects of the phenomenon under scrutiny to take 
into account and in what form, and which ones to leave out. When employing a 
proper perspective, students use sound judgement and make appropriate choices 
concerning the theoretical assumptions underlying their models. This paves the 
road to building a model that is sufficiently fit for its purpose. For example, in 
the process of abstraction, group G1 chose to unite all possible potato diseases, 
infestations etc. into one phenomenon and call it pests.  This decision simplifies 
the design of their model by disposing of the unnecessary details while retaining 
the essence of infectious and transferable diseases and infestations. 

Among the six groups observed, we see three erroneous perspectives when 
performing abstraction. 

1.	 Oversimplification occurs when the students go too far in their 
quest for feasible assumptions, leading to a very specialized model 
of limited usefulness. This is a conscious course of action caused 
by inability to design or implement a model that would be based 
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on more general and not so specific assumptions. Group G2 tried 
to make a model for evacuation of a burning building in general, 
thus with any floor plan. In their initial attempts, the agents in their 
model were walking through the walls on their way to the nearest 
emergency exit and the students did not know how to program the 
model to alleviate this behavior. Instead, they decided to use only 
a particular floor plan in combination with additional measures to 
prevent this problem from occurring. 

2.	 Omission occurs when students are not aware there are aspects of 
the phenomenon under scrutiny that are essential in order for the 
model to represent that phenomenon correctly and thus make the 
model fit for its intended purpose. An example of such an omission 
is given by group G5 who modeled a cheese barn. In their model, the 
cheeses only get the opportunity to ripen if they do not get sold first, 
whereas in this case it is essential to put cheeses aside and let them 
wait until reaching their intended age before being sold.

3.	 Circular reasoning is a misguided attempt by a modeler to use the 
outcomes of a model as model’s assumptions. Similarly to omissions, 
students are not aware of this logical fallacy when they employ it as 
a solution to the problem for which they have no idea how to solve 
otherwise. Group G4 unwittingly used Ohm’s law to prove it. When 
the teacher pointed this out, student S7 commented, “and that was 
purely because at the moment we had no idea how we’d calculate 
the resistance and it didn’t occur to us, like, you can’t use that at all” 
and went on to conclude, “the result is that our model works like the 
Ohm’s law, but it doesn’t confirm it.”

6.4.6	 Testing the Model
Once the assumptions are established as a result of the research and abstraction 

process, the model is developed and implemented, i.e., programmed. In the 
process of verification, the modeler ensures that the model really does what they 
think it is doing (Sturrock, 2015). The simple fact that a program runs, i.e. there 
are no syntax errors, is no proof of a correct implementation.

In this section we report on what students saw as errors themselves and in 
the next section we report on what techniques they employed to diagnose those 
errors. 
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Students report building their models iteratively in small steps and running 
them all the time to test them, intertwining verification with validation (Wilensky 
& Rand, 2015). They report two types of errors encountered:

1.	 Data omissions happen when students erroneously copy or 
implement constants from their research data into their programs. 
Student S2 reported their program produced unexpected and 
improbable fluctuations of the number of people in their Mars 
colony. The error was caused by the fact that, in an early version of 
their program, a tick represented a day in the life of a person and a 
month in the life of a potato plant. When this error was fixed, the 
number of people showed smaller, acceptable fluctuations. 

2.	 Process omissions occur when assumptions underlaying a model lack 
sufficient detail. For example, student S5, when modeling Ohm’s law, 
observed in an early version of the model that the electrons “become 
stuck and could not go any further. I don’t think it works like this, so 
we had to change it.” They added a random component to the angle 
at which the electrons bounced from the atoms and that solved this 
problem. 

If a model is to be useful, it needs to be valid. Here we describe techniques 
students employed to validate their models and report on measures they took to 
improve their models’ validity. 

During an iterative cyclic process, the students used a twofold approach to 
establish the validity of their models. They relied on the correct construction of 
their models from appropriate assumptions and then reasoned about their models 
to draw conclusion about the validity of the models, or alternatively, they tested 
their models: they generated model outcomes by varying the input parameters of 
their models, observed and interpreted the behavior of their models.

Generating Outcomes
All the students who tested their models engaged in parameter sweeping — 

a technique where the model’s parameters are systematically varied to generate 
outcomes, and they subsequently observed and interpreted the outcomes.

Varying the parameters as a validation technique serves two purposes: to 
determine the influence of various parameter values to the model’s output 
(parameter variability - sensitivity analysis) and to determine whether the 
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model’s outputs fall into acceptable range (operational validation). The parameter 
variability - sensitivity analysis technique was employed by groups G1 and G2. For 
example, student S2, who modeled potato farming, when asked if their group was 
playing with the distance between potato plants, answered, “yes, that is the density 
percentage. How many plants are being planted.” Almost all the groups employed 
operational validation to make sure their models’ outputs fall into acceptable 
range. Student S4, modeling the evacuation of people in a burning building, 
said, “Alarm bell number 5 was in the middle, so then you had alarm bells, four 
emergency exits, that was I believe almost the best. […] was around 600 [tics], 
everything was around 600, that was good. Except, one alarm bell [only], that is 
alarm bell number one, I believe it was down there in the left corner. Well, then it 
takes really 900 tics.” 

The students we interviewed employed the parameter sweeping techniques 
not only to validate their models by getting confirmation that the models were 
good enough, but also to calibrate their models by choosing the appropriate 
parameter values, and during experiments which some of them saw as additional 
confirmation of the validity of their models as well. Groups G1 and G5 are 
examples of groups who employed systematic parameter sweeping while running 
their models to perform experiments and reported that the results thus obtained 
additionally convinced them of the validity of their models. So did group G3 
too: they tested various parameter values and discovered that their Mars colony 
was sustainable when it contained 17 people. Group G4 also reported finding 
parameter values that guaranteed a desired constant output value. 

Several students report hard coding some of the values into their models rather 
than having the user determine these parameter values when running the model. 
For example, the model made by group G6 has no input parameters at all, but 
the model’s parameters are determined at random during the execution of the 
program.

Observing Outcomes
As the outcomes are generated, there are two main ways to observe the outcomes 

and behavior of a model: visual inspection and making use of quantitative 
performance measures.

Visual Inspection. We saw that almost all the groups employed visual 
inspection either by looking at the animation of the whole model, or by tracing 
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some of the agents. Consequently, some students were content with what they 
observed, while others realized their models needed to be improved.

Some students observed model’s behavior, established event validity and 
interpreted the model’s outcomes to be in line with reality and thus acceptable. 
For example, student S2, who modeled potato farming, said, “And that is what 
we looked at […] that a plant doesn’t get sick at a random spot, but that it really 
gets infected [by the neighbors]”. Student S11 traced the behavior of the individual 
agents waiting in the queue as well as observed the lengths of the queues through 
animation and also concluded that the model’s behavior was realistic enough.

Other students encountered what they experienced as unrealistic behavior of 
their models. We observed twofold approach to dealing with this phenomenon: 
either fixing the problem or deciding that the problem is not relevant. Student S8, 
who modeled Ohm’s law, saw an error concerning electrons not bouncing back 
when colliding with atoms, and fixed it, as described in the section on verification.

Group G2, who modeled the evacuation of a burning building, partly fixed the 
problem, as described in the section on abstraction (section 6.4.1). After fixing 
the problem, they observed that people in their model left the building quickly 
enough, so they decided that their model was nevertheless realistic enough.

Two groups did not employ visual inspection: in the cheese barn model made 
by group 5, visual aspects such as position, movement or interactions of cheeses 
play no role and cheeses only change color to indicate their age. Similarly, group 
G3 modeled no visual interactions in their Mars colony model and therefore relied 
on observation of quantitative measures to validate their model. 

Quantitative Measures. Almost all the students observe the outcomes of 
their models through quantitative measures. To this end, they observe relevant 
numerical values produced by the model by keeping an eye on monitors23 to 
observe performance measures, or charts produced while the model runs to observe 
operational graphics — and thus interpret the model’s outcomes subjectively. In 
their report, group G1 who modeled potato farming, said, “We tested these things 
extensively by using monitors.” Student S5, who modeled sustainability of human 
colony on Mars, said,” we got a very oscillating line of the number of people on 
the planet, say, because there were a lot of people being born and, say, if there 
was enough food, then the potatoes were gone, then everyone died.” Student S10, 
who modeled cheese barn, said, “… so you can never have more than 144, […] 

23   A monitor in NetLogo is an interface element displaying the value of a variable.
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144 cheeses are what, that you could see in the chart.” Interestingly, student S11, 
who modeled bank counter queues, made extensive use of monitors in the model 
to observe its behavior and outcomes, but does not explicitly refer to them when 
asked about validating the model.

Interpreting Outcomes
In order to assess the validity of a model, the observed outcomes can be 

interpreted, either subjectively or objectively — for example using statistical tests.
When possible, the model’s outcomes can be compared to the behavior of the 

real system.
Three groups reported comparing the events occurring in their model to those 

of a real system as they perceive it, thus employing event validity technique and 
checking for consistency with previously verified theories. However, they made no 
use of historical data. When asked what they think would happen in reality if the 
farmer did not intervene, student S1 replied, “I think the affected plants would 
take over. And here, the new, healthy plats are added all the time” and later went 
on to add, “affected plants die and in reality, a new plant would not be planted 
there. So it is, wait first for everything to be harvested and only then will the new 
plants be added.” When the model results indicated that use of fertilizer made no 
difference, student S2 commented, “right, that is not realistic, so we knew through 
our common knowledge […] that the outcomes were not good.” Yet, this group 
found their model sufficiently valid, as described in the section on plausibility 
and accuracy. Group G2 compared the behavior of their model with their own 
experiences of a fire drill at school and concluded that the model was satisfactory. 
Student S11 commented, “In reality people enter the building and join the queue, 
the shortest queue.”

Reasoning about the Model
When the data from the real system are not available, validity of a model can 

be derived through reasoning. Here, one asserts that if the assumptions and the 
implementation of a model are correct, then it follows that the model is valid. 
This is what group G5 did and student S9 said, “so then we looked if this and this 
happened one after another, does that happen one after another in reality too? If 
that’s right, then it should be right in the model too, because, say, we had no real 
information if it was really right, so no real information from cheese producers 
that you could fill in, like, are the outcomes the same.”
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6.4.7	 Reflection
The validity of a model is related to its intended purpose. The modelers 

make subjective judgements expressing how plausible, accurate and credible they 
perceive their models and whether they are satisfied with them.

While some students go to great lengths to ensure their models are built upon 
realistic data and sufficiently calibrated, checking their models’ outcomes against 
realistic data remains a problem. 

Groups G1, G5 and G6 are aware of this issue and realize that a model can 
be valid without being accurate (Schmid, 2005) and that model’s plausibility 
is substantiated when its outcomes do not contradict previously verified theories 
(Bungartz et al., 2014). Student S2 said they were satisfied with their model, 
“when there was a visible difference between a higher density value or a higher 
contagiousness value. First there was no visible difference. When there was 
somewhat bigger visible difference, […] we knew that it was more realistic than at 
first.” Group G5 was unable to validate their model against real data, but observed 
the outcomes of their model instead and concluded their model was valid when 
the trends in the output data resembled what they would expect to happen in 
the reality. Similarly, Student S11 said, “Because you can’t really with numbers 
— I haven’t checked with numbers if it worked. But rather, what do I see, does it 
somewhat correspond with what I’d expect in reality.” 

All other groups, except G6, commented on the plausibility of their models 
in light of possible contradiction with previously verified theories or unnatural 
behavior. Student S3 said they were satisfied with their model,” when, to begin 
with, as many people as possible left the building and it happened within realistic 
time frame — not like initially spending ten minutes in some corner walking to 
and fro.” Group G3 was satisfied when their model’s outcome was that the number 
of people in their sustainable Mars colony turned out to be relatively stable at 
around 17, without extreme oscillations. 

On the other hand, student S7 has doubts about their model and any other 
model of electrons as well, “well, what is bothering me, every model is actually 
wrong in my view”, but still goes on to say, “yet it was a good model, because, at 
least it showed, what we could see was that the values it produced corresponded 
rather well, so then we thought, we’ll use it.”

All the students commented on the confidence in their models — i.e., credibility, 
and satisfaction that the desired results were achieved sufficiently. Four groups found 
their models reasonably credible and were satisfied, albeit with the necessary, yet 
unspoken, reservations in the light of the context where their models were made 
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— that is, within computer science lessons, as their first encounter with modeling. 
Student S11 was satisfied with the model, “because the model works the way I 
wanted, and the results, of course I’m happy with. Because you can do something 
with it, say something about it.” When asked about being convinced about their 
model, student S2 replied, “I don’t think this would happen like this for real. But I 
wouldn’t know what I’d need to improve.” Student S4 commented their model, “we 
saw of course that the program, running once, that everyone escaped, so it was 
like, it worked”; then went on to say, “but I think we were happy it worked, and 
yeah, maybe it is a suboptimal solution” and finally concluded, “if it works and it’s 
somewhat realistic, then we find it all right.” Student S3 elucidated, “Yeah, we were 
happy when everyone who heard the alarm just really went outside. Not through 
the wall but just through a doorway.” However, student S3 doubts this model is 
sufficiently realistic to be useful and would first need the people in the model to 
react to each other and to move more realistically. Student S6 commented their 
model, “I find that for the most part it corresponds [to reality], but if you look at 
the small details, we didn’t find them relevant and they don’t correspond in my 
opinion.” When asked when they would consider their model a success, student 
S6 replied, “when people stay alive for a longer period of time, it succeeded” and 
went on to comment, “with the assumptions we made and the stuff we looked up, 
I’m quite happy with the result.”

Two groups were not confident. Student S9 commented, “I know of course 
that this is not 100% correct, that it isn’t exactly realistic. So I think to myself, can 
you really do something with it — that a cheese producer would really use this 
to determine his sale strategy, I doubt it.” Student S7, when asked about being 
convinced about their model, replied, “Not at all. Well, it’s the small things, I don’t 
know, it doesn’t work the way I was taught it works” and went on to elaborate 
that nobody actually knows about electrons for certain, and that the notion of an 
electron as accepted in modern science is also only a model.

6.5	 Conclusion and Discussion

In this section we present our findings and reflect on them.

6.5.1	 Findings
In answering our first research question — How can the students’ understanding 

of model verification and validation be portrayed in terms of validation techniques 

565438 N Grgurina.indd   142565438 N Grgurina.indd   142 14-09-21   17:0414-09-21   17:04



 Students’ Understanding and Difficulties

143

6

they employ? — we characterized the students’ understanding in terms of these 
elements: 

•	 Construct the model upon assumptions resulting from research and 
abstraction process.

•	 Test the model: generate, observe and interpret outcomes.
•	 Reflection after the model is built: plausibility, accuracy, credibility 

and satisfaction.
In answering our second research question — What difficulties do the students 

encounter when verifying and validating their models? — we observed a number of 
issues and problems:

•	 Performing the research necessary to build the models does not 
always happen. Erroneous perspectives are sometimes employed 
in the process of abstraction. Omissions are being made during the 
implementation of the model.

•	 When testing the model, a systematic approach to generating 
outcomes is seldom employed and is lacking when observing and 
interpreting the outcomes.

•	 Finally, during the reflection upon the models, there is satisfaction 
with a clearly unrealistic model, and even cases of not understanding 
the essence of modeling altogether.

6.5.2	 Reflection on the Findings
Next to the validation aspects we observed, it is interesting to mention what 

we did not observe.
A category of validation techniques we did not observe in this study has to 

do with numerical aspects of modeling. None of the students reported extreme 
conditions test — making sure the models’ outputs were plausible in extreme 
conditions (Sargent, 2013). Also, none of them used historical data to not only 
calibrate the model, but also to check whether the model behaves as the real 
system (Sargent, 2013). No-one performed predictive validation, i.e. used the 
model to forecast the outcomes and then compared those forecasted outcomes 
to the behavior of the real system (Sargent, 2013) either. Finally, no student 
used statistical tests or other appropriate techniques to objectively interpret the 
outcomes their tests. We could speculate about the reasons students did not 
engage in these techniques. It is plausible to think that it was difficult for them 
to get sufficient real data. Furthermore, their understanding of the phenomena 
they modeled was rather limited, which is not strange considering the position 
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and scope of their assignments: within a CS course, and not within a course 
on a particular (scientific, engineering, etc.) discipline. Finally, some of these 
techniques are rather advanced and belong into the repertoire of a professional 
modeler, rather than a student attending secondary education.

Another type of validation technique students did not report using was the 
engagement of external experts in any phase of their modeling process. They did 
not consult domain experts (Wilensky & Rand, 2015), performed no Delphi tests 
to seek consensus of experts on problematic outcomes (Carley, 1996), nor carried 
out structural walkthroughs of their models with peer groups (Sargent, 2013) — 
all of which they arguably could have done. None of them did a Turing test either, 
where they would have asked knowledgeable individuals whether it was possible 
to distinguish between the outcomes of the model and those of a real system 
(Sargent, 2013). We could have expected students to call upon experts. In one of 
our previous studies (Grgurina et al., 2016), we reported about our student talking 
to a medicine student to learn more about a particular disease; so it would not 
have surprised us if the students in this study had consulted their peers, teachers, 
or other people either to learn more about the phenomenon under scrutiny, or to 
seek feedback on any aspects of their models.

When we set side by side the findings from this study with the outcomes of the 
study we performed in 2016 (Grgurina et al., 2016), we noticed a few things.

Then, the students were expected to decide themselves what to model and some 
of them had difficulties coming up with a suitable problem. This time, the students 
choose problems from a list rather than coming up with their own problems. 
Consequently, all of the students this time had a clear idea of the purpose of the 
model they were developing and using.

Concerning the research the students did (or neglected to do), they reported 
similar sources of their knowledge — except this time, no-one reported consulting 
with an expert.

When it is time to state the assumptions the model is built upon, i.e. it is 
time to engage in abstracting, in this study we not only observed students having 
difficulty with this aspect of modeling — as we did in the 2016 study — but have 
also identified three distinct errors: oversimplification, omissions and circular 
reasoning. 

Regarding the construction of the models and subsequent testing, in both 
of our studies, the students reported developing their models in small steps, 
continually testing, adjusting and expanding their models. This time we focused 
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specifically on verification and validation and we portrayed the students’ activities 
and difficulties in great detail. 

In this study, we asked students to extensively reflect on their models in terms 
of contentment with them, and thus we limited the scope of students’ responses. 
To our surprise, several students declared lack of confidence in models in general 
— a thought we did not encounter in our previous study.

6.5.3	 Reflection on the methodology
In this study, similarly to the one from 2016 (see chapter 3), a small number 

of students was involved which allowed us to perform an in-depth investigation 
of their understanding of model validation. It would be interesting to repeat the 
study at larger scale to see if similar practices regarding model validation can be 
observed. 

All of the students involved in this study were in the final stages of their pre-
university education, which implies that they probably experienced less difficulties 
that can be expected from younger students or those attending the senior general 
secondary education — an assertion corroborated by our findings from the study 
on assessment instrument (see chapter 5). Furthermore, we did not observe the 
students at work and only relied on the project documentation they turned in 
and on what they reported themselves during the interviews. Even though the 
researcher interviewing the students was their teacher, we have no reason to 
expect this fact influenced their responses. 

Finally, we believe that our findings help identify both the improvements and 
weaknesses in the teaching materials used — as compared to teaching materials 
used for the previous study — and will inform the further development of the 
teaching materials, teaching methods and teacher training. We suggest to put 
more emphasis on teaching a small selection of validation techniques and giving 
students more guidance in using them, while simultaneously making them aware 
of the availability of a whole range of additional validation techniques which are 
not easily used within the constraints of a limited CS course in general secondary 
education.
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Chapter 7

General Conclusions and 
Discussion

   

In this chapter, we summarize the main findings of the research project. Then 
we discuss its scientific contributions, reflect on the method and describe the 
practical implications. Finally, we present suggestions for future research.
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7.1	 Motivation for this Project

The integration of computational thinking into various disciplines is gaining 
interest in CS education where training for computational problem-solving is seen 
as “a truly interdisciplinary undertaking” (Tedre et al., 2018). This is exemplified 
in the Netherlands, where the new 2019 secondary CS curriculum introduces 
the topic Computational Science which is specified by the learning objectives 
about modeling and simulation. The curriculum describes these high-level 
learning objectives as follows: “Modeling: The candidate is able to model aspects 
of a different scientific discipline in computational terms” and “Simulation: The 
candidate is able to construct models and simulations, and use these for the 
research of phenomena in that other science field.” Additionally, modeling itself is 
a part of the compulsory core curriculum, described as “Modeling: The candidate 
is able to use context to analyze a relevant problem, limit this to a manageable 
problem, translate this into a model, generate and interpret model results, and 
test and assess the model. The candidate is able to use consistent reasoning.” 
(Barendsen & Tolboom, 2016). With the introduction of Computational Science 
into the CS classroom, the need arises for validated guidelines to enable and 
facilitate its teaching and learning. This practical need instigated our research 
project and we translated it into scientific research questions in order to contribute 
to the research knowledge on Computational Science.

This chapter is organized as follows: Section 7.2 presents our aim and research 
questions and provides their answers, and then discusses them and describes their 
scientific contribution in the light of existing literature. Section 7.3 reflects on 
the method. Section 7.4 reports practical implications and Section 7.5 provides 
suggestions for further research.

7.2	 Conclusions and Discussion

So far, research into teaching modeling and simulation24 as generic scientific 
competences within a CS course has been an underexposed issue in the computer 
science education research (CSER). There was no operational definition of 
the learning objectives modeling and situation, little was known about suitable 

24   In this thesis, we use terms modeling, modeling & simulation and Computational Science 
interchangeably, unless explicitly stated otherwise.
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teaching and assessment strategies and students’ understanding; and teachers’ 
ideas about teaching modeling and simulation have not been charted either. 
Therefore, the aim of our research project is to explore the pedagogical aspects 
of teaching Computational Science in the Computer Science course in secondary 
education.

We looked both at the pedagogical aspects of teaching of Computational 
Science (i.e., modeling and simulation) and at teachers’ practical knowledge about 
these pedagogical aspects through the lens of Magnusson’s (1999) components of 
topic-specific pedagogy — that is, in terms of:

M1	 goals and objectives 
M2	� students’ understanding including requirements for learning and 

their difficulties 
M3	 instructional strategies 
M4	 methods of assessment.

We translated this global aim of our research project into these four research 
questions: 

RQ1	� What computational thinking activities constitute the problem-
solving process associated with Computational Science? This 
question aims to find an operational definition of the learning 
goals and objectives of Computational Science. (M1) 

RQ2	� How can the students’ understanding of modeling activities 
be portrayed in terms of their requirements for learning and 
difficulties they encounter? (M2)

RQ3	� What are characteristics of a valid and reliable assessment 
instrument for Computational Science? (M4)

RQ4	� How can the teachers’ Pedagogical Content Knowledge (PCK) 
for teaching Computational Science be portrayed in terms of the 
four components M1 to M4?

7.2.1	 Operational Definition of Computational Science (RQ1)
The first empirical study (chapter 3) focused on obtaining an operational 

definition of the learning objectives modeling and simulation — Magnusson’s 
component M1 — to answer our first research question: What computational 
thinking activities constitute the problem-solving process associated with 
Computational Science (i.e., modeling and simulation)?

565438 N Grgurina.indd   150565438 N Grgurina.indd   150 14-09-21   17:0414-09-21   17:04



General Conclusions and Discussion

151

7

We characterized modeling and simulation from two perspectives: first, as 
a cyclic process with distinct stages derived from the mathematical modeling 
process and simulation modeling, and second, as a means to integrate 
computational thinking and science from the perspective of CS students who 
develop computational models and use them for scientific enquiry.

We have obtained an operationalization of the learning objectives for modeling 
and simulation in terms of an iterative process framework consisting of the 
following elements: 

•	 stating the purpose of a model
•	 engaging in the research necessary to build the model
•	 performing abstraction to take into account only the relevant aspects 

of the phenomenon under scrutiny
•	 formulating the problem in a way that allows the use a computer and 

other tools to help solve it 
•	 stating the requirements and specification
•	 implementing the model, i.e., programming it
•	 performing verification and validation of the implemented model
•	 using the implemented model to perform the experiment 
•	 analyzing the data obtained from the experiment
•	 reflecting on the whole process.

This operational description of the learning objectives of Computational 
Science provides a framework for the engagement in scientific practices through 
the development and use of computational models. It brings modeling and 
simulation within reach of secondary students: it characterizes modeling as 
a cyclic process analogous to a mathematical modeling process, yet contrary 
to it, the models produced are executable. In this sense it differs from existing 
operationalizations of modelling in scientific literature, which focus on the 
development of static models. So far, the research on modeling focused mostly 
on mathematics and there are common aspects recognized in mathematics 
as well. In mathematics, the development and use of models is also considered 
to be a cyclic process with distinguished stages: definition, conceptualization, 
formalization, execution and conclusion, and additionally, reflection (Overveld 
et al., 2015; Perrenet & Zwaneveld, 2012). Formalization and execution stages 
are considered to be a part of mathematical world and involve mathematical 
formalizations such as formulas and (differential) equations. In simulation 
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modeling, on the other hand, these two stages are interpreted in computational 
terms. Formalization means constructing a computational model in the form of 
a computer program. That is in itself a cyclic process which cycles through the 
phases of establishing requirements and specification, designing the program, 
and its testing and evaluation. This cyclic formalization process is thus embedded 
within the encompassing modeling cycle. This aspect, too, signifies that modeling 
in Computational Science is essentially different from modeling in mathematics. 
The execution aspect entails designing and running experiments, thus using the 
computational model to perform simulation (Law, 2015). This framework is a 
novelty as it provides a detailed operationalization of the learning objectives for 
modeling and simulation within CS education. 

The scientific value of our framework lies in the fact that it can serve as 
a conceptual model for the investigation of students’ cognitive activities in 
empirical studies, i.e., to explore their understanding and difficulties while 
engaging in modeling and simulation tasks through the development and use of 
computational models. This methodological application is particularly important 
since the application of computational thinking in modern science education 
is gaining interest. According to Lee et al., (2020), computational thinking “is 
seen as having the potential to deepen STEM25 learning by positioning students 
as young scientists and innovators through engagement in authentic STEM 
practices”. Regarding modeling itself, Gilbert & Justi (2016) state that it plays a 
significant role in the development and learning of science (Gilbert & Justi, 2016), 
as do Hallström & Schönborn (2019) who believe that it contributes to authentic 
STEM education. Similar to our framework, but with less detail, Sengupta et al. 
(2013) propose a theoretical framework for integrating computational thinking 
with science in primary and secondary education. In that framework, learning-
by-doing activities are also represented as a cyclic process where students iterate 
between scientific enquiry (i.e., understanding of the scientific phenomena and 
modeling practices), algorithm design (i.e., development of a computational 
model) and engineering (i.e., refining models and simulations). Our framework 
is therefore particularly useful for research of computational thinking in context 
where computational modeling is used to enhance STEM learning. Furthermore, 
our framework provides an interpretation of modeling and simulation within CS 
which is not geared toward the use a specific software tool. In that sense, it is new 
as it shifts focus from the production of computational artifacts to embedding 

25   Science, Engineering, Technology and Mathematics
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computing in other disciplines with the goal of helping to solve problems in 
these other disciplines. After we have finished this work, Sengupta et al. (2018) 
confirmed our ideas in their recommendations where they warned against a 
technocentric focus on production and use of computational artifacts and argued 
“that computational thinking must be reconceptualized more appropriately as an 
intersubjective experience” — exactly as we did.

7.2.2	 Students’ Understanding and Difficulties (RQ2)
In our first and fourth studies, we focused on students’ understanding and 

difficulties while engaging in modeling activities — Magnusson’s component M2 
— and sought to answer our second research question: How can the students’ 
understanding of modeling activities be portrayed in terms of their requirements 
for learning and difficulties they encounter? In the first study (chapter 3), we 
looked at the specific challenges the students experience when engaging in 
modeling activities in all of the modeling process. In the fourth study (chapter 6) 
we focused on students’ challenges related to the verification and validation aspect 
of the modeling process only.

Our first study resulted in the qualifications of the challenges the students 
faced when developing and using computational models. Our in-depth analyses 
revealed that students face two types of challenges related to the two cyclic 
processes contained in our framework: those related to the entire modeling cycle 
and those related to formalization — i.e., the development of a computer program 
— which is an element of the modeling cycle. The challenges which we found that 
were related to the entire modeling cycle are those involving the context of the 
discipline where the problem at hand originates. They are related to expressing the 
problem at hand in computational terms, interpreting the computational solution 
in terms of the original subject matter, and reflecting upon the whole process. The 
difficulties our students faced while constructing their models were also reported 
in case of students constructing mathematical models: wrong level of abstraction 
and erroneous assumptions (Maaß, 2006). Not being familiar with the affordances 
of the tool used to implement the model — in our case, insufficient command 
of the programming language involved — is found to have a detrimental effect 
on the quality of the model being produced (Bielik et al., 2021; Sins et al., 2005). 
Other behaviors we identified are characteristic for the development and use of 
computational models: not knowing whether unexpected behavior of a model is 
caused by an error or emergent behavior is typical for the development of agent-
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based models, as is incremental model development (Wilensky & Rand, 2015). 
Finally, the two cycles constituting the modeling process cause confusion in 
students when they do not know to which cycle to attribute a particular occurrence. 
Our framework provides a refinement of existing frameworks to characterize and 
investigate this confusion in students.

The challenges which we found that were related to formalization are typical 
for computer science and characteristic for the construction of a computational 
model, thus they are concerned with programming, testing, and debugging 
a computer program. Our students were not novice programmers and they 
reported taking care of the related problems themselves. We discuss this finding 
in terms of two aspects: first, in terms of the construction of a computer program, 
and second, in terms of correctness of a computer program. Regarding the 
construction of computer programs, Qian & Lehman (2017) examined flawed or 
incomplete understandings of learners of introductory computer programming 
through the framework consisting of three elements. First element is syntactic 
knowledge, i.e., knowledge about the language features, basic rules and facts, such 
as for example use of semicolons. Second element is conceptual knowledge which 
is concerned with the programming constructs and inner workings of a computer. 
Third element is strategic knowledge which is concerned with the application “of 
syntactic and conceptual knowledge of programming to solve novel problems”. 
Taken together, these three elements describe a student’s ability to construct 
a working program. Our research adds the perspective of students with more 
programming experience. Our students were not novice programmers since they 
already had programmed in Python. Even though both constructing models and 
programming them in NetLogo were new to them, they reported taking care 
of their programming problems themselves. In other words, they all managed 
to develop working programs, i.e., to construct working models. This finding 
illustrates that they were able to use their programming skills in a new context, 
where they successfully constructed models. Regarding the correctness of the 
programs, Kolikant (2005) found that students rarely engage in systematic testing 
and debugging of their programs and have been found to consider a program to be 
correct even when it demonstrates incorrect behavior. In our specific situation, the 
formalization step meant that the students had an open programming assignment 
where we did not provide input and output values to test their programs against. 
This allows a possibility that our students accepted incorrect programs — which 
seemingly worked properly — as being correct. We have accepted these programs 
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as correct too, and have not performed additional testing or formal verification 
to examine their correctness as doing so was beyond the scope of this research 
project.  

In our final study (chapter 6), we explored students’ understanding and 
difficulties while working on Computational Science assignments using the 
teaching materials we developed ourselves. We focused on their understanding 
and difficulties concerning verification and validation of the models they develop. 
We characterized their understanding in terms of these elements: 

•	 Construct the model upon assumptions resulting from research and 
abstraction process.

•	 Test the model: generate, observe and interpret outcomes.
•	 Reflection after the model is built: plausibility, accuracy, credibility 

and satisfaction.

Looking at the difficulties the students encountered when verifying and 
validating their models, we found that:

•	 Not all students explicitly engaged in research necessary to build 
their models. In the process of abstraction, some students employed 
erroneous perspectives. During the implementation of the model, 
the students reported making omissions.

•	 When testing the model, a systematic approach to generating 
outcomes was employed only by some of the groups and was lacking 
when observing and interpreting the outcomes.

•	 When reflecting upon their models, some students were satisfied 
with a clearly unrealistic model, and some appeared not to 
understand the essence of modeling altogether.

To discuss our findings, we note that students’ difficulties with validation of 
their models have — to our best knowledge — barely been explored in the context 
of computer science education. When Louca et al. (2011) asked their students 
to construct computational models, they only assessed the surface structure 
of the implemented models, and only labeled them as correct or incorrect. In 
mathematics education, difficulties with validation of models were explored more 
extensively (Eraslan & Kant, 2015), as was satisfaction with unrealistic models 
that was reported in students engaging in mathematical modeling too (Edo 
et al., 2013; Maaß, 2006). The scientific value of our approach stems from the 
distinguishing characteristic of our studies: they took place in a CS class where 
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technical aspects of developing and using models were of prime concern, while 
the use of models for scientific inquiry remained limited to providing a context 
where the models were developed. In that sense, our approach differs from 
the one described in many existing studies. These studies described students 
constructing (computational) models where the disciplinary content of the 
application domain was of principal interest. The (computational) aspects of the 
model construction played a secondary, supportive role as a means to reach that 
goal — cf. Basu et al. (2016), Bielik et al. (2021), Eraslan & Kant (2015), Maaß 
(2006) and Sins et al., (2005). Contrary to that approach, we focus specifically 
on the embedding of computational modeling into application domain from the 
point of view of computer science. The approach of Sins et al., (2005) is illustrative 
for this difference. In their study, in the context of a physics course, the students 
were given a partial computational model and empirical data for a particular 
phenomenon, and were then asked to finish that model. In our studies, on the 
contrary, students were given open questions and asked to answer them through 
the construction and use of computation models through the steps defined in our 
framework. To illustrate this point, we draw on an example from our third study 
which focused on the assessment instrument (see chapter 5). Several student 
groups were answering the question whether sustainable human life was possible 
on Mars. While the models produced differed greatly, however, all of the students’ 
answers could possibly have been considered to be correct despite their variations. 
Indeed, since our approach emphasizes the technical aspects of developing and 
using models, our findings are independent of any specific application domain.

7.2.3	 Assessment (RQ3)
In our third study (chapter 5), we focused on assessment — Magnusson’s 

component M4 — in order to answer our third research question: What are 
characteristics of a valid and reliable assessment instrument for Computational 
Science?

In that study, we focused on the assessment instrument which we developed 
along with our teaching materials. The instrument has the form of a practical 
assignment with the accompanying grading rubrics. The assignment follows 
closely our framework for the engagement in scientific practices through the 
development and use of computational models. It contains a series of questions 
and tasks which guide the students through the whole process: to explain the 
purpose of the model (i.e., to state the research question) and to perform any 
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necessary research; to design, implement and validate the model; to perform 
experiments by executing the model, to analyze the outcomes and to answer the 
research question; and finally, to reflect on the entire process. This results is a 
portfolio containing documentation and the implemented computational model. 
The grading rubrics classifies the learning outcomes for each part of the portfolio 
using the Structure of the Observed Learning Outcome (SOLO) taxonomy which 
describes the learning progress through five levels of understanding: prestructural, 
unistructural and multistructural — which are considered to be quantitative — 
and relational and extended abstract — which indicate a qualitative change (Biggs 
& Tang, 2011). Our assessment instrument in the form of a practical assignment 
and accompanying rubrics based on the SOLO taxonomy proved to be reliable, 
as indicated by a high rate of inter-rater agreement. Its validity is corroborated 
by exposing the significant differences in the performance levels of the HAVO26 
students compared to the VWO27 students: as expected, the performance levels of 
the VWO students were significantly higher for almost all the criteria.

So far, assessing computational thinking has received a lot of interest, as 
reported in mapping and review studies by de Araujo et al. (2016), Martins 
Pacheco et al. (2019) and Tang et al. (2020). A typical example is provided by 
Roman-Gonzalez et al. (2017) who present their Computational Thinking Test. 
This multiple-choice test assesses students’ knowledge of computational concepts 
and is as such focused on programming, independent of any specific context. A 
number of other examples of assessing computational thinking focus specifically 
on modeling. 

To compare our results to these other studies, we discuss our results across 
three dimensions: the context where assessment instrument is used, the quality of 
the rubrics used and the aspects of the modeling cycle involved. Inevitably, some 
of the discussion will touch upon the nature of the modeling process itself, since 
assessment is inseparable from it.

Teaching computational modeling is often situated in a specific context where 
attention is given to the learning objectives related both to the subject matter and 
to the computational aspects. Consequently, both of these learning objectives are 
assessed. For example, Caballero et al. (2012) described students who developed 
computational models of the motion of a craft orbiting Earth by completing a 
partially completed program. Incorrect programs were analyzed to unveil 

26   HAVO: in Dutch: hoger algemeen voorbereidend onderwijs: senior secondary education
27   VWO: in Dutch: voorbereidend wetenschappelijk onderwijs: pre-university education
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students’ difficulties related to the algorithmic approach and to count the errors 
related to each of the three procedural areas related to common student mistakes. 
Similarly, Basu et al. (2018) developed assessment tasks for the integration of CT 
in physics and again, the students were asked to complete a partially completed 
program. The rubrics used for the assessment assessed two aspects: expressing 
physics relations in a computational model and using programming concepts 
to model physics phenomena. In both of these examples, physics provides the 
modeling context. The aspects under scrutiny were labeled either as correct or 
incorrect. As to the modeling cycle, in comparison to our assessment instrument, 
only the design and the implementation of the models were of interest, rather 
that the whole modeling cycle. Louca et al. (2011) analyzed the computational 
models of a number of physics phenomena constructed by their students by using 
categories for the representation of objects, entities, behaviors and interaction, 
and additionally, for the accuracy of the phenomenon description. Each of these 
categories contains a number of subcategories specific for the context. Taken 
together, these categories are reminiscent of the description of the attainment levels 
specified in our rubrics. In further comparison to our assessment instrument, we 
see that in addition to design and the implementation of the models, their validity 
is of interest too — albeit to a limited extent, as discussed in the section 7.2.2 on 
students understanding and difficulties. 

Other researchers have constructed assessment for models in their own 
right. For science teaching and learning, Papaevripidou et al. (2014) describe 
modeling competence in terms of modeling practices and meta-knowledge. They 
identify four modeling practices: construction, use, comparison and revision of 
models; they distinguish different levels of increasing sophistication for each of 
the modeling practices and they observe that these levels are independent of the 
modeling tool. While they are not concerned with computational models, we see 
similarities in the modeling practices they mention: construction and use are 
represented in our modeling cycle too, and their revision of models is represented 
in our framework in the fact that our framework considers modeling to be a cyclic 
process. Furthermore, for each of the modeling practices, they distinguish several 
levels of sophistication — an approach seemingly similar to our five ordered 
categories of SOLO taxonomy. However, they assess each of these practices as a 
whole. For example, for the practice of model use, they assess efficient use of the 
model without specifying details that characterize efficient use, while we provide 
detailed characterization of each of the levels in our assessment instrument.

565438 N Grgurina.indd   158565438 N Grgurina.indd   158 14-09-21   17:0414-09-21   17:04



General Conclusions and Discussion

159

7

In reflecting on our results, we emphasize the three aspects where our 
assessment instrument for Computational Science differs from the existing 
assessment instruments. First, it situates computational modeling in the context 
of CS education, independent of any domain specific context. Second, it covers 
the whole of the modeling cycle described in our framework, but we do remark 
that it does not deeply scrutinize the program code, as opposed to many other 
assessment instruments related to computational modeling. Third, our instrument 
uses a five-level rubrics based on SOLO taxonomy (Biggs & Tang, 2011) to assess 
the element of our modeling cycle framework.

We note that our assessment instrument aligns well with the suggestions 
regarding the assessment of CT which were put forward by Tang et al. (2020) 
after we have finished this research project. We go on to discuss them in detail 
and observe that our work adheres to most of these suggestions. We contributed 
to creating more assessment for high school (as opposed to elementary and 
middle school). Our assessment focuses on the integration of CT and subject 
matter by focusing on computational modeling and simulation to be used in a 
different discipline in the context of scientific enquiry. We report the validity 
and reliability of the assessment. We view CT broader than programming or 
computing only. To a high degree, we designed “CT assessments that can be 
applicable across platforms and devices”. Namely, even though we have developed 
our assessment instrument to be used in the context of scientific enquiry when 
constructing and using agent-based models, with slight modifications it could 
be used with other computational models as well. Our assessment does adhere 
to the rest of this suggestion: “in order to compare students’ CT performance 
under varied conditions of intervention”. Finally, when we look at our assessment 
as an instrument to be used by teachers in their daily teaching practice, we 
note that it does not follow their suggestion “to consider the concurrent use of 
qualitative measures collected by interviews, think-alouds, or focus groups to 
better understand students’ proficiency of CT”. In our first study (chapter 3), 
we scrutinized a number of qualitative measures for visible occurrences of the 
elements of our modeling framework. While our findings confirm that interviews 
with students (as well as close observations of student groups during their work) 
provide rich insights into students’ performance, understanding and difficulties — 
and therefore serve well as research instrument — we chose not to include them 
into our assessment instrument because they are not feasible in everyday teaching 
practice. Additionally, we point out that our assessment instrument also aligns well 
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with the recommendations for the assessment of modeling competence as such, 
put forward by Nicolaou & Constantinou (2014), when they suggest to formulate 
rubrics of students attainment level with regards to modeling competences.

The scientific value of our assessment instrument lies in the fact that is useful 
beyond the classroom — it can be employed as a research instrument when 
examining the students’ learning outcomes with respect to computational thinking. 
Furthermore, the attention our assessment instrument puts on the entire modeling 
cycle makes it more holistic than most of the other assessment instruments with 
narrower focus. Finally, next to other forms of validity, we explored one which is 
essential to the Dutch educational context — the discernment ability to expose the 
significant differences in the performance levels of the HAVO students compared 
to the VWO students.

7.2.4	 Teachers’ PCK (RQ4)
In the second study (chapter 4), we portrayed computer science teachers’ 

initial pedagogical content knowledge (PCK) on modeling and simulation in 
order to answer our fourth research question: How can the teachers’ PCK of 
teaching Computational Science be portrayed in terms of the four elements of 
PCK? Additionally, we asked, What differential features of PCK can be used to 
identify patterns of individual PCK in terms of the four elements of PCK?

First, we characterized the teachers’ PCK and portrayed it in terms of the four 
components of PCK. 

Concerning teachers’ knowledge about goals of objectives (M1) on teaching 
modeling, we found two types of learning objectives. First, there are conceptual 
objectives concerning the skills associated with CS subject matter, and second, 
there are motivational and practical objectives concerning transversal competences 
and understanding the benefits of models.

Concerning the teachers’ knowledge about students’ understanding (M2), 
we characterized it in terms of three issues. First, the prerequisite knowledge the 
students need to learn modeling and skills needed to make models.  Second, the 
issues regarded as successful or contributing to success such as the relevance of 
the models, the students’ perception, technical aspect and interest. Third, the 
issues regarded as difficult or contributing to difficulties, such as variation among 
students in the class, students’ difficulties in understanding the nature of models, 
or with abstraction or formalization, and students’ approach to task at hand. 
Furthermore, we observed that some teachers do not know what to say about the 
successful or difficult issues.
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Concerning the knowledge about instructional strategies (M3), we described 
it in terms of five issues: the perceived role as teachers, assignments to be given to 
students, student’s characteristic to be taken into account, organizational aspects, 
and finally, difficulties and problems. We observed an agreement about subject-
specific strategies — scaffolding learning with a final project which serves both to 
give students the opportunity to learn how to develop a model from scratch and 
as assessment.

Concerning the knowledge about assessment (M4), we described it in terms 
of four issues: the form of the assignment, problems given to students to work 
on, organizational issues, and finally, the assessment criteria. We observed an 
agreement about a suitable assessment form — a large practical assignment. 
Furthermore, we found great variation in the knowledge of dimension to assess, 
and in granularity and depth of the description of assessment criteria.

Additionally, we described two characteristics that distinguish among teachers 
— their focus on conceptual versus motivational and practical learning goals 
and objectives (M1) and their emphasis on product-based versus process-based 
assessment (M4) — leading to four distinct groups of teachers. However, none of 
these differential features leads to an overall typification of the teachers’ PCK.

The construct of pedagogical content knowledge (PCK) has proven to be a 
powerful one to help capture teachers’ views and knowledge on teaching various 
topics, for example in science (Henze et al., 2008), mathematics (Baumert et 
al., 2010) or design of digital artifacts (Rahimi et al., 2016). It is finding its way 
into the CS teaching as well. In a review of research literature, Hubbard (2018) 
reports 19 studies concerned with PCK in computing education specifically 
concerned with teaching computing as its own subject, and these studies are 
mostly concerned with programming, cf. Saeli (2012). A number of other studies 
which are concerned with teachers’ PCK of computer science or computational 
thinking focus on programming as well (Yadav et al., 2016; Yadav & Berges, 2019) 
or specifically on programming in the context of robotics (Çakıroğlu & Kiliç, 
2020; Chalmers, 2018). Our study seems to be unique with its focus on the PCK 
of modeling and simulation in the context of CS education. Yet, we can compare 
the findings about our teachers’ PCK to the results of our studies on students’ 
understanding and draw parallels with other studies of teachers’ PCK related to 
CS or modeling.

Our studies on students’ understanding confirmed that students indeed faced 
difficulties related to understanding the nature of models and found abstraction 
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and formalization challenging, exactly as reported by teachers. Furthermore, 
teachers were right about the inefficient students’ strategies. However, where 
teachers in our study mentioned no misconceptions, we did find them, for 
example, related to the nature of models.

We now go on to reflect on the method used for this study. Considering the 
explorative character of our study, we felt that a qualitative research method 
was appropriate to capture the whole breadth of teachers’ opinions and ideas. 
Therefore, we conducted semi-structured interviews with our teachers as did, 
for example, Liberman et al., (2012) and Griffin (2016), rather than, for example, 
present teachers with teaching vignettes with close-ended responses and focus 
on students’ understanding only (cf. Yadav & Berges (2019)). Our research yields 
portraits of CS teachers’ PCK and, unlike Saeli (2012), we refrain from assessing 
their PCK.

Rahimi et al. (2016), performed a study with similar methodology when they 
explored PCK of Dutch CS teachers regarding the design of digital artifacts. 
Their findings describe teachers’ PCK in terms similar to the ones we found. 
However, unlike them, we were not able to typify teachers’ PCK through relating 
their knowledge of students’ understanding and instructional strategies on one 
hand, to their knowledge of goals and objectives and knowledge of assessment 
on the other. Henze et al. (2007) explored science teachers PCK on models and 
modeling, also in the context of the Dutch secondary education. They, too, were 
able to distinguish two types of teacher knowledge. If we speculate about the 
reasons why, in our case, we were not able to identify specific types of teacher 
knowledge, we should consider the novelty of modeling and simulation in the 
context of CS education, and teachers’ lack of experience in teaching it. So, while 
Rahimi et al. (2016) saw that certain components of PCK were predictive of other 
components, in our case there is a lot of variation and not much consistency 
among various components of teachers’ PCK which suggests the reasons why we 
could not establish such typification.

7.2.5	 Overall Contribution 
Computer science, teaching CS and research into the teaching of CS are rather 

young disciplines, especially when compared to, for example, mathematics. As we 
indicated in the introduction of this thesis (see chapter 1), computational thinking 
— and its component modeling and simulation — can form a bridge between 
CS and an application domain. A lot of research in CS education is dedicated to 
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programming education and novice programmers. However, we are not aware of 
research about employing programming skills to develop computational models 
which are used for scientific enquiry in the context of CS education. It is in this 
light that we see the scientific contribution of this project to the development of 
the theory of the CS education. Our work provides a novel theoretical framework 
for empirical research into computational modeling competences, principles 
for their assessment and insights into students’ understanding regarding these 
competences. Furthermore, it is the first instance where the related teachers’ PCK 
is explored.

7.3	 Reflection on Methodology

In this section, we reflect on the methods applied in our research project.
To explore the pedagogical aspects of teaching Computational Science, we 

employed the lens of Magnusson’s (1999) components of topic-specific pedagogy. 
This approach allowed us to organize and structure our research project and 
investigate pedagogy in a feasible manner. Furthermore, our project provides 
evidence that Magnusson’s view of components of topic-specific pedagogy can 
successfully be applied in the context of CS education as well.

We carried out this research project with a limited number of participants. 
The participating teachers were from the local CS teachers’ network who replied 
to our invitation to be interviewed and were in that sense self-selected. However, 
we believe that this fact did not influence our findings significantly because 
this sample was still reasonably representative for the whole of the CS teacher 
population in the Netherlands regarding teachers’ own educational background, 
teaching qualifications, and experience with teaching (as described in chapter 
2). The same holds true for the students from the two schools participating in 
the project. As a consequence of the centralized and regulated way the Dutch 
education is set up — especially in the upper grades of HAVO and VWO — the 
cognitive abilities of all of the students attending these types of school are expected 
to be fairly uniform (see chapter 2 for a description of Dutch educational system). 
We believe that working with a small sample and familiarity with the teaching 
circumstances provided us with better understanding of what was going on in 
the classroom and made it possible to perform in-depth qualitative analysis of the 
teachers’ ideas on teaching and of students’ learning.
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The studies in this research project were carried out using the pilot version of 
teaching materials developed by the author of this thesis as the first step of our 
educational design research (Akker et al., 2006). Later, as a spin-off of this project, 
new teaching materials were developed by a team of experienced CS teachers 
lead by her, and they took into account the findings from this research project, as 
described in section 7.4 on practical implications of this project. However, we do 
not expect that using the pilot version of the teaching materials caused our results 
to be less reliable because the essential elements were present in that pilot version. 
Therefore, we have a reason to believe that the results would have been the same if 
we had used the new teaching materials instead.

7.4	 Practical Implications 

In this section, we reflect on the practical implications of our research project. 
We first describe the scientific paradigm shifts which made it possible to bring 
Computational Science into a secondary classroom, and then go on to discuss the 
practical implications.

The overarching practical contribution of this research project can be seen 
clearly by considering the shift of science paradigms (Hey et al., 2009) brought 
about by restructurations, i.e., “reformulating knowledge disciplines through 
new representational forms” (Wilensky & Papert, 2010). Many great theoretical 
scientific achievements — such as classical mechanics or Lotka-Volterra equations 
describing the dynamics of biological systems — were made possible through the 
developments in mathematics (which were, in turn, often driven by scientists’ 
needs). The corresponding restructuration meant that the scientific knowledge 
could be described in terms of mathematical terms rather than as narratives, 
bringing about a science paradigm shift from the description of observations to 
the use of mathematical models. The development and use of such mathematical 
representations is often a complex process. Additionally, advanced mathematical 
knowledge of calculus is necessary, so an active engagement in scientific 
activities in this manner is often beyond reach of secondary students. However, 
nowadays, the advances in possibilities offered by modern computing make it 
possible to describe phenomena in computational terms by simply describing 
the characteristics and behavior of the individuals forming the system which is 
being modeled. These computational descriptions — i.e., computational models 
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— are executable and in the spirit of yet another science paradigm shift: the 
attention is moving from the theoretical approach to the computational approach 
which focuses on the simulation of complex phenomena through the use of 
computational models that are executable — rather than on modeling them only. 
That means that nowadays even novices — such as secondary students — have 
tools at their disposal to actively engage in scientific practices. Indeed, Weintrop et 
al. (2016) observe that science is increasingly becoming a computational endeavor 
and they consider modeling and simulation practices to be one of the main 
categories of computational thinking for mathematics and science. Our project 
provides evidence that it is possible to teach modeling and simulation effectively 
within a secondary CS course and to empower students to embark on a journey of 
doing science themselves.

In chapter 2, we described the history and situation of secondary CS education 
in the Netherlands. It is in this light that we see the principal practical contribution 
of this research project: it informs the teaching of Computational Science. Our 
results contributed to the design of professional development activities for in-
service and pre-service teachers, covering both the aspects of modeling and 
simulation, as well as the pedagogy suitable to teach it successfully. Furthermore, 
as a spin-off of this project, we used our findings to guide the development of 
teaching materials and accompanying teachers’ manual which are now a part of 
CS textbooks28 available to all secondary students in the Netherlands. This way, we 
address a number of critical factors listed in the report about the state of secondary 
CS education in the Netherlands (Tolboom et al., 2014) (see section 2.3.2.2): we 
created modular teaching material in order to provide for rapid advances of the 
discipline, we contribute to the in-service training of the teachers, and with our 
assessment instrument, we contribute to the quality of assessment in schools. 

In a broader perspective, our findings could influence teaching of other CS 
content. They could alert teachers about understanding and difficulties they could 
expect from their students, and inspire the development of a holistic assessment 
instrument like ours.

When we embarked on this project, we focused on modeling and simulation 
within CS education. We hoped it would contribute to building bridges to other 
school courses and compel our students and their teachers to reach out from the 
confines of their disciplines. We hoped to effectuate interdisciplinary cooperation 
which would benefit students’ learning of all the disciplines involved. We are glad 

28   https://ieni.github.io/inf2019/themas/r-computational-science
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to observe that since then, computational thinking has been spreading steadily, 
and that our work is gaining relevancy. If we consider the three steps constituting 
the CT problem-solving process — expressing the problem in computational 
terms, constructing a computational solution, and interpreting that computational 
solution in terms of the original subject matter (Barendsen & Bruggink, 2019) — 
we see that computational thinking is increasingly considered to play a central 
role in science education (Park & Green, 2019), and computational models in 
particular (Pears et al., 2019).

When we look outside the CS education, we observe that effectively using and 
understanding computational models does not necessarily require students to 
develop them from scratch themselves. Our work is shown to be relevant outside 
of the CS education as our findings already inform the design of instructional 
strategies for younger students where models are used to enrich the teaching 
of other subjects — as for example in the TeaEdu4CT29 project concerned 
with teacher education for CT and STEAM30. When computational thinking is 
integrated into the context of another discipline, students can use an existing 
computational model (for example about the spread of a virus) to run simulations, 
analyze outcomes and examine consequences — both scientific and societal. 
Additionally, they could be stimulated to discuss the assumptions underlaying the 
model and the model’s validity, thus effectively engaging in a number of processes 
associated with the modeling cycle and doing science. 

This example is indicative of the curriculum changes expected to take place 
in the Netherlands, as discussed in chapter 2. Today, the stakeholders recognize 
the importance of learning computer science, as demonstrated by the curriculum.
nu31 initiative where teachers and school administrators cooperate to modernize 
the curriculum for elementary and lower secondary education. This initiative 
intends to introduce a new learning domain Digital Literacy which contains four 
elements: ICT skills, Media Wisdom, Computational Thinking and Information 
Skills (Thijs et al., 2014). The Computational Thinking element of Digital literacy 
covers a number of CS specific topics, including programming. If the proposals put 
forward by the curriculum.nu initiative get approved and lead to the introduction 
of a new curriculum for elementary and lower secondary education, it would 
signify the end of a rather unique situation where the Netherlands found itself 
in comparison to many modern nations. As opposed to, for example, England 

29   https://cesie.org/en/project/teaedu4ct/
30   STEAM: science, technology, engineering, art and mathematics
31   https://www.curriculum.nu
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(Barendsen et al., 2015), Denmark (Caspersen & Nowack, 2013) or Lithuania 
(Dagienė & Stupuriene, 2016), today in the Netherlands there is no compulsory 
CS education at all for students in primary education. In secondary education, 
the Dutch students get the opportunity to enjoy CS education only if they attend 
specialized vocational schools (in Dutch: VMBO32); otherwise, the students 
attending senior secondary education (in Dutch: HAVO) or pre-university 
education (in Dutch: VWO) have to wait until the 10th grade to attend the elective 
CS course — and only if their school choses to offer this course and is able to find 
a CS teacher.

Considering the present situation of the CS education in the Dutch primary 
and secondary education — the actual situation at the moment — we can only 
conclude that it is precarious. We urge those at the helm — the policy makers — 
to take the right decision and bring Digital literacy into all of Dutch primary and 
secondary education. That way, all the students involved will finally get a taste of 
computer science. 

7.5	 Suggestions for Further Research

This research project took place largely before and partially in parallel with 
the development of the new 2019 secondary CS curriculum in the Netherlands. 
While its results informed the development of the curriculum — in particular the 
elective theme Computational Science — the effects and results of the curriculum 
implementation are not yet examined. Looking broader, we see an explosion of 
efforts to teach computational thinking — a notion for which Computational 
Science is a prime exemplar. We therefore present a number of suggestions for 
further research.

The study on the teachers’ initial Pedagogical Content Knowledge (PCK) 
regarding Computational Science was carried out before the CS curriculum 
containing this elective theme came into effect, with a small number of teachers, 
and we portrayed their PCK at that moment. We suggest to perform a large in-
depth study of the development of teachers’ PCK regarding Computational 
Science as they participate in relevant professional development activities and 
teach it, with the aim to explore how their PCK evolves as they gain experience 
teaching Computational Science.

32   VMBO: in Dutch: voorbereidend middelbaar beroepsonderwijs: prevocational education
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We developed teaching materials to support the research of students’ 
understanding (M2) and methods of assessment (M4). However, the instructional 
strategies (M3) themselves were not explored. We suggest to perform research 
about successful instructional strategies for Computational Science. The teaching 
materials developed as spin-off of this project and our assessment instrument can 
form the basis for this research. 

Our assessment instrument based on the SOLO taxonomy is in line with 
the suggestions and needs expressed by CS teachers and provides for holistic 
assessment of the learning objectives related to Computational Science. We 
suggest to research the development of similar assessments instruments focusing 
not only on the computational concepts, but also computational practices 
and computational perspectives for, on one hand, other learning objectives of 
computer sciences, and on the other hand, for learning objectives within other 
disciplines where computational thinking is involved.

In this project, we focused on research of teaching Computational Science 
from within a CS course. Computational Science aims to provide CS students 
with tools, techniques and skills to use modeling and simulation when exploring 
phenomena in various scientific disciplines outside of CS. We suggest to extend 
this research along three dimensions. First, following our original line of enquiry 
further and considering that computational models can produce large quantities 
of data, we suggested a line of inquiry in the wake of another science paradigm 
shift — from computational approach that models and simulates complex 
phenomena to the one that focuses on the exploration of data and unifies theory, 
experiment and simulation (Hey et al., 2009). By engaging in the practices of data 
science that bring together computational thinking and mathematical thinking, 
the students developing models and performing simulations with them would be 
given a further opportunity to engage in doing science by means of more thorough 
analysis of the data produced by their simulations. Since this type of activity 
happened only marginally within this project, we suggest further research into 
this specific issue. Second, extending the scope, we propose a new vantage point 
— the perspective of computational thinking in context — and suggest to explore 
students’ understanding, challenges, and difficulties related to the learning of 
the disciplinary content for which they make models and perform simulations 
as described in the learning objectives of Computational Science. Third, as an 
extension of the previous suggestion, we propose to explore pedagogical aspects of 
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teaching digital literacy, and in particular its component computational thinking, 
if and when they become a part of the curriculum for the primary and lower 
secondary education in the Netherlands.  
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Modelleren en simuleren binnen 

Informatica in het voortgezet 
onderwijs
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8.1	 Motivatie en Onderzoeksvragen

Informaticaonderwijs is ontstaan in het kielzog van de opkomst van computers 
in de jaren ‘50 van de vorige eeuw. De doelen van het Informaticaonderwijs zijn 
meegeëvolueerd met de toepassing van computers: eerst gericht op het opleiden 
voor technische banen, en later — met een ruimere beschikbaarheid van computers 
in de tweede helft van de 20ste eeuw — voor softwareontwikkeling en academisch 
onderzoek. Vandaag de dag, met computers die in allerlei vormen en maten elk 
aspect van ons professionele, sociale en privéleven doordringen, wordt Informatica 
niet alleen onderwezen in het kader van voorbereiding op de arbeidsmarkt, maar 
ook om computational thinking33 (CT) en digitale geletterdheid te ondersteunen, 
om gelijke kansen te bevorderen en om burgerschap, wetenschappelijke, 
technologische en maatschappelijke innovatie, onderwijsvernieuwingen en 
-hervormingen, en tenslotte, plezier, voldoening en persoonlijke bekwaamheid te 
stimuleren.

In Nederland is in 1998 Informatica als middelbare schoolvak ingevoerd als 
een keuzevak in de bovenbouw van HAVO en VWO. Het examenprogramma 
van dit vak werd herzien in 2007, en recentelijk weer vernieuwd. Vanaf het 
schooljaar 2019/2020 is dit nieuwe examenprogramma ingevoerd. Eén van de 
keuzethema's in dit nieuwe examenprogramma is Computational Science34, 
dat uit twee eindtermen bestaat: modelleren en simuleren. Deze eindtermen 
worden als volgt omschreven: “Modelleren: De kandidaat kan aspecten van 
een andere wetenschappelijke discipline modelleren in computationele termen. 
Simuleren: De kandidaat kan modellen en simulaties construeren en gebruiken 
voor het onderzoeken van verschijnselen in die andere wetenschap.” Daarnaast 
is modelleren als een onderdeel van de verplichte kerndomeinen in het vak 
Informatica als een wetenschappelijke vaardigheid opgenomen en beschreven als 
volgt: “De kandidaat kan in contexten een relevant probleem analyseren, inperken 
tot een hanteerbaar probleem, vertalen naar een model, modeluitkomsten 
genereren en interpreteren, en het model toetsen en beoordelen. De kandidaat 
maakt daarbij gebruik van consistente redeneringen.” (Barendsen & Tolboom, 
2016).

33   In de Nederlandse samenvatting blijft de Engelse begrip computational thinking gehandhaafd 
wegens duidelijkheid en consistentie.
34   De begrippen Computational Science, modelleren en simuleren kunnen in deze tekst als 
synoniemen gezien worden.
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In bredere zin wordt modelleren als een integraal onderdeel gezien van 
Computational Thinking (CT), een concept dat Wing in 2006 breed onder de 
aandacht bracht. CT omvat een reeks vaardigheden waarmee men problemen 
kan oplossen met behulp van concepten en procedures uit de Informatica. 
Het gaat dus om het proces van probleem oplossen waarbij eerst het probleem 
in computationele elementen wordt vertaald, vervolgens een computationele 
oplossing wordt geconstrueerd, (bijvoorbeeld door gebruik van een bestaande 
applicatie of door zelf een programma te ontwerpen) en ten slotte de gevonden 
oplossing in het oorspronkelijke vakgebied geïnterpreteerd wordt.

Het algemene onderzoeksdoel van deze dissertatie is het in kaart brengen 
van zowel de vakdidactische aspecten van Computational Science (modelleren 
en simuleren) binnen het examenvak Informatica in het voortgezet onderwijs in 
Nederland, als ook de vakdidactische kennis van docenten over het onderwijzen 
van dit onderwerp. Daartoe wordt de indeling van Magnusson et al. (1999) 
gehanteerd waarbij de vakdidactische aspecten bij een bepaald onderwerp 
gekarakteriseerd worden aan de hand van de volgende componenten: 

M1	 leerdoelen behorend bij dit onderwerp
M2	 begrip van leerlingen over dit onderwerp
M3	 instructiestrategieën voor dit onderwerp
M4	 toetsingsmethoden voor dit onderwerp
De vakdidactische aspecten van Computational Science en de vakdidactische 

kennis van docenten voor het onderwijzen van Computational Science worden 
aan de hand van de volgende onderzoeksvragen onderzocht:

1.	 Welke computational thinking-activiteiten vormen het proces van 
probleem oplossen behorend bij Computational Science? Deze vraag 
is gericht op het definiëren van leerdoelen voor Computational 
Science (M1).

2.	 Hoe kan leerlingenbegrip van modelleeractiviteiten35 worden 
gekarakteriseerd aan de hand van hun leerbehoeften en de 
moeilijkheden die ze ervaren? (M2) 

3.	 Wat zijn de kenmerken van een valide en betrouwbaar 
toetsinstrument om Computational Science te toetsen? (M4).

4.	 Hoe kan pedagogical content knowledge (PCK) van leraren ten 
aanzien van Computational Science worden beschreven aan de 
hand van de kenniscomponenten M1 tot en met M4?

35    De begrippen Computational Science, modelleren en simuleren kunnen in deze tekst als 
synoniemen gezien worden.
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8.2	 Bevindingen

8.2.1	 Operationele Definitie van Computational Science (vraag 1)
Hoofdstuk 3 beschrijft de eerste studie die ingaat op de eerste onderzoeksvraag: 

Welke computational thinking-activiteiten vormen het proces van probleem 
oplossen behorend bij Computational Science? Op basis van literatuurstudie 
is een eerste antwoord op deze vraag gekregen en die is verder verfijnd door 
leerlingen te observeren tijdens hun werk, door ze vragenlijsten te laten invullen 
en door individuele leerlingen te interviewen. Dit heeft geresulteerd in het 
volgende raamwerk met lijst van activiteiten die het proces van probleem oplossen 
behorend bij Computational Science vormen:

•	 Aangeven wat het doel is van het model
•	 Het onderzoek dat nodig is voor het bouwen van het model uitvoeren
•	 Abstraheren om onnodige details weg te laten
•	 Het probleem zodanig formuleren dat computers en ander 

gereedschap gebruikt kunnen worden om een computationele 
oplossing te vinden

•	 Opstellen van vereisten en specificatie voor die computationele 
oplossing

•	 Het implementeren van de computationele oplossing, oftewel: 
programmeren

•	 Het geïmplementeerde model verifiëren en valideren
•	 Het geïmplementeerde model gebruiken voor het experimenteren, 

oftewel: simulatie uitvoeren
•	 De uitkomsten verkregen door te experimenteren analyseren
•	 Reflecteren op het hele proces.

8.2.2	 Leerlingen: begrip en moeilijkheden (vraag 2)
In de eerste en vierde studie (hoofdstukken 3 en 6) werden het begrip en de 

moeilijkheden die leerlingen ervaren tijdens hun werk aan modelleeropdrachten 
bestudeerd, om zo de tweede onderzoeksvraag te beantwoorden: Hoe kan 
leerlingenbegrip van modelleeractiviteiten worden gekarakteriseerd aan de hand 
van hun leerbehoeften en de moeilijkheden die ze ervaren? (M2) Er is vastgesteld 
dat veel leerlingen niet konden beslissen welk fenomeen te modelleren en moeite 
hadden met het vertalen van hun probleem naar computationele termen geschikt 
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om te programmeren. De meeste leerlingen is het gelukt om een programma 
te ontwerpen, maar vaak niet zoals zij dat wensten. Tijdens het testen wisten ze 
vaak niet of onverwacht gedrag van het programma door verkeerde aannames, 
programmeerfouten of door het gedrag behorend bij het gemodelleerde fenomeen 
werd veroorzaakt. Tijdens het programmeren van hun modellen werkten ze vaak 
volgens een incrementele trial-and-error-strategie. Weinig leerlingen voerden 
systematische en goed gedocumenteerde experimenten met hun modellen uit. 
Vaak werd het experimenteren en analyseren van verkregen uitkomsten vermengd 
met het construeren van modellen. 

In de laatste studie (hoofdstuk 6) werden leerlingen geobserveerd terwijl 
ze leerden modelleren en werkten aan modelleeropdrachten aan de hand van 
lesmateriaal dat ik zelf heb geschreven. Focus lag voornamelijk op het begrip 
en de moeilijkheden rondom verificatie en validatie van hun modellen en deze 
werden beschreven in termen van:

•	 construeren van modellen 
•	 testen 
•	 reflecteren op geloofwaardigheid, overtuigingskracht, 

nauwkeurigheid van modellen en tevredenheid met modellen
Het bleek dat niet alle leerlingen het nodige onderzoek vooraf deden. Sommige 

maakten verkeerde aannames; er waren programmeerfouten; niet iedereen voerde 
experimenten systematisch uit; en sommige leerlingen waren tevreden met 
onrealistische modellen of leken de essentie van het modelleren niet helemaal 
begrepen te hebben.

8.2.3	 Pedagogical Content Knowledge van Docenten (vraag 4)
In de tweede studie (hoofdstuk 4) werd de initiële PCK van Informaticadocenten 

rondom het modelleren en simuleren in kaart gebracht om een antwoord te geven 
op de vierde onderzoeksvraag: Hoe kan pedagogical content knowledge (PCK) 
van leraren ten aanzien van Computational Science worden beschreven aan de 
hand van de kenniscomponenten M1 tot en met M4? Wat betreft de leerdoelen 
van modelleren en simuleren, is het vastgesteld dat de beoogde leerdoelen voor 
leerlingen te verdelen zijn in conceptuele leerdoelen enerzijds, en motivatie 
gerelateerde en praktische leerdoelen anderzijds. In relatie tot het begrip van 
leerlingen zijn er drie aspecten te onderscheiden. Het betrof de benodigde 
voorkennis en vaardigheden om modellen te maken, de zaken die succesvol waren 
of aan het succes bijdragen zoals de ervaren relevatie van modellen, en ten slotte, 
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de zaken die leerlingen als moeilijk ervaren of voor problemen zorgen, zoals de 
variatie tussen de leerlingen in een klas of de moeite die leerlingen hebben met 
abstractie. Opvallend is dat sommige leraren niets wisten te vertellen over het 
begrip bij leerlingen. Wat betreft de instructiestrategieën zijn er vijf thema's: hoe 
leraren hun rol ervaren, opdrachten voor leerlingen, kenmerken van leerlingen 
om rekening mee te houden, organisatorische aspecten, en ten slotte, problemen 
en moeilijkheden. Er was een grote mate van overeenstemming rondom de 
gewenste instructiestrategieën: van docentgestuurd naar leerlinggestuurd, met als 
afsluiting een grote praktische opdracht die ook voor toetsing wordt gebruikt. Ten 
slotte, voor toetsing zijn er vier thema’s: de toetsingsvorm, opdrachten die aan 
leerlingen worden gegeven, organisatorische aspecten en beoordelingscriteria. 
Er is overeenstemming over de gewenste vorm: een grote praktische opdracht. 
Echter, de beoordelingscriteria waren divers (zowel product als proces) en niet 
gespecificeerd in detail. Er is ook gekeken of er onderscheidende kenmerken van 
PCK van docenten kon identificeren met behulp van de vier componenten van 
PCK beschreven door Magnusson et al. (1999), maar dat bleek niet het geval.

8.2.4	 Toetsinstrument voor Computational Science (vraag 3)
De bevindingen van de voorgaande studies hebben bijgedragen aan het 

beantwoorden van de derde onderzoeksvraag: Wat zijn de kenmerken van een 
valide en betrouwbaar toetsinstrument om Computational Science te toetsen? 
(M4). Met de inzichten die over de leerdoelen en geschikte onderwijsstrategieën 
uit voorgaande studies waren verkregen, is de eerste versie van lesmateriaal voor 
Computational Science ontwikkeld samen met een toetsinstrument in de vorm 
van een praktische opdracht met bijbehorende beoordelingsrubrics gebaseerd op 
SOLO36 taxonomie. Deze taxonomie beschrijft de leeruitkomsten op vijf niveaus: 
prestructural37, unistructural en multistructural — die als kwantitatief worden 
beschouwd — en relationeel en extended abstract — die duiden op een kwalitatieve 
verandering (Biggs & Tang, 2011). De praktische opdracht sluit nauw aan bij het 
raamwerk voor de ontwikkeling en het gebruik van computationele modellen dat 
ontwikkeld is als operationele definitie van Computational Science. Het bevat een 
reeks vragen en opdrachten die de leerlingen door het hele proces begeleiden. De 
leerlingen worden eerst gevraagd om het doel van het model te beschrijven (d.w.z. 
de onderzoeksvraag stellen) en eventueel onderzoek uit te voeren. Vervolgens 

36   SOLO: Structure of the Observed Learning Outcome
37   Voor duidelijkheid werden hier de originele engelse termen gebruikt.
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worden ze gevraagd om het model te ontwerpen, implementeren en valideren 
en daarmee te experimenten door het model uit te voeren, en om de uitkomsten 
te analyseren en de onderzoeksvraag te beantwoorden. Tenslotte worden ze 
gevraagd om te reflecteren op het hele proces. Dit resulteert in een portfolio 
met documentatie en het geïmplementeerd model. De rubrics classificeert de 
leeruitkomsten voor elk deel van het portfolio met behulp van SOLO-taxonomie. 
Het beoordelingsinstrument in de vorm van een praktische opdracht en 
bijbehorende rubrics op basis van de SOLO-taxonomie is betrouwbaar gebleken, 
zoals blijkt uit een hoog percentage interbeoordelaarsovereenkomsten. De validiteit 
ervan wordt bevestigd doordat de significante verschillen in prestatieniveaus van 
de HAVO leerlingen ten opzichte van de VWO leerlingen zichtbaar werden: zoals 
verwacht waren de prestatieniveaus van de VWO leerlingen significant hoger 
voor bijna alle criteria.

8.3	 Wetenschappelijke Bijdrage

Dit onderzoeksproject levert verscheidene wetenschappelijke bijdragen.
De leerdoelen van het keuzethema Computational Science van het nieuwe 

examenprogramma voor Informatica zijn vanuit twee perspectieven in een 
raamwerk uitgewerkt: als een cyclisch proces gebaseerd op het modelleren binnen 
wiskunde en als een manier om CT en wetenschappelijk onderzoek te integreren 
vanuit het perspectief van Informaticaleerlingen. Deze methodologische 
toepassing is met name belangrijk omdat er groeiende interesse is voor de 
toepassing van CT in het moderne wetenschapsonderwijs. 

Het begrip van leerlingen en moeilijkheden die ze ervaren tijdens het 
maken en gebruiken van computationele modellen zijn onderzocht vanuit het 
perspectief van Informatica waarbij een andere discipline de context biedt — 
dit in tegenstelling tot veel andere studies waar het leren van vakinhoud van de 
desbetreffende discipline centraal staat. Voor zover bekend, is dit de eerste keer 
dat het begrip van leerlingen en moeilijkheden die ze ervaren tijdens het maken 
en gebruik van computationele modellen voor hun wetenschappelijk onderzoek in 
deze context diepgaand zijn onderzocht, met name voor wat betreft het verifiëren 
en valideren van de gemaakte computationele modellen.

Het betrouwbaar en valide toetsinstrument is niet alleen handig voor gebruik 
in een onderwijssituatie, maar kan ook ingezet worden als onderzoeksinstrument 
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voor onderzoek naar de leerresultaten van leerlingen met betrekking tot 
computational thinking. In tegenstelling tot veel andere toetsinstrumenten met 
een nauwere focus, bekijkt dit instrument op een holistische wijze de gehele 
modelleercyclus. 

Ten slotte is de PCK van Informaticadocenten betreffende Computational 
Science gedetailleerd in kaart gebracht. Hiermee is aangetoond dat het begrip 
PCK ook voor het onderzoek naar ideeën en kennis van Informaticadocenten 
ingezet kan worden.

De rode draad van de wetenschappelijke bijdrage van dit project kan gezien 
worden in het licht van het feit dat computational thinking — en zijn componenten 
modelleren en simuleren — een brug kan vormen tussen Informatica en een 
toepassingsdomein. Veel onderzoek in het Informaticaonderwijs is gewijd 
aan het programmeeronderwijs en beginnende programmeurs, en uit de 
literatuurstudie kwam geen onderzoek naar boven op het gebied van het gebruik 
van programmeervaardigheden om computationele modellen te ontwikkelen en 
die te gebruiken voor wetenschappelijk onderzoek binnen Informaticaonderwijs. 
De wetenschappelijke bijdrage van dit project aan de ontwikkeling van de theorie 
van het Informaticaonderwijs kan in dit licht gezien worden. Dit werk biedt 
een nieuw theoretisch kader voor empirisch onderzoek naar competenties van 
leerlingen en docenten op het gebied van het ontwerpen van computationele 
modellen, principes voor beoordeling en inzichten in het begrip van leerlingen 
met betrekking tot deze competenties. Bovendien is het de eerste studie waarin de 
PCK van de Informaticadocenten wordt onderzocht.

8.4	 Praktische implicaties

De overkoepelende praktische bijdrage van dit onderzoeksproject kan 
het best geïllustreerd worden aan de hand van vergelijkbare verschuivingen 
van wetenschapsparadigma’s (Hey et al., 2009). Veel grote theoretische 
wetenschappelijke resultaten — zoals klassieke mechanica of Lotka-Volterra-
vergelijkingen die de dynamiek van biologische systemen beschrijven — 
werden mogelijk gemaakt door ontwikkelingen in de wiskunde (die op hun 
beurt vaak aangedreven werden door de behoeften van wetenschappers). De 
overeenkomstige verschuiving betekende dat de wetenschappelijke kennis in 
wiskundige termen kon worden beschreven, in plaats van beschrijvingen van 
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waarnemingen. Hiermee werd een wetenschappelijke paradigmaverschuiving 
teweeggebracht van de tekstuele beschrijving van waarnemingen naar het 
gebruik van wiskundige modellen. De ontwikkeling en het gebruik van 
dergelijke wiskundige representaties is vaak een complex proces. Bovendien 
is geavanceerde wiskundige kennis van differentiaal- en integraalberekening 
noodzakelijk; een actieve betrokkenheid bij wetenschappelijke activiteiten op 
deze manier ligt daarom vaak buiten het bereik van middelbare scholieren. De 
mogelijkheden die moderne computers tegenwoordig bieden maken het echter 
mogelijk om allerlei verschijnselen in computationele termen te beschrijven 
door simpelweg de kenmerken en het gedrag van de individuele elementen in 
het gemodelleerde systeem te beschrijven. Deze computationele beschrijvingen 
— d.w.z. computationele modellen — zijn uitvoerbaar en in de geest van weer 
een verdere wetenschappelijke paradigmaverschuiving. Hierbij verschuift de 
aandacht van de theoretische benadering naar de computationele benadering 
die zich op de simulatie van complexe verschijnselen richt door het gebruik van 
computationele modellen die uitvoerbaar zijn — in plaats van het maken van 
statische modellen. Dat betekent dat zelfs beginners zoals leerlingen hiermee aan 
de slag kunnen. Weintrop et al. (2016) merken op dat wetenschap steeds meer 
een computationele activiteit wordt. Zij beschouwen modelleren en simuleren als 
een van de belangrijkste categorieën van computational thinking voor wiskunde 
en wetenschap. Dit project levert het bewijs dat het mogelijk is om modelleren en 
simuleren binnen Informatica in het voortgezet onderwijs effectief te onderwijzen 
en zo leerlingen de gelegenheid te bieden om zelf met wetenschap bezig te zijn.

In hoofdstuk 2 is de geschiedenis en de situatie van Informatica in het 
voortgezet onderwijs in Nederland beschreven. De belangrijkste praktische 
bijdrage is daaraan gerelateerd: het draagt bij aan het onderwijs van Computational 
Science. De resultaten hebben bijgedragen aan het ontwerp van professionele 
ontwikkelingsactiviteiten voor leraren, waarbij zowel de aspecten van modellering 
en simulatie als de vakdidactiek daarvan aan bod komen. Bovendien heb ik 
als spin-off van dit project de bevindingen gebruikt om het ontwikkelen van 
lesmateriaal en een bijbehorende docentenhandleiding te begeleiden. Dit 
materiaal is nu in gangbare lesmethodes voor Informatica opgenomen. Daarnaast 
heb ik een uitgebreide cursus over Computational Science ontworpen die in 
het kader van bijscholing aan docenten Informatica wordt aangeboden. Het 
beoordelingsinstrument draagt bij aan de kwaliteit van de beoordeling op scholen. 
In een breder perspectief kunnen de bevindingen het onderwijs in andere 
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Informatica-onderwerpen beïnvloeden. Ze kunnen leraren informeren over begrip 
en moeilijkheden die ze van hun leerlingen kunnen verwachten. Daarnaast kan 
het de ontwikkeling van een vergelijkbaar holistisch beoordelingsinstrument bij 
andere kerndomeinen en keuzethema’s van het Informaticaonderwijs inspireren.

Toen dit project begon, was het gericht op modelleren en simuleren binnen 
het Informaticaonderwijs. De hoop was dat het zou bijdragen aan het bouwen 
van bruggen naar andere vakken en dat het leerlingen en hun leraren zou 
stimuleren om samenwerking buiten de grenzen van hun disciplines te zoeken 
en zo ten goede zou komen aan het leren van alle betrokken disciplines. Nu kan 
er met tevredenheid vastgesteld worden dat computational thinking steeds meer 
aandacht krijgt, zoals bijvoorbeeld bij de voorstellen voor curriculumvernieuwing 
van curriculum.nu, en dat dit werk dus steeds relevanter wordt.  Het krijgt steeds 
meer een centrale rol in het wetenschapsonderwijs (Park & ​​Green, 2019), met 
name in verband met computationele modellen (Pears et al., 2019).

Als men buiten het Informaticaonderwijs kijk, dan is te zien dat het 
effectief gebruiken en begrijpen van computermodellen niet per se vereist 
dat leerlingen deze zelf ontwikkelen. Daardoor blijkt dit werk ook buiten het 
Informaticaonderwijs relevant te zijn. De bevindingen zijn ook van toepassing op 
het ontwerp van instructiestrategieën voor jongere leerlingen waarbij modellen 
gebruikt worden om het onderwijs van andere vakken te verrijken — zoals 
bijvoorbeeld in het TeaEdu4CT-project dat zich bezighoudt met opleiden van 
leraren in computational thinking bij STEAM38-vakken.  Wanneer computational 
thinking in de context van een andere discipline toegepast wordt, kunnen 
leerlingen een bestaand computermodel (bijvoorbeeld over de verspreiding van 
een virus) gebruiken om simulaties uit te voeren, resultaten te analyseren en zowel 
wetenschappelijke als maatschappelijke consequenties te onderzoeken. Bovendien 
kunnen ze worden gestimuleerd om de aannames die ten grondslag liggen aan het 
model en de validiteit van het model te bespreken, en zo effectief deel te nemen 
aan de modelleercyclus en wetenschapspraktijken.

Dit voorbeeld is indicatief voor de curriculumvernieuwing die naar 
verwachting in Nederland plaats zal vinden, zoals besproken in hoofdstuk 2. 
Tegenwoordig wordt het belang van het leren van Informatica-gerelateerde 
vakinhoud erkend, zoals blijkt uit de voorstellen voor het nieuwe curriculum van 
het initiatief curriculum.nu.  Dit initiatief pleit voor de introductie van een nieuw 
leerdomein Digitale Geletterdheid dat vier elementen bevat: ICT-vaardigheden, 

38   STEAM: science, technology, engineering, art and mathematics
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Mediawijsheid, Computational Thinking en Informatievaardigheden (Thijs et 
al., 2014). Het computational thinking element van digitale geletterdheid omvat 
een aantal Informaticaspecifieke onderwerpen, waaronder programmeren. Als de 
voorstellen van het curriculum.nu initiatief worden geaccepteerd en leiden tot de 
introductie van een nieuw curriculum voor het funderend onderwijs, zou dit het 
einde betekenen van een vrij unieke situatie waarin Nederland zich bevindt in 
vergelijking met veel moderne landen. In tegenstelling tot bijvoorbeeld Engeland 
(Barendsen et al., 2015), Denemarken (Caspersen & Nowack, 2013) of Litouwen 
(Dagienė & Stupuriene, 2016), kunnen Nederlandse leerlingen alleen Informatica 
volgen als ze naar gespecialiseerde ICT-beroepsopleidingen op het VMBO gaan, 
of Informatica als keuzevak volgen in de bovenbouw van HAVO en VWO — 
mits hun school dat vak aanbiedt en een leraar kan vinden. Gezien de huidige 
stand van zaken rond het Informaticaonderwijs in het Nederlandse primair en 
voortgezet onderwijs kan men alleen maar vaststellen dat het precair is, zoals 
aangegeven in hoofdstuk 2. Het is van groot belang om digitale geletterdheid in 
het hele Nederlandse basis- en voortgezet onderwijs in te voeren. Op die manier 
krijgen alle leerlingen eindelijk de kans om kennis te maken met Informatica.

8.5	 Suggesties voor vervolgonderzoek

Dit onderzoeksproject vond grotendeels plaats vóór en gedeeltelijk tegelijk 
met de ontwikkeling van het nieuwe examenprogramma Informatica dat in 
2019 werd ingevoerd. Hoewel de resultaten van dit project aan de ontwikkeling 
van het examenprogramma hebben bijgedragen, met name het keuzethema 
Computational Science, zijn de effecten en resultaten van de implementatie van 
het examenprogramma nog niet onderzocht. Het onderwijs kent momenteel vele 
initiatieven om computational thinking te onderwijzen, en daar is Computational 
Science een onderdeel van. Daarom wordt hier een aantal suggesties voor verder 
onderzoek gedaan.

Het onderzoek naar de initiële Pedagogical Content Knowledge (PCK) van 
de docenten met betrekking tot Computational Science werd uitgevoerd met een 
klein aantal docenten, wiens PCK op dat moment is in kaart gebracht werd. Voor 
vervolgonderzoek wordt voorgesteld om een grote diepgaande studie uit te voeren 
naar de ontwikkeling van de PCK van leraren met betrekking tot Computational 
Science terwijl ze hierover lesgeven en deelnemen aan relevante professionele 
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ontwikkelingsactiviteiten. Doel van een dergelijke studie is te onderzoeken 
hoe hun PCK evolueert naarmate ze ervaring opdoen met het lesgeven in 
Computational Science.

Er is lesmateriaal ontwikkeld om te helpen bij het onderzoek naar het 
begrip van begrip van leerlingen (M2) en beoordelingsmethoden (M4). De 
instructiestrategieën (M3) zelf zijn echter niet onderzocht. Vervolgonderzoek zou 
zich kunnen richten naar succesvolle instructiestrategieën voor Computational 
Science. Het als spin-off van dit project ontwikkeld lesmateriaal en het 
beoordelingsinstrument kunnen de basis vormen voor dit onderzoek.

Het beoordelingsinstrument op basis van de SOLO-taxonomie is in 
overeenstemming met de suggesties en behoeften van Informaticaleraren en 
voorziet in een holistische beoordeling van de leeruitkomsten van Computational 
Science. Vervolgonderzoek kan zich richten op de ontwikkeling van vergelijkbare 
beoordelingsinstrumenten, niet alleen gericht op de computationele concepten, 
maar ook op computationele praktijken en computationele perspectieven voor 
enerzijds andere leeruitkomsten van het schoolvak Informatica en anderzijds 
voor leeruitkomsten binnen andere disciplines waar computational thinking bij 
relevant is.

Dit project was gericht op onderzoek naar het onderwijzen van 
Computational Science binnen Informatica. Computational Science heeft tot doel 
Informaticaleerlingen gereedschappen, technieken en vaardigheden te bieden om 
modelleren en simuleren te gebruiken bij het verkennen van verschijnselen in 
verschillende wetenschappelijke disciplines buiten Informatica. Vervolgonderzoek 
kan drie lijnen volgen. Ten eerste, door de oorspronkelijke onderzoekslijn verder 
te vervolgen. Gezien het feit dat computationele modellen grote hoeveelheden 
data kunnen produceren, wordt er een onderzoekslijn voorgesteld in het 
kielzog van een andere wetenschappelijke paradigmaverschuiving — van een 
computationele benadering die complexe verschijnselen modelleert en simuleert 
naar een benadering die zich concentreert op het exploreren van data (Hey 
et al., 2009). Door de praktijken van data science die computational thinking 
en wiskundig denken samenbrengen, zouden de leerlingen die modellen 
ontwikkelen en simulaties uitvoeren de gelegenheid krijgen om de gegevens die 
door hun simulaties worden geproduceerd grondig te analyseren. Aangezien 
dit soort activiteiten slechts marginaal plaats vond binnen dit project, is verder 
onderzoek naar dit specifieke probleem op zijn plaats. Ten tweede, door breder 
dan alleen Informaticaonderwijs te kijken, ontstaat er een nieuw uitgangspunt— 
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het perspectief van computational thinking in context. Vervolgonderzoek kan 
zich richten op het begrip, de uitdagingen en de moeilijkheden van leerlingen 
met betrekking tot het leren van de vakinhoud waarvoor ze modellen maken en 
simulaties uitvoeren als beschreven in de leerdoelen van Computational Science. 
Ten derde, in het verlengde van de vorige suggestie, kunnen vakdidactische 
aspecten van het onderwijzen van digitale geletterdheid onderzocht worden, en 
in het bijzonder de component computational thinking — als het een onderdeel 
wordt van het curriculum voor funderend onderwijs in Nederland.
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2007 Dutch Secondary CS curriculum
The exam: 
The exam takes the form of an individual school exam. 
The curriculum consists of the following themes: 
Theme A 	 Computer science in perspective
Theme B 	 Terminology and skills
Theme C 	 Systems and their structures
Theme D 	 Usage in a context 
The school exam: 
The school exam is associated with Themes A through D; and in cases where 

the authorities so decide, it can also include other subject matter that does not 
necessarily need to be identical for all students. 

The subject matter: 
Theme A: Computer science in perspective 
Sub-theme A1: Science and Technology
1. 	 The student should be familiar with the history of Computer science 

and IT, their current use and the prospects for future development. 

Sub-theme A2: Society 
2. 	 The student should be familiar with the role computer sciece and 

IT play in the developments taking place in society, both in the past 
and the present. 

Sub-theme A3: Study and Career
3. 	 The student should be familiar with the specific functions and 

jobs performed by computer sciece and IT specialists, and with 
the role computer sciece and IT play in vocational education and 
occupations in general. The student should be able to assess to what 
degree his own abilities and interests correspond with these. 
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Sub-theme A4: The Individual
4. 	 The student should master the professional work methods 

that computer science and ICT specialists use, especially those 
concerning working on a project basis. He should be familiar with 
the moral values involved in the use of computer science and IT. 

Theme B: Terminology and skills 
Sub-theme B1: Data representation in a computer
5. 	 The student should be able to describe and use common digital data 

encoding. Sub-theme B2: Hardware 
6. 	 The student should be familiar with the operational functions of a 

computer, its hardware and common peripheral devices, and should 
be able to describe the relationships among these functions. 

Sub-theme B3: Software 
7. 	 The student should be familiar with simple data types, program 

structures and programming techniques. 
Sub-theme B4: Organizations
8. 	 The student should have a global picture of how businesses are 

structured. He should be familiar with the characteristics of project 
organization and should be able to explain why a particular type 
of organization is chosen when a company’s information system 
undergoes major modifications. 

Theme C: Systems and their structures 
Sub-theme C1: Communication and Networks
9.	 The student should be familiar with the topological structure and 

communication layers of a network, and their characteristics. He 
should also be capable of describing a simple communications 
protocol, differentiating between its elements and describing them. 
Furthermore, he should be aware of the security aspects of the 
Internet. 

Sub-theme C2: Operating Systems	
10.	The student should be familiar with the basic functions of the most 

common operating systems pertaining to the management of CPU 
time, memory, data storage media, peripheral devices, and access 
rights. 
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Sub-theme C3: Systems in Practice
11.	The student should be familiar with the characteristics of, and 

distinction among real-time systems, expert systems, simulation 
systems and embedded systems.Sub-theme C4: Development of 
Information Systems 

12.	The student should have a global picture of system development 
stages, and their related actions and products. 

Sub-theme C5: Information Flow
13.	The student should be capable of describing information flow in a 

small (business) organization. 
Sub-theme C6: Information Analysis 
14.	The student should be able to analyze information and information 

requirements and build/adjust the data model accordingly. 
Sub-theme C7: Relational Databases
15.	The student should be able to name the elements of a relational 

scheme and describe their meaning. He should be able to translate 
an information question into a relational database query language 
command.

He should be familiar with the characteristics and aspects of data management 
systems, and he should be able to name them and use them for specific systems. 
(Only pre-university education) 

Sub-theme C8: Human-Computer Interaction
16.	The student should be able to identify the human-computer 

interaction element in information systems. He should be familiar 
with its characteristics and he should be able to recognize and utilize 
key criteria in the development of user dialogs. 

Sub-theme C9: System Development Lifecycle
17.	In a simple system development lifecycle, the student should be 

capable of assessing its progress, testing a prototype, checking 
whether the final product meets the client’s specifications, and 
assessing whether the system complies with the requirements and 
wishes of the end user. 

Theme D: Usage in a context 
18. The student should be familiar with the methods and procedures 

of project management, as well as the project aspects of system 
development (Schmidt, 2006).
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Appendix B: 2019 Dutch Secondary CS Curriculum

2019 Dutch Secondary CS Curriculum
Computer Science Curriculum havo/vwo

The final exam
The final exam consists of the school exam.

The school exam
The school exam covers:
•	 The entire domain A, combined with:
•	 Domains B through F;
•	 (havo:) a selection of one of the domains G through N, and a 

selection of one of the domains O through R; either the competent 
authority can make this selection, or the selection is left to the 
candidate;

•	 (vwo:) a selection of four of the domains G through R, with at least 
one from the domains G through N, and one from the domains O 
through R; either the competent authority can make this selection, 
or the selection is left to the candidate;

•	 other subject matter may be added if the competent authority 
chooses to do so; this can vary per candidate.

The Learning Objectives 

Core program

Domain A: Skills
General skills
Sub-domain A1:  Using information skills
1.	� The candidate is able to search for, assess, select and process relevant 

information.
Sub-domain A2: Communicating
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2.	 The candidate is able to communicate adequately, in writing, orally 
and digitally, in the public domain about topics related to computer 
science.

Sub-domain A3: Reflecting on learning
3.	 The candidate is able to reflect on his/her own interests, motivation 

and learning process when acquiring subject knowledge and skills.
Sub-domain A4: Orientation on study and profession
4.	 The candidate is able to indicate how the knowledge of computer 

science is applicable in study and profession, and is able, partly on 
the basis of this, to voice his/her own interest in related studies and 
professions.

Scientific skills
Sub-domain A5: Researching
5.	 The candidate is able
(vwo:) to analyse research questions in contexts, using relevant terminology 

and theory, translating these into a subject-specific research, carrying out that 
research, and using the research results to draw conclusions. The candidate is able 
to use consistent reasoning.

(havo:) to perform instructions for research in contexts, based on research 
questions, and to draw conclusions from the research results. The candidate is able 
to use consistent reasoning.

Sub-domain A6: Modelling
6.	 The candidate is able to use context to analyse a relevant problem, 

limit this to a manageable problem, translate this into a model, 
generate and interpret model results, and test and assess the model 
The candidate is able to use consistent reasoning.

Sub-domain A7: Appreciating and deciding
7.	 The candidate is able, in contexts, to offer a substantiated decision 

about a practical situation or a technical application, and is able 
to distinguish between scientific arguments, normative social 
considerations and personal views.

Computer science-specific skills
Sub-domain A8: Designing and developing
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8.	 The candidate is able, in a context, to see options to use digital 
artefacts, translate these options into an objective for the design and 
development, taking into account technical factors, environmental 
factors and human factors, to specify desires and requirements, and 
to test the attainability of these elements, to design a digital artefact, 
to weigh options for the design of a digital artefact through research 
and experiments, to implement a digital artefact, and to evaluate 
the quality of digital artefacts, and to combine these skills for the 
development of digital artefacts.

Sub-domain A9: Computer science as a perspective
9.	 The candidate is able to identify phenomena in contexts, explain 

and interpret these in terms of computer science, recognise and 
link computer science concepts, and to estimate and argue the 
possibilities and limitations of digital artefacts in subject-related 
terms.

Sub-domain A10: Cooperation and interdisciplinarity
10.	The candidate is able to cooperate structurally with a team for the 

design and development of digital artefacts, and is able to cooperate 
with the people from the application area.

Sub-domain A11: Ethical conduct
11.	The candidate is able to describe the ethical norms and values that 

play a role in the use and development of digital artefacts; he/she is 
able to explicitly compare his/her own behaviour with the ethical 
guidelines and (vwo:) to critically analyse his/her own conduct and 
relate this to ethical dilemmas.

Sub-domain A12: Using the computer science tool set
12.	The candidate is able to use the relevant tools for computer science, 

taking into account any risks and security; these tools include 
(computer) equipment, operating systems, applications, subject 
matter terminology, subject conventions and formalisms.

Sub-domain A13: Working in contexts
13.	The candidate is able to use the skills from domain A and the 

concepts from domains B through F, and the optional domains G 
through R, at least in professional contexts, in social contexts and 
(vwo:) in scientific contexts.
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Domain B: Basics
Sub-domain B1: Algorithms
14.	The candidate is able to develop a solution for a problem into 

an algorithm, recognising and using standard algorithms, and 
investigating the correctness and efficiency of digital artefacts 
through the underlying algorithms.

Sub-domain B2: Data structures
15.	The candidate is able to compare the elegance and efficiency of 

different abstract data structures.
Sub-domain B3: Machines
16.	The candidate is able to use finite machines for the characterisation 

of certain algorithms.
Sub-domain B4: Grammars
17.	The candidate is able to use grammars as tools for the description of 

languages.

Domain C: Information
Sub-domain C1: Objectives
18.	The candidate is able to distinguish objectives for information and 

data processing, such as searching and processing.
Sub-domain C2: Identifying
19.	The candidate is able to identify information and data in contexts, 

taking into account the objective.
Sub-domain C3: Representing
20.	The candidate is able to represent data in a suitable data structure, 

keeping the objective in mind; he/she is able to compare the elegance, 
efficiency and implementability of several representations.

Sub-domain C4: Standard representations
21.	The candidate is able to use standard representations of numerical 

data and media, and is able to relate these to each other.
Sub-domain C5: Structured data
22.	The candidate is able to translate a need for information into a search 

request for a collection of structured data.
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Domain D: Programming
Sub-domain D1: Developing
23.	The candidate is able, for a given objective, to develop programme 

components in an imperative programming language, using 
programming language constructions that support abstractions, and 
structuring programme components in such a manner that they can 
be easily understood and evaluated by others.

Sub-domain D2: Inspecting and adapting
24.	The candidate is able to explain the structure and functioning 

of certain programme components, and adapt such programme 
components based on evaluation or changed requirements.

Domain E: Architecture
Sub-domain E1: Decomposition
25.	The candidate is able to explain the structure and functioning of 

digital artefacts through architectural elements, i.e. in terms of the 
physical, logical and application layer levels, and in terms of the 
components in these layers, with their interaction.

Sub-domain E2: Security
26.	The candidate is able to name some security threats and common 

technical measures, and relate these to architectural elements.

Domain F: Interaction
Sub-domain F1: Usability
27.	The candidate is able to evaluate user interfaces of digital artefacts 

based on heuristics, and to apply the rules of thumb for good design 
for interfaces to the design and development of digital artefacts.

Sub-domain F2: Social aspects
28.	The candidate is able to recognise the impact of digital artefacts on 

the social interaction and personal privacy, and is able to place these 
in a historical perspective.

Sub-domain F3: Privacy
29.	The candidate is able to reason about the consequences of the 

changing possibilities of digital artefacts for personal freedom.
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Sub-domain F4: Security
30.	The candidate is able to name some security threats and common 

socio-technical measures, and relate these to social and human 
factors.

Optional themes

Domain G: Optional theme Algorithmic, calculability and logic
Sub-domain G1: Algorithm complexity
31.	The candidate is able
(havo:) to compare the complexity of certain algorithms, and to recognise and 

name classical difficult problems.
(vwo:) to explain the difference between exponential and polynomial 

complexity; to distinguish algorithms based on this difference, and to recognise 
and name classical difficult problems.

Sub-domain G2: Calculability
32.	The candidate is able to characterise and relate calculations on 

different abstraction levels, and to recognise and name classical 
incalculable problems.

Sub-domain G3: Logic
33.	The candidate is able to express characteristics of digital artefacts in 

logical formulas.

Domain H: Optional theme Databases
Sub-domain H1: Information modelling
34.	The candidate is able to draw up an information model for a simple 

practical situation and is able to define a database based on this 
situation.

Sub-domain H2: Database paradigms
35.	Apart from the rational paradigm, the candidate is able to describe 

at least one other database paradigm, and is able to weigh the 
suitability of the relevant paradigms for a concrete application.

Sub-domain H3: Linked data
36.	The candidate is able to link data from different databases (data 

sources) in an application.
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Domain I: Optional theme Cognitive computing
Sub-domain I1: Intelligent behaviour
37.	The candidate is able to describe the processes that are needed for 

intelligent behaviour, and is able to analyse how these processes can 
be used in computer science for the development of digital artefacts.

Sub-domain I2: Optional theme cognitive computing
38.	The candidate is able to explain the main characteristics of cognitive 

computing systems, and to indicate the difference with traditional 
digital artefacts, and is able to indicate whether the solution of a 
certain problem is suited for a cognitive computing approach.

Sub-domain I3: Application of cognitive computing
39.	The candidate is able to realise a simple application by applying 

one or more methods and technologies from the field of cognitive 
computing.

Domain J: Optional theme Programming paradigms
Sub-domain J1: Alternative programming paradigm
40.	The candidate is able to describe the characteristics of at least one 

additional programming paradigm, and is able to develop and 
evaluate programmes according to that paradigm.

Sub-domain J2: Selecting a programming paradigm
41.	The candidate is able to make a comparative paradigm assessment 

for the solution of a certain problem.

Domain K: Optional theme Computer architecture
Sub-domain K1: Boolean algebra
42.	The candidate is able to calculate formulas in Boolean algebra.
Sub-domain K2: Digital circuits
43.	The candidate is able to construct simple digital circuits at bit level.
Sub-domain K3: Machine language
44.	The candidate is able to write a simple programme in machine 

language, based on the description of an instruction set architecture.
Sub-domain K4: Variation in computer architecture
45.	The candidate is able to explain variations in computer architecture 

in terms of technological developments and application domains.

Domain L: Optional theme Networks
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Sub-domain L1: Network communication
46.	The candidate is able to describe and analyse the way the network 

components communicate with each other, and is able to recognise 
the scaling impact for communication, offer examples of this and 
explain the consequences.

Sub-domain L2: Internet
47.	The candidate is able to explain the basic principles of the Internet as 

a network, and is able to indicate the consequences of this network 
for applications and users.

Sub-domain L3: Distribution
48.	The candidate is able to describe the different forms of cooperation 

and the distribution of functions and data in networks.
Sub-domain L4: Network security
49.	The candidate is able to analyse the risks of violation of distributed 

functions and data, and is able to recommend measures that can 
prevent this violation.

Domain M: Optional theme Physical computing
Sub-domain M1: Sensors and actuators
50.	The candidate is able to recognise and give a functional description 

of the sensors and actuators that are used by a computer system to 
perceive and manage the physical environment.

Sub-domain M2: Development of physical computing components
51.	The candidate is able to model physical systems and processes in 

order to establish real time steering aspects, and is able to use these 
models, sensors and actuators to develop a computer system to 
guard and manage physical systems and processes.

Domain N: Optional theme Security
Sub-domain N1: Risk analysis
52.	The candidate is able to analyse risks, threats and vulnerabilities in 

an ICT application, and is able to focus the analysis on both technical 
and human factors.

Sub-domain N2: Measures
53.	The candidate is able to explain the selection of certain technical and 

organisational measures to improve security.

565438 N Grgurina.indd   208565438 N Grgurina.indd   208 14-09-21   17:0414-09-21   17:04



Appendices

209

A

Appendix B: 2019 Dutch Secondary CS Curriculum

Domain O: Optional theme Usability
Sub-domain O1: User interfaces
54.	The candidate is able to describe and explain the functioning of user 

interfaces on the basis of cognitive and biological models.
Sub-domain O2: User research
55.	The candidate is able to use user research to evaluate the user 

interfaces of digital artefacts.
Sub-domain O3: Design
56.	The candidate is able to design elements of a user interface.

Domain P: Optional theme User Experience
Sub-domain P1: Analysis
57.	The candidate is able to explain the relationship between the 

design selections of an interactive digital artefact and the expected 
cognitive, behavioural and affective changes or experiences.

Sub-domain P2: Design
58.	The candidate is able to create a graphic design of the user interaction 

of a digital artefact, justify the design decisions, and implement the 
user interaction for a simple application.

Domain Q: Optional theme Social and individual influence of computer 
science

Sub-domain Q1: Social influence
59.	The candidate is able to explain and predict the positive and negative 

effects of computer science and the networking society on the lives 
of individuals and on society.

Sub-domain Q2: Legal aspects
60.	The candidate is able to analyse the legal aspects of the application of 

computer science in society.
Sub-domain Q3: Privacy
61.	The candidate is able to investigate the effects of technical, legal and 

social measures for privacy-related issues.
Sub-domain Q4: Culture
62.	The candidate is able to reason about the influence of computer 

science on cultural expressions.
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Domain R: Optional theme Computational Science
Sub-domain R1: Modelling
63.	The candidate is able to model aspects of a different scientific 

discipline in computational terms.
Sub-domain R2: Simulating
64.	The candidate is able to construct models and simulations, and use 

these for the research of phenomena in that other science field.
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Abbreviations

ABM		  Agent Based Modeling 
AI			   Artificial intelligence
CODI		 Consortium omscholing docenten informatica
CS			  Compter science
CS4HS	 computer Science for High Schools
CSER		  Computer science education research
CSTA		  Computer Science Teacher Association
CT			  Computational thinking
HAVO	 Hoger algemeen voorbereidend onderwijs
IenI		  Vakvereniging informatica en digitale geletterdheid
IT/ICT	 Information technology/Information and communication technology
KNAW	 Koninklijke Nederlandse academie van wetenschappen
PCK		  Pedagogical content knowledge
SLO		  Stichting leerplanontwikkeling
SOLO		 Structure of observed learning outcome
VMBO	 Voorbereidend middelbaar beroepsonderwijs
VWO		 Voorbereidend wetenschappelijk onderwijs
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education.
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