
NatNatNNatatttaaaaaa a Ga Gaaa a GGrrrrgugugggguurrrriiiiiinnnnaaaa

Modeling and Simulation in SecondaryModeling and Simulation in Secondary MMooddeelliinngg aanndd SSiimmuullatattiioonn iinn SSeeccoonnddaaryryyy
Computer Science EducationComputer Science EducationCCoommppuutteer r SScciieenncce e EEdduuccatioatioatattiioonn

Getting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuPPPPPPPeeeeeeegggggggeeeeeeeGGeettttiinngg tthhe e PPiictcttuurrrrrrrrrreeeeeeeeeeeeeeeeeeeeeeeee

G
etting the Picture

M
odeling and Sim

ulation in
Secondary Com

puter Science Education
Nataša G

rgurina

565438 N Grgurina Cover en kaartje.indd 1565438 N Grgurina Cover en kaartje.indd 1 14-09-21 11:0314-09-21 11:03

Getting the Picture

Modeling and Simulation in Secondary
Computer Science Education

Nataša Grgurina

565438 N Grgurina.indd 1565438 N Grgurina.indd 1 14-09-21 17:0414-09-21 17:04

© Nataša Grgurina, 2021
All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopy,
recording, or any information storage or retrieval, without permission in writing
from the author.

Layout:			 Ferdinand van Nispen, my-thesis.nl
Cover design:	 Rein Scholte, www.rwscholte.com
Print:				 GVO drukkers en vormgevers, proefschriften.nl, Ede, NL

Digital version: https://www.my-thesis.nl/grgurina/

The work on this research project was supported by the The Netherlands
Organisation for Scientific Research grant nr. 023.002.138.

565438 N Grgurina.indd 2565438 N Grgurina.indd 2 14-09-21 20:0314-09-21 20:03

http://www.rwscholte.com/

Getting the Picture

Modeling and Simulation in Secondary Computer Science
Education

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. C. Wijmenga
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Thursday 28 October 2021 at 16.15 hours

by

Nataša Grgurina
born on Februari 23, 1966

in Zagreb, Croatia

565438 N Grgurina.indd 3565438 N Grgurina.indd 3 14-09-21 17:0414-09-21 17:04

Supervisors
Prof. K. van Veen
Prof. E. Barendsen
Prof. B. Zwaneveld

Assessment Committee
Dr. M. Helms-Lorenz
Prof. C. Schulte
Prof. V. Dagienė

565438 N Grgurina.indd 4565438 N Grgurina.indd 4 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 5565438 N Grgurina.indd 5 14-09-21 17:0414-09-21 17:04

Table of contents

List of figures 7
List of tables 7

Chapter 1 Introduction 10

Chapter 2 Twenty Years of Computer Science in Dutch
Secondary Education

33

Chapter 3 Defining and Observing Modeling and Simulation in
Computer Science

63

Chapter 4 Investigating Computer Science Teachers’ Initial
Pedagogical Content Knowledge on Modeling and
Simulation

79

Chapter 5 Assessment of Modeling and Simulation in
Secondary Computing Science Education

97

Chapter 6 Modeling and Simulation: Students’ Understanding
and Difficulties Related to Verification and Validation

121

Chapter 7 General Conclusions and Discussion 147

Chapter 8 Nederlandse samenvatting
Modelleren en simuleren binnen Informatica in het
voortgezet onderwijs

171

References 185
Appendix A 2007 Dutch Secondary CS Curriculum 198
Appendix B: 2019 Dutch Secondary CS Curriculum 201

Abbreviations 211
Curriculum Vitae 212
Research Output 214
Acknowledgment 217

565438 N Grgurina.indd 6565438 N Grgurina.indd 6 14-09-21 17:0414-09-21 17:04

List of figures

Figure 1 Structure of this research project. 30
Figure 2 The Dutch educational system. 36
Figure 3 UML class diagram for vehicle 106
Figure 4 State diagram for vehicle 107
Figure 5 Cases and scores of the HAVO groups 115
Figure 6 Cases and scores of the VWO groups 115
Figure 7 Validating a model 125
Figure 8 Constructing a model 125
Figure 9 Testing a model 126
Figure 10 Testing a model — various techniques 127
Figure 11 Validating a model with others 128
Figure 12 Reflecting on a model 128
Figure 13 Coding categories 129

List of tables

Table 1 CODI program 43
Table 2 CS teachers’ survey results on the question of a national exam 46
Table 3 Frequencies of simulation modeling elements per data source

per team or student.
72

Table 4 Teachers’ PCK on modeling cycle 85
Table 5 Distinct groups of teachers 91
Table 6 Mean scores and significance levels of differences in the

performance of the HAVO groups compared to the VWO
groups.

115

565438 N Grgurina.indd 7565438 N Grgurina.indd 7 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 8565438 N Grgurina.indd 8 14-09-21 17:0414-09-21 17:04

Preface

As a beginning computer science (CS) teacher in secondary school, I had a
vague notion that familiarity with computer science was going to be important
for my students because it was going to somehow empower them, and fun to do
anyway. During the two decades since, computer science, its impact on all aspects
of our lives, and, ultimately, my thinking about the goals and aims of teaching
computer sciences evolved drastically.

Throughout my career as a computer science teacher in secondary education,
my primary drive has always been to provide my students with knowledge, skills
and a curious mindset which would be useful to them for the rest of their lives. I
find teaching modeling and simulation to be perfectly aligned with this goal.

In this thesis, I describe my journey to explore pedagogical aspects of teaching
modeling and simulation within the elective Computer Science course in the
upper grades of secondary education in the Netherlands.

565438 N Grgurina.indd 9565438 N Grgurina.indd 9 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 10565438 N Grgurina.indd 10 14-09-21 17:0414-09-21 17:04

Chapter 1

Introduction

This chapter introduces the research aim of this thesis and outlines its content.
First, we give a brief overview of computer science education and look at
computational thinking (CT) and its relation to computer science (CS). We
introduce four components of content specific pedagogy as a lens through which
we look at teaching CT and then motivate and explicate our research questions.
Finally, we present the overview of the thesis.

565438 N Grgurina.indd 11565438 N Grgurina.indd 11 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 12565438 N Grgurina.indd 12 14-09-21 17:0414-09-21 17:04

1

Introduction

13

1.1	 Computer Science Education

Since the emergence of computers in the 1950’s, learning about them is
considered important: hence the introduction of computer science (CS) education
in K-12 worldwide. In this introductory chapter, we portray the aims of teaching
CS, illustrate these with examples of CS education in K-12 from several countries,
and describe the exploding interest in teaching some aspect of CS to all students
with the reintroduction of the notion of Computational Thinking (CT) in the
2000’s. We then zoom in on modeling and simulation, an aspect of CT that
has barely been touched upon in the context of Computer Science Education
Research (CSER) and describe how we look at teaching modeling and simulation
in secondary CS education in the Netherlands through the lens of pedagogical
aspects of teaching a particular subject that is derived from the notion of
Pedagogical Content Knowledge (PCK).

So, why do we teach computer science (CS)? The purpose to teach anything
can be seen as threefold: (1) qualification — to provide students with knowledge
and skills to enable them to do something, (2) socialization — to become part of
existing culture and tradition, and (3) subjectification — to develop autonomous
and individual thinking and acting (Biesta, 2015).

The rationales for teaching CS evolve together with CS itself. In the early days
of computing in the 1950’s, when computers were scarce and difficult to use, the
focus lay on training for technical jobs — thus providing qualification to students.
With the increased development and availability of computers in the second half
of the 20th century, the focus shifted to training for software development and
use in academia. Nowadays, when computers in all possible shapes and forms
permeate every pore of our professional, social and private life, the socialization
and subjectification purpose of learning CS are gaining significance. The motives
to teach CS refer not only to preparing students for the labor market, but also
to promoting computational thinking (i.e. “computer scientists’ ways of thinking,
heuristics and problem-solving strategies”) and computational literacy (i.e. “a set
of material, cognitive, and social elements that generate new ways of thinking
and learning”), supporting equity of participation (Blikstein & Moghadam, 2019;
Vogel et al., 2017), as well as bringing up broader issues of citizenship and civic
life; scientific, technological and social innovations, school improvement and
reform, and finally, fun, fulfillment and personal agency (Vogel et al., 2017).

565438 N Grgurina.indd 13565438 N Grgurina.indd 13 14-09-21 17:0414-09-21 17:04

Chapter 1

14

To meet these needs, computer science is taught worldwide in K-12 education
in many various forms in an increasing number of countries. In some cases, as
an independent subject, either as a compulsory subject or as an elective, and in
other cases integrated in other school subjects. Furthermore, as various as the
motives are to teach it, so are the interpretations of what is understood under CS.
In our view, CS — often referred to as informatics or computing science as well— is
the discipline dealing with scientific and mathematical approach to information
processing and computation, and design of computing machines. However,
when it comes to teaching CS, as we will see from several examples below, the
interpretations of what is understood to be CS vary greatly. CS is considered to
be about the scientific discipline — in line with our definition, or about digital
and computer literacy; or about computational thinking, information and
communication technologies; or about a combination of these (Guerra et al.,
2012).

Illustrative are the examples of countries with various forms of CS education.
Many East European countries introduced CS into secondary schools in the

1980’s. The aims of teaching CS and the curriculum evolved greatly since then.
For example, in the current Lithuanian curriculum, CS is a compulsory subject
in grades 5 - 10 and its focus lies on digital and computer literacy. Additionally,
there are elective courses on algorithms and programming in the higher grades of
secondary school (Dagienė & Stupuriene, 2016b).

In Croatia, a lot has changed since the 1980’s with first programing lessons
in BASIC and Pascal on the four computers available in a progressive school
specializing in math and computer science. In 2016, an expert group proposed a
new comprehensive CS curriculum spanning all grades of primary and secondary
education and covering four domains: information and digital technologies,
computational thinking and programming, digital literacy and communication,
and finally, e-society (Brodjanac et al., 2016).

In Denmark, CS was a secondary school subject since the late 1960’s. As in
other countries, it evolved greatly since then, and in the current secondary school
curriculum, first implemented in 2011, its content is described through seven
knowledge areas: importance and impact, application architecture, digitization,
programming and programmability, abstraction and modeling, interaction design,
and finally, innovation (Caspersen & Nowack, 2013a). In 2016, CS entered all
Danish secondary schools, as a compulsory subject in certain types of secondary
schools and as elective in others. A year later, primary schools followed with CS

565438 N Grgurina.indd 14565438 N Grgurina.indd 14 14-09-21 17:0414-09-21 17:04

1

Introduction

15

being an optional subject in grades 7-9 (Caspersen & Nowack, 2013a; Vahrenhold
et al., 2017).

In Germany, with its sixteen federal states, each with their own educational
system, the situation concerning teaching CS varies per state. In Bavaria, for
example, CS has been taught since the 1960’s and currently, as of 2004, it is taught
in secondary education in grades 6 12 in grammar schools (i.e. gymnasia). In
the 6th and 7th grade it is compulsory for all students, and in the 9th and 10th
grades for students in the science and technology track. Additionally, there are
elective CS courses in the 11th and 12th grade. These courses focus predominantly
on computing as scientific discipline (Hubwieser, 2012).

After the dramatic appeal in the Royal Society of England report (Furber,
2012), the school subject called Computing was introduced in England in 2013
as a compulsory subject for all students in primary and secondary schools. This
subject is about computer science, information technology and digital literacy
(Barendsen et al., 2015).

France is in the process of introducing CS into primary schools, as an
integral part of math and technology courses. In 2012, a computer science
course was introduced for scientific Baccalauréat students only, and since 2014
a broader computer science course was offered as an optional subject in other
types of secondary education. Yet, the French Academy of Sciences in their 2013
report expresses the concerns that “In the computing field, Europe and France
in particular are far behind, both conceptually and industrially, compared to
more dynamic countries such as the United States and certain Asian nations”
and recommend compulsory CS courses emphasizing the concepts, science and
techniques of computing to be introduced into primary, secondary and tertiary
education (Teaching computer science in France: Tomorrow can’t wait, 2013). The
newest development is that in 2020, the two courses in France are replaced by a
new compulsory course in grade 10 — Digital Sciences and Technology (in French:
Sciences numériques et technologie (SNT)) and an elective specialist course in
grades 11 and 12 - Digital and Computer Sciences (in French: Numérique et
sciences informatiques (NSI)) (School Education in France - Éduscol, 2020).

In the USA, local authorities are in charge of education, and teaching CS varies
greatly from state to state and within the states. In 2010, a joint report written by
Computer Science Teacher Association (CSTA) and Association for Computing
Machinery (ACM) expressed great concern about the failure to teach CS and
recommends that CS becomes a core academic subject with a curriculum focusing

565438 N Grgurina.indd 15565438 N Grgurina.indd 15 14-09-21 17:0414-09-21 17:04

Chapter 1

16

on algorithmic/computational thinking concepts (Wilson, 2010). Subsequently,
the federal government has put forward and funded a number of initiatives to
support and advance the CS education, for example Every Student Succeeds Act
(Every Student Succeeds Act (ESSA), 2015) and President Obama’s CS For All (CS
For All, 2016).

In the Netherlands, CS has been an established elective subject in the higher
grades of secondary education since 1998, as described in detail in chapter 2. In
addition to this subject focusing on computing as a scientific discipline, in the
lower grades of secondary education, in the late 1990’s and 2000’s, there used
to be a course focusing on ICT which often got integrated in other courses and
in the long run died out. In 2012, The Royal Netherlands Academy of Arts and
Sciences (in Dutch: De Koninklijke Nederlandse Akademie van Wetenschappen,
further abbreviated as KNAW) published a report expressing their concerns
about teaching CS and recommended to not only overhaul the existing elective
CS subject, but also to introduce a new compulsory subject Information &
communication in the lower grades of secondary education (KNAW, 2012). The
Dutch situation is described in greater detail in chapter 2.

The situation in the few countries described here is illustrative of the evolution
of CS education both from the point of view of institutionalized education reforms
— ranging from no CS education to introduction of mandatory CS education for
all students, as well as the related intertwined changing and evolving aims and
objectives of teaching CS — from specialist professional training to fundamental
life skills. We also see that, as omnipresent and multifaceted the computers and
their usage are in our modern world, so is the discussion about the necessity and
aims of teaching CS and the position CS courses get in the curriculum. This great
variation notwithstanding, the spirit of time is clearly visible in the desire to make
the CS education available to all students in K-12 and to focus on computational
problem-solving (Tedre et al., 2018).

This spirit, expressing the desire to empower all students by teaching them
certain aspects typical for CS, was captured in the 2006 seminal article by Wing
who rekindled the notion of computational thinking (CT) first introduced by
Papert (1980) by asserting that, “to reading, writing, and arithmetic, we should
add computational thinking to every child’s analytical ability” (Wing, 2006). Wing
globally sketches what CT is and what it is not in her view and stresses that it is
about attitude and a skill set for everyone, not just computer scientists.

565438 N Grgurina.indd 16565438 N Grgurina.indd 16 14-09-21 17:0414-09-21 17:04

1

Introduction

17

CT brings together the subject matter from a particular scientific discipline
— or even from everyday life — seeking to solve a particular problem or find
an answer to a question, and computing which helps solve that problem or find
the answer. This CT problem-solving process involves three steps (Barendsen &
Bruggink, 2019). First, that problem or question is expressed in computational
terms such as data or processes, thus allowing for use of computing to solve
it. Second, a computational solution is constructed, either by using existing
applications or by devising new algorithms and writing new programs. Essential to
the nature of CT is that this solution should be executable (Martin, 2012). Finally,
that computational solution is interpreted in terms of the original subject matter,
thus providing the solution to the original problem or answering the question.

Wing’s perceived need to teach CT struck a chord with educators and
researchers who sought to formulate a precise description of this concept and
devise ways to teach it.

1.1.1	 Definitions of Computational Thinking
There have been numerous efforts to obtain a clear-cut definition of

computational thinking.
In 2010 in the USA, the National Research Council held a workshop on the

nature and scope of Computational Thinking (CT). While there was a broad
consensus on the importance of (teaching) CT, the workshop did not result in an
exclusive definition of this concept (Thinking & Council, 2010). The Computational
Thinking Task Force of the Computer Science Teachers Association (CSTA) in the
USA did, however, suggest an operational definition of CT tailored to the needs of
K-12 education. In their framework, they describe CT as follows:

�CT is a problem-solving process that includes (but is not limited to) the following
characteristics:
•	 Formulating problems in a way that enables us to use a computer and

other tools to help solve them
•	 Logically organizing and analyzing data
•	 Representing data through abstractions, such as models and

simulations
•	 Automating solutions through algorithmic thinking (a series of ordered

steps)
•	 Identifying, analyzing, and implementing possible solutions with the

goal of achieving the most efficient and effective combination of steps
and resources

565438 N Grgurina.indd 17565438 N Grgurina.indd 17 14-09-21 17:0414-09-21 17:04

Chapter 1

18

•	 Generalizing and transferring this problem-solving process to a wide
variety of problems.

In addition to this definition, they touch upon necessities for students’ learning of
CT and add:

These skills are supported and enhanced by a number of dispositions or attitudes
that are essential dimensions of CT. These dispositions or attitudes include:
•	 Confidence in dealing with complexity
•	 Persistence in working with difficult problems
•	 Tolerance for ambiguity
•	 The ability to deal with open-ended problems
•	 The ability to communicate and work with others to achieve a common

goal or solution.
Furthermore, a vocabulary of CT is supplied, describing CT in terms of its core

concepts: data collection, data analysis, data representation, problem decomposition,
abstraction, algorithms & procedures, automation, simulation and parallelization
(CSTA Computational Thinking Task Force, 2011).

This view of CT as a problem-solving process puts emphasis on the construction
of a computational solution for a given problem after that problem is expressed in
computational terms.

While this definition is intended to portray CT across disciplines and is by no
means meant to be limited to CS, there are also initiatives to define CT specifically
with CS in mind.

The Carnegie Mellon Center for Computational Thinking (CMCCT), with its
mission to develop computing research, developed a CT framework describing
CT as consisting of three aspects: making use of abstraction and modeling, thinking
algorithmically, and understanding scale (Carnegie Mellon Center for Computational
Thinking, 2010).

Brennan and Resnick observed activities of Scratch programmers and
derived a definition of CT through its three dimensions: computational concepts
(i.e., sequences, loops, events, parallelism, conditionals, operators and data),
computational practices (i.e. being incremental and iterative, testing and debugging,
reusing and remixing, and, abstracting and modularizing), and computational
perspectives (i.e. expressing, connecting and questioning) (Brennan & Resnick,
2012).

In an effort to find common ground in various definitions of CT, Selby
and Woollard (2013) describe CT as “a focused approach to problem solving,

565438 N Grgurina.indd 18565438 N Grgurina.indd 18 14-09-21 17:0414-09-21 17:04

1

Introduction

19

incorporating thought processes that utilize abstraction, decomposition,
algorithmic design, evaluation, and generalizations” — thus emphasizing those
steps of CT problem-solving process which express the original problem in
computational terms and interpret the computational solution in the domain
where the problem originates (Barendsen & Bruggink, 2019).

The discussion about the precise definition of CT is still going on (Grover &
Pea, 2018; Guzdial, 2018) and there are many authors who express their vision
about the importance of CT and the definition as they see it (Allan et al., 2010;
Caspersen & Nowack, 2013b; Fletcher & Lu, 2009; Henderson, 2009; Hu, 2011;
Kafai & Burke, 2013; Malyn-Smith et al., 2018; Wing, 2006, 2008, 2014).

However, not everyone is convinced about the idea of CT. Some authors are
troubled by the lack of consensus on a precise definition of CT and the unresolved
question on how exactly is CT different from, for example, mathematical thinking
(Jones, 2011) or problem solving (Glass, 2006). Hemmendinger (2010) warns not
to get carried away with the newest fad and says many elements of CT are not
unique or exclusively reserved for CS. Denning (2009) agrees and sees another
problem with CT: that it might be seen as characterization of CS, which is
most definitely not the case in his view; “Computational thinking is one of the
key practices of computer science. But it is not unique to computing and is not
adequate to portray the whole of the field.” Then, together with Tedre (2016),
he goes on to examine a number of threats to CT initiatives, as so does Guzdial
(2015) from a practical point of view.

1.1.2	 Instructional Approach and Assessment
Regardless of the critical sounds, CT has gained a huge momentum and

there are many initiatives to weave it into the school curricula. The idea that CS
education — which could arguably be considered a natural habitat for CT — and
more specifically, various forms of programming education — could contribute
to the development of students’ CT is very common (Bers et al., 2014; Davies,
2008; Gouws et al., 2013a; Grover, 2011; Howland et al., 2009; Kafai et al., 2013;
C. C. Selby, 2014; Walden et al., 2013; Weintrop & Wilensky, 2013). However, Lu
& Fletcher (2009) add that, conversely, students proficient in CT might be more
inclined to major in CS and there are even initiatives to teach a CT for CS course
to students without prior CS knowledge (Kafura & Tatar, 2011).

Looking from a different perspective, since CT can form a bridge between
CS and an application domain, there are numerous suggestions to employ CT

565438 N Grgurina.indd 19565438 N Grgurina.indd 19 14-09-21 17:0414-09-21 17:04

Chapter 1

20

to advance the learning of science outside the CS education. Examples include
incorporating CT into middle school life science classes (Cateté et al., 2018;
Gendreau Chakarov et al., 2019) and then using sensors to observe mold growth
(Gendreau Chakarov et al., 2019); or, for science majors, by integrating CT into
a bioinformatics course (Qin, 2009) or by focusing of computational principles
in scientific inquiry (Hambrusch et al., 2009). Learning science can be supported
through the use of modeling and simulation — an integral aspect of CT — too:
for example, by developing computational models and simulation for science in
grades 4-6 (Basu et al., 2013, 2014; Dwyer et al., 2013) or for physics in grade 9
(Aiken et al., 2012), often by employing tailor-made software (Basawapatna et al.,
2013). It is suggested that CT can help put modeling — a core aspect of engagement
in science (Justi & Gilbert, 2002) — within the reach of K-12 students (Sengupta
et al., 2013; Wilensky, 2014; Wilensky et al., 2014). Teaching CT found its way
also into, for example, games where children specify the algorithms describing the
behavior of the characters in a game (Weller et al., 2008); music with musical live
coding in Scratch (Ruthmann et al., 2010), and journalism where middle school
students together with their teachers develop news stories and present them as
text, video and animations in Scratch (Wolz et al., 2010). There are also suggestion
to promote CT through contests. Bebras is an international contest for primary
and secondary schools where tasks are categorized according to concepts they
cover and it is suggested they can be incorporated into curriculum to promote CT
(Dagienė & Sentance, 2016).

In parallel with these specific endeavors, comprehensive frameworks are
being developed to inform and guide the integration of CT into K-12 curricula,
with special attention given to classroom techniques, focusing on instructional
approach. For example, by introducing into K-6 education various CT programs,
courses or modules based on generic CT framework containing CT skills
abstraction, generalization, decomposition, algorithmic thinking and debugging,
through a holistic design approach (Angeli et al., 2016). Curzon et al. (2014) provide
a framework with examples to help teachers teach CT, consisting of four stages:
(1) definition, (2) concepts (algorithmic thinking, evaluation, decomposition,
abstraction, generalization), (3) classroom techniques with examples of learners’
behavior, and (4) assessment which can be performed with an adapted version of
assessment used for the subject Computing. For higher education, Perkovic et al.
(2010) developed a framework to be used at their university “by faculty without
formal training in information technology in order to understand and integrate
computational thinking into their own general education courses” and provide

565438 N Grgurina.indd 20565438 N Grgurina.indd 20 14-09-21 17:0414-09-21 17:04

1

Introduction

21

examples for CT implementation in various courses. While this example is not
from K-12 education, it is illustrative of the challenges facing educators who are
about to engage in teaching CT.

Lee et al. (2011) formulated suggestions for instructional strategies supporting
the development of CT, too. First, they advise to have students work in rich
computational environments, and second, to scaffold interactions into a three-
stage progression that describe the stages of engagement of learners in these rich
computational environments: use — modify — create. Touretzky et al. (2013)
suggest a progression from simple to more complex programming language in a
CS course in order to bring students closer to true CT.

Teaching goes hand in hand with assessment, so when CT finds its way into
the education, the question arises how to assess it. There are already numerous
attempts to do so: for example, Koh et al. (2014) developed Computational
Thinking Pattern Analysis to analyze CT patterns in games submitted by students
and found that a promising approach. Werner et al. (2012) looked at the games
produced by their students too and based their assessment on the CT framework
developed at CMCCT (Carnegie Mellon Center for Computational Thinking, 2010).
They asked middle school students to modify and fix existing Alice programs
in order to assess the first two aspect of the CMCCT framework (making use of
abstraction and modeling, and thinking algorithmically) and concluded that this
was a promising strategy for assessment (Werner et al., 2012). Similarly, Brennan
and Resnick (2012) — after having developed their framework that describes CT
in terms of computational concepts, computational practices and computational
perspectives — tried three approaches to assess the development of CT of young
people programming in Scratch. They describe strengths and limitations of these
approaches, conclude that none of them was particularly effective, and finally
formulate six suggestions for assessing CT via programming (Brennan & Resnick,
2012):

1.	 assessment should support further learning
2.	 creating and examining projects should be an integral part of the

assessment
3.	 the project designer should illuminate the design process
4.	 (formative) assessment should take place at multiple moments

during the project development
5.	 value multiple ways of knowing
6.	 include multiple viewpoints.

565438 N Grgurina.indd 21565438 N Grgurina.indd 21 14-09-21 17:0414-09-21 17:04

Chapter 1

22

Lye and Koh (2014) then used the framework suggested by Brennan and
Resnick — describing CT in terms of computational concepts, computational
practices and computational perspectives — to analyze 27 intervention studies
about development of CT in CS courses in K-12. Their findings were that most
of these interventions focus on computational concepts while computational
practices and perspective barely get any attention, and they go on to recommend
an instructional approach described as “a constructionism-based problem-solving
learning environment, with information processing, scaffolding and reflection
activities, could be designed to foster computational practices and computational
perspectives.”

1.1.3	 Teachers
With all this attention to CT, it is important to facilitate the teaching itself.

There are voices expressing concerns whether teachers are ready to teach CT
without specific preparation (Perković et al., 2010). Bort and Brylow (2013)
set out to measure the integration of CT core concepts into lesson plans of the
teachers attending their Computer Science for High School (CS4HS) workshops
and found that, while the teachers were enthusiast, there was ample room
for improvement of the lesson plans the teachers produced. Digging deeper,
Czerkawski (2013) surveyed six instructional designers on their ideas how to
promote the ideas of CT in the curriculum, with instruction based on ADDIE
model (Analysis, Design, Development, Implementation and Evaluation) and
particular emphasis on analysis and design phases. The findings are described
in terms of: dispositions and characteristics of the learners, teaching strategies,
learning outcomes, pedagogical considerations, adult learning considerations,
user experience, instructional prototype & curriculum design, and finally,
visual and multimedia design. Together with Xu, they provide a sample activity
plan for CT in educational technology courses (Czerkawski & Xu, 2012). Yadav
et al. (2014, 2011) observed that most of the efforts to familiarize teachers with
CT are focused on CS teachers and turned their attention to pre-service teacher
training of primary and secondary teachers of other disciplines. They introduce
a compulsory CT module into the teacher education and observe that it results
in a positive attitude of the students towards CS and integration of computing
into their teaching. To further advance teacher preparation, they recommend to
redesign courses on educational technology and methods to better develop future
teachers’ competencies in CT, and to have education and CS faculty jointly work
on these efforts (Yadav et al., 2017).

565438 N Grgurina.indd 22565438 N Grgurina.indd 22 14-09-21 17:0414-09-21 17:04

1

Introduction

23

As a part of growing body of research resulting in recommendations
concerning teaching CT, there is also a budding interest to look specifically at
CS teachers (Mara Saeli et al., 2012; Yadav & Berges, 2019) by examining their
Pedagogical Content Knowledge (PCK) — subject matter knowledge for teaching
(Shulman, 1986). PCK represents teacher’s thoughts about teaching a particular
topic and it can be described with various granularity, taking into account a range
of circumstances influencing teaching (Carlson & Daehler, 2019; Grossman et al.,
2005; Loughran et al., 2004; Magnusson et al., 1999).

The most cited model of PCK is that of Magnusson et al. (1999), defining five
knowledge components of the construct of PCK. Four of these correspond to the
following elements of content-specific pedagogy, which we will refer to as M1,
M2, M3 and M4:

•	 M1: goals and objectives for teaching this particular content;
•	 M2: students’ understanding of this content, including requirements

for learning and their difficulties;
•	 M3: instructional strategies connected to this content;
•	 M4: methods of assessing students’ understanding of this content.
Most definitions and operationalizations of PCK share their recognition

of the above components. Magnusson et al. (1999) also proposed ‘orientations
to teaching science’ as a fifth knowledge component. We do not include this
component in our analyses, as it is considered less content-specific, and moreover,
it is presented as an underlying type of knowledge influencing M1 to M4 (cf.
Henze & Barendsen, 2019).

In this thesis, we will use M1 to M4 to indicate the pedagogical aspects of
specific content, as well as to characterize components of teacher’s PCK for
teaching that content.

1.1.4	 Computer Science Education Research
The above scientific developments are illustrative of the emerging Computer

Science Education Research (CSER) — a research field inspired and building
upon rich traditions of related research fields (Guzdial & Boulay, 2019; Malmi et
al., 2010). Following the call from the students, parents, educators, institutions,
governments and other stakeholders to advance CS education (Furber, 2012;
Gander et al., 2013; KNAW, 2012; Teaching computer science in France: Tomorrow
can’t wait, 2013; Wilson, 2010), researchers see a role for themselves to support CS
education by supplying solid theoretical underpinnings for its implementation.

565438 N Grgurina.indd 23565438 N Grgurina.indd 23 14-09-21 17:0414-09-21 17:04

Chapter 1

24

To the CSER researchers, students’ learning is traditionally of interest, and this
topic is accompanied by interest in teaching methods, pedagogy and learnability;
assessment issues and learning analytics; tools, and curricular aspects. Moving
outside the classroom, we see interest in professional development of teachers;
participation and equity issues, blended and informal learning experiences; and
social and global challenges in CS education. Furthermore, we observe a growing
demand for academic rigor in CSER and a continuous encouragement to conduct
a sound academic debate on new or unresolved issues.

1.2	 Situation in the Netherlands

We turn our attention to the Netherlands to explain the situation of the
educational context where this project was carried out and to motivate the specific
research questions.

We see that teaching CT problem-solving skills did not get enough attention
from policy makers and was hardly represented in school curricula in general
(Barendsen & Zwaneveld, 2010), and that the situation of the elective Computer
Science (CS) course in the upper grades of secondary education was far from
thriving, as described in chapter 2. However, recent developments are promising:
since the fall of 2019, the Computer Science (CS) course in the upper grades
of secondary education is taught according to a new curriculum (described in
more detail in section 2.3.3). For the K-9 education (i.e., elementary schools
and lower grades of secondary education — see figure 2), there is a plethora of
initiatives to advance digital literacy, media wisdom, ICT skills, information skills,
computational thinking, programming, coding, and any combination of these.
One of them is the nationwide curriculum.nu1 initiative where teachers and
school administrators cooperate on a project to overhaul the whole of the K-9
curriculum and define it in terms of nine connected and coherent domains; one of
them is to be the new domain Digital literacy.

Digital literacy is described in terms of big assignments that express the essence
of the discipline: Communicating and collaborating, Digital citizenship, Data
and information, Using and managing, Applying and designing, Digital economy,
Security and privacy, and finally, Sustainability and innovation. All of these big
assignments encompass four perspectives: dealing with, thinking over, creating
with, and, knowledge of. These perspectives are all connected to the interpretation

1  Https://curriculum.nu

565438 N Grgurina.indd 24565438 N Grgurina.indd 24 14-09-21 17:0414-09-21 17:04

1

Introduction

25

of digital literacy by the Dutch National institute for curriculum development
(Dutch: Stichting leerplanontwikkeling, SLO), which is described as containing
four elements: ICT skills, Media wisdom, Computational thinking and Information
skills (Computational thinking, 2020; Thijs et al., 2014a). The big assignments are
situated in three contexts: personal life, society, and, education and profession.

It is expected that this curriculum.nu initiative — and in particular its domain
digital literacy — will fill the gap signaled in the report by The Royal Netherlands
Academy of Arts and Sciences (2012) by providing the desired subject Information
& communication in the lower grades of secondary education, albeit under a
different name. It is also presumed that digital literacy will seamlessly tie into
the Computer Science (CS) course in the upper grades of secondary education
(described in detail in chapter 2), as recommended in the new 2019 curriculum
for the Computer Science (CS) document (Barendsen & Tolboom, 2016).

One might think that students who follow a computer science course would
become proficient at computational thinking spontaneously — a wish harbored
by many a secondary school computer science teacher. Furthermore, secondary
CS education should cater not only to those of the students who plan to pursue
careers in computer science or some related field, but first and foremost to the
majority of the students who will chose to do something else (Guzdial, 2019).
Therefore, the question arises, what aspect of computational thinking tends to be
underexposed in the typical CS classroom, as well as important and meaningful to
all of the secondary CS students, thus deserving more of our attention. The answer
is modeling and simulation — a set of new learning objectives introduced in the
2019 secondary CS curriculum in the Netherlands. As described in section 3.1,
this curriculum unites modeling and simulation under the name Computational
Science2 and provides the following description: “Modeling: The candidate is
able to model aspects of a different scientific discipline in computational terms”
and “Simulation: The candidate is able to construct models and simulations, and
use these for the research of phenomena in that other science field.” Additionally,
modeling itself is to be a part of the compulsory core curriculum, described as
“Modeling: The candidate is able to use context to analyze a relevant problem, limit
this to a manageable problem, translate this into a model, generate and interpret
model results, and test and assess the model. The candidate is able to use consistent
reasoning.” (Barendsen & Tolboom, 2016).

2  In this thesis, we use terms modeling, modeling & simulation and Computational Science
interchangeably, unless explicitly stated otherwise.

565438 N Grgurina.indd 25565438 N Grgurina.indd 25 14-09-21 17:0414-09-21 17:04

Chapter 1

26

1.3	 Research Questions

As seen in the examples in section 1.1, there are numerous attempts to employ
CT aspects modeling & simulation within courses other than CS to support the
learning of the subject matter in those courses. Modeling & simulation is considered
to be a fundamental part of CT (CSTA Computational Thinking Task Force, 2011):
modeling builds a bridge where a problem in a particular discipline meets CS
by expressing the original problem in computational terms and interpreting the
computational solution in the domain where the problem originates. (Barendsen
& Bruggink, 2019). To run a simulation with that model, a computational solution
is constructed, either by using existing applications or by devising new algorithms
and writing new programs, thus clearly engaging in typical CS activities.

We embrace this idea of using CT aspects modeling & simulation to support
the learning of the subject matter of various disciplines, but we choose to do so
from within a CS course, taking the learning objectives of Computational Science
in the Dutch 2019 secondary CS curriculum as our starting point.

There are ample courses that teach modeling, and ample courses that teach
scientific inquiry, and ample courses that teach programming. However, we are
not aware of research into teaching a combination of these in a CS course, where
all three steps of the CT problem-solving process get sufficient attention — in
other words, where expressing a problem in computational terms and interpreting
computational solution in terms of the original subject matter get as much
attention as the construction of an executable computational solution.

Considering our interest in teaching modeling and simulation, we see that
a research project that looks into curricular issues, students’ learning, teaching
methods, assessment, and professional development of teachers regarding
modeling and simulation within a secondary CS course would fit seamlessly into
the contemporary CSER program. We are, then, interested in teaching modeling
and simulation as described in the new Dutch curriculum, i.e., as generic scientific
competences within a CS course meant to equip the students with skills to
perform scientific inquiry in any discipline of their interest. We therefore engage
in a research project with the main objective to explore the pedagogical aspects
of Computational Science and the CS teachers’ PCK for teaching Computational
Science.

565438 N Grgurina.indd 26565438 N Grgurina.indd 26 14-09-21 17:0414-09-21 17:04

1

Introduction

27

As announced earlier, we will use Magnusson’s (1999) components M1 to
M4 to characterize these pedagogical aspects, as well as the respective categories
within teachers’ PCK.

M1	 goals and objectives
M2	� students’ understanding (including requirements for learning

and their difficulties)
M3	 instructional strategies
M4	 methods of assessment.

We translate our main objective into four research questions:
RQ1	� What computational thinking activities constitute the problem-

solving process associated with Computational Science? This
question is aims to find an operational definition of the learning
goals and objectives of Computational Science. (M1)

RQ2	� How can the students’ understanding of modeling activities
be portrayed in terms of their requirements for learning and
difficulties they encounter? (M2)

RQ3	� What are characteristics of a valid and reliable assessment
instrument for Computational Science? (M4)

RQ4	� How can the teachers’ PCK for teaching Computational Science
be portrayed in terms of the four components M1 to M4 of PCK?

We will address instructional strategies for Computational Science (M3) by
designing a learning activity for Computational Science in the context of RQ3.

1.4	 Structure of the Dissertation

In this section, we describe the structure of this thesis. We list the studies
we performed to depict the context where this research project took place and
the studies of the research project themselves, together with specific research
questions they aim to answer and how the findings from particular studies inform
the consequent studies.

After the introductory chapter, chapter 2 of this thesis reports on a context
study portraying the birth and the first decade of the elective computer science
course in higher grades of senior secondary education (in Dutch: HAVO) and
pre-university education (in Dutch: VWO) in the Netherlands. It sketches the
Dutch educational system, the position of computer science within the secondary

565438 N Grgurina.indd 27565438 N Grgurina.indd 27 14-09-21 17:0414-09-21 17:04

Chapter 1

28

school curriculum, the objectives of this course and the intended assessment.
Furthermore, the in-service teacher training for the first ever CS teachers is
described together with their experiences and practices in teaching this new
subject. The first part of the chapter concludes with the discussion of the many
challenges and concerns faced by computer science in secondary education in
the Netherlands during its first decade. The second part of this chapter describes
the second decade of the computer science course in secondary schools in the
Netherlands. It describes the events and processes that led to the renewal of the
curriculum for this course, the curriculum itself with the principles it is based on
and its aims, the current process of the teaching material development, the related
research, the teacher training, curriculum reform in primary and lower secondary
education, and the current situation of computer science as an upper secondary
school subject, together with the challenges it still faces. This chapter is based on
the articles The First Decade of Informatics in Dutch High Schools (Grgurina
& Tolboom, 2008) and The Second Decade of Informatics in Dutch Secondary
Education (Grgurina, Tolboom, et al., 2018).

Chapter 3 zooms in on modeling and simulation. Under the name
Computational Science, modeling and simulation is included as an elective theme
in the new 2019 Dutch secondary school computer science curriculum. This
chapter is primarily devoted to answering our first research question related to
Magnusson’s component M1: What computational thinking activities constitute
the problem-solving process associated with Computational Science? It presents
our first study that focuses on establishing an operational description of the
intended learning outcomes of Computational Science describing the activities
a student engages in when exploring a phenomenon of their choice through
modeling and simulation. Furthermore, it reports what data sources are found to
be suitable to monitor students’ learning outcomes when engaging in modeling
activities — Magnusson’s component M4 — thus setting the stage to answer our
third research question: What are characteristics of a valid and reliable assessment
instrument for Computational Science? Finally, this chapter explores what specific
challenges do the students experience when engaging in modeling activities —
Magnusson’s component M2 — thus touching upon our second research question:
How can the students’ understanding of modeling activities be portrayed in terms
of their requirements for learning and difficulties they encounter? This chapter
is based on the paper Defining and Observing Modeling and Simulation in
Informatics (Grgurina et al., 2016)

565438 N Grgurina.indd 28565438 N Grgurina.indd 28 14-09-21 17:0414-09-21 17:04

1

Introduction

29

Informed by the findings from the previous study, chapter 4 describes our
second study that portrays computer science teachers’ initial pedagogical content
knowledge (PCK) on modeling and simulation — Magnusson’s component M3
— thus answering our fourth research question: How can the teachers’ PCK of
teaching Computational Science be portrayed in terms of the four components
of PCK? This chapter is based on the paper Investigating Informatics Teachers’
Initial Pedagogical Content Knowledge on Modeling and Simulation (Grgurina
et al., 2017).

In chapter 5 we describe our third study focusing on the development of an
assessment instrument as a part of a lesson unit on Computational Science, to
monitor the levels of understanding in the learning outcomes of students engaging
in modeling projects. Here we focus on Magnusson’s component M4 and on
answering our third research question: What are characteristics of a valid and
reliable assessment instrument for Computational Science? The development of
this assessment instrument and the teaching materials for the lesson unit is based
on the findings of the two previous studies which provided us with an operational
description of the intended learning outcomes of Computational Science —
Magnusson’s component M1 — and with CS teachers’ initial PCK on modeling
and simulation that specifically contributed to our understanding of suitable
instructional strategies — Magnusson’s component M3. This chapter is based
on the paper Assessment of Modeling and Simulation in Secondary Computing
Science Education (Grgurina, Barendsen, Suhre, Zwaneveld, et al., 2018).

Chapter 6, our final study, looks into students’ understanding — Magnusson’s
component M2 — while they work on computation science assignments with
the teaching materials which we developed using the findings of the first two
studies which informed us about suitable instructional strategies — Magnusson’s
component M3. Here we focus on our second research question: How can the
students’ understanding of modeling activities be portrayed in terms of their
requirements for learning and difficulties they encounter? In particular, we focus
on the students’ understanding of the model validation in terms of validation
techniques they employ to ensure the development of valid models.

Figure 1 depicts the structure of this research project. The first study (chapter
3) informed the second study (chapter 4). Together, they informed the third and
the fourth study — chapter 5 and chapter 6.

565438 N Grgurina.indd 29565438 N Grgurina.indd 29 14-09-21 17:0414-09-21 17:04

Chapter 1

30

Figure 1: Structure of this research project.

565438 N Grgurina.indd 30565438 N Grgurina.indd 30 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 31565438 N Grgurina.indd 31 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 32565438 N Grgurina.indd 32 14-09-21 17:0414-09-21 17:04

Chapter 2

Twenty Years of Computer Science
in Dutch Secondary Education

Computer science (CS) is currently being taught in secondary education all over the
world. In the Netherlands, where all students were expected to become computer
literate in the lower grades of secondary education (Hulsen et al., 2005) it has been
decided not to consider computer literacy as being part of CS. What, then, should
be the content of the CS curriculum taught in the higher grades? What should be
taught, how and to whom? How should students’ achievements be assessed? The
answers to these questions completely depend on defining what the objectives of
teaching CS are. In the first part of this chapter, these objectives are discussed,
along with the content of the Dutch secondary education CS Curriculum when
the course was first introduced in 1998, and the experiences resulting from the
initial implementation of this curriculum during its first decade, including the
setting in which CS found itself.
In the second part of this chapter, we describe the second decade of CS in the
Netherlands: CS reached adulthood with established teacher training programs
and a new curriculum which is introduced in 2019. Here we describe the events
and processes that led to the renewal of the curriculum, the curriculum itself with
the principles it is based on and its aims, the current process of teaching material
development, the related research, the teacher training, curriculum reform in
primary and lower secondary education, and the current situation of CS as an
upper secondary school subject, together with the challenges it still faces. From
this description of the educational context in the Netherlands also follows the
rationale for our research.

This chapter is based on articles Grgurina, N., & Tolboom, J. (2008). The First
Decade of Informatics in Dutch High Schools. Informatics in Education, 7(1), 55-
74 and Grgurina, N., Tolboom, J., & Barendsen, E. (2018), and The Second Decade
of Informatics in Dutch Secondary Education. In International Conference on
Informatics in Schools: Situation, Evolution, and Perspectives (pp. 271-282).
Springer, Cham.

565438 N Grgurina.indd 33565438 N Grgurina.indd 33 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 34565438 N Grgurina.indd 34 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

35

2

2.1	 The Dutch Educational System

Figure 2 shows the organization of the Dutch Educational System (Jansen,
2007). After completing elementary school at the age of twelve, the students go on
to different kinds of secondary education. The VMBO3 type of school, lasting four
years, leads to vocational education. The HAVO4 type of school (senior secondary
education) lasts five years and prepares students for higher professional education,
while the VWO5 type of school (pre-university education) lasts six years and is
geared toward further education at a university. Secondary education ends with
national exams covering nearly all the subjects taught. In this thesis, we will be
focusing solely on senior secondary education and pre-university education. In
these schools, every student has the same curriculum in grades seven through nine.
While in the ninth grade, a student then chooses the curriculum to be followed in
the subsequent higher grades. In 1998, education in these higher grades (10 and
11 for senior secondary education; 10 through 12 for pre-university education)
went through major modifications (College voor Toetsen en Examens, 1998). It
was decided that the curricula for all existing courses needed to be re-examined
and that several new ones should be introduced, one of these being CS. Previously,
in 1995, the Course Developer Group had been assigned the task of developing a
curriculum for a CS course to be taught in grades ten and higher (Ginjaar-Maas,
1994). In this re-examination, all courses were categorized as either compulsory
(e.g. the Dutch language, physical education) or profile courses belonging to one
of the four profiles a student can choose from (Culture and Society; Economy and
Society; Nature and Health; Nature and Technology). In addition, there were to
be elective courses available to all students, one of these being CS. A student first
chooses one of the four profiles. Then, in addition to these compulsory and profile
courses, every student then takes one or two courses of his/her own choice, either
a profile course from another profile or a “free” course.

3  VMBO: Voorbereidend middelbaar beroepsonderwijs: prevocational education
4  HAVO: Hoger algemeen voorbereidend onderwijs: senior secondary education
5  VWO: voorbereidend wetenschappelijk onderwijs: pre-university education

565438 N Grgurina.indd 35565438 N Grgurina.indd 35 14-09-21 17:0414-09-21 17:04

Chapter 2

36

Figure 2: The Dutch educational system. The shaded blocks represent those grades in which the students
can choose CS

2.2	� The First Decade of Computer Science in Dutch
Secondary Education

In the first part of this chapter, we describe the introduction of CS as an elective
subject in the higher grades of pre-university and senior secondary education in
the Netherlands.

2.2.1	 The birth of Computer Science Education in the Netherlands
Before CS was introduced in the higher grades of the secondary education in

1998, only a few schools offered some form of CS education, and in those cases, it
was organized by teachers on an individual basis. Only since the Course Developer
Group was assigned the task of developing a curriculum for a CS course to be
taught in grades ten and higher (Hacquebard et al., 1995), has structural attention
been paid to CS in secondary education.

565438 N Grgurina.indd 36565438 N Grgurina.indd 36 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

37

2

2.2.1.1	 Objectives
The curriculum for this new CS course, regarded as a science discipline, was

developed with several underlying principles in mind. Its aim was to provide
students with an understanding of information technology concepts, and to give
them a sense of the potential and limitations of their use in the community as
a whole, and, more specifically, of their use in their future careers (Hacquebard
et al., 2005). The course was designed to be well within the capabilities of all
students, regardless of whether the rest of their curriculum followed the social
or the scientific profile. The result produced a course with a multidisciplinary
nature, which exemplified how this nature could be applied to complex problems
and structures. Furthermore, since CS was not a prerequisite for any subsequent
study at the university/college level, there was no need for a national exam; all
assessment was to take place in the school itself. These considerations led to the
following general objectives:

The CS course at the [...] secondary education level would be focused on
providing students with:

•	 a view of CS and IT, and the relationship between these fields and
other subject areas, as well as how they related to technology and
society as a whole

•	 a picture of the role CS and IT would play in their education and
career

•	 hands-on experience with CS and IT through:
•	 learning the basic concepts and skills of the subject
•	 studying CS problems
•	 studying the structures of data processing systems
•	 working on system development in groups

•	 and all this within the context of how CS could be applied in society
as a whole (Hacquebard et al., 1995).

2.2.1.2	 The Position of Computer Science in the High School Curriculum
CS is not a compulsory course as every school can decide whether to offer

it not, nor does choosing to take it depend on any other courses in a student’s
curriculum. Since its introduction in 1998, it has consisted of 240 study hours
for senior secondary education students, and 280 study hours for pre-university
education students. These study hours include all the time spent on learning in the
classroom, as well as elsewhere. CS course is designed to be taught no earlier than

565438 N Grgurina.indd 37565438 N Grgurina.indd 37 14-09-21 17:0414-09-21 17:04

Chapter 2

38

the tenth grade; that said, schools are free to decide in what grade(s) it should be
taught6.

2.2.1.3	 The Computer Science Curriculum
All these considerations resulted in a curriculum that drew its inspiration from

the 1994 UNESCO/IFIP curriculum (Weert & Tinsley, 1994); it was recommended
that this curriculum cover four themes:

•	 Theme A: CS in perspective: CS should be examined from several
vantage points (science and technology, society as a whole, education
and career perspectives, and, finally, from a personal perspective);
the result should then provide a student with a general overview.
This theme was not intended to be taught on its own, but as an
integral part of other themes.

•	 Theme B: Terminology and skills: in order to be able to develop
CS skills, a student needs to acquire adequate knowledge and skills
pertaining to hardware, software, organization, as well as to data and
information and communication.

•	 Theme C: Systems and their structures concerns general information
issues, various types of data processing systems, and the situations
where these are normally used. It covers system theory, computer
systems, real-life applications, information systems and new
developments.

•	 Theme D: Usage in a context takes a look at practice. The study of
system development and project management, including their social
aspects, deals with the relationships between an “information issue”
on the one hand, and the development and implementation of IT
applications at all kinds of institutions, enterprises and application
areas, on the other. This theme is all about letting the students
themselves work with CS and IT, and encouraging the intertwining
of their CS knowledge and skills with those skills acquired in other
subjects in their curriculum (Hacquebard et al., 1995).

6  The secondary school where the first author taught computer science at the time, interpreted
this as follows: in senior secondary education there were two weekly 45-minute lessons in the
tenth and eleventh grades; in pre-university education two weekly 45-minute lessons in the
eleventh grade and three in the twelfth grade

565438 N Grgurina.indd 38565438 N Grgurina.indd 38 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

39

2

Taking these recommendations into account, the four themes were broken
down into 53 specific terms, which would then comprise the CS curriculum7
(College voor Toetsen en Examens, 1998). A list of these terms is not included
in this thesis because their description is quite extensive and substantial, but,
more importantly, because they were in the process of becoming obsolete. They
were being condensed into a shorter list of eighteen terms that comprised the
curriculum for students entering the tenth grade from the fall of 2007 onwards
(Schmidt, 2006). Here we give a short overview of the four themes and the eighteen
terms comprising the curriculum. The full description of the 2007 curriculum is
listed in appendix A.

2.2.1.4	 Computer Science Curriculum HAVO/VWO (senior secondary education/
pre-university education)

Theme A: Computer science in perspective
A1: Science and Technology
A2: Society
A3: Study and Career
A4: The Individual

Theme B: Terminology and skills
B1: Data representation in a computer
B2: Hardware
B3: Software
B4: Organizations

Theme C: Systems and their structures
C1: Communication and Networks
C2: Operating Systems
C3: Systems in Practice
C4: Development of Information Systems
C5: Information Flow
C6: Information Analysis

7  The 1998 curricula for the two types of secondary school mentioned in this chapter, as far
as the content is concerned, differed only in the details of a small number of terms. However,
it was suggested that in the HAVO type of school the emphasis should be placed on practical
work, while in the VWO type of school the approach should be more abstract and theoretical
(Stuurgroep Profiel Tweede Fase Voortgezet Onderwijs, 1995)

565438 N Grgurina.indd 39565438 N Grgurina.indd 39 14-09-21 17:0414-09-21 17:04

Chapter 2

40

C7: Relational Databases
C8: Human-Computer Interaction
C9: System Development Lifecycle

Theme D: Usage in a context
D. The student should be familiar with the methods and procedures of project
management, as well as the project aspects of system development (Schmidt,
2006).

It has been suggested that the 2007 curriculum be implemented in the form of
a number of core modules that are the same for both senior secondary education
and pre-university education, along with a number of distinct enrichment
modules (Schmidt, 2006).

It is interesting to note that, although programming (the practical translation
of “algorithmics”) is considered a dominant theme in CS by the CS community
worldwide (Gal-Ezer et al., 1995), this is not reflected in the Dutch curriculum.
Even in the best-case scenario, less than one quarter of the time available is
supposed to be dedicated to programming.

2.2.1.5	 Teaching Computer Science in the Classroom
In 1998 the major modifications made to education in the upper grades of

secondary education came with recommendations for organizing classroom
work in a different manner. The students were to be given more freedom and
responsibility for their own learning process. Furthermore, obtaining factual
knowledge was no longer to be the sole objective of attending school. Acquiring
skills and competences became an objective as well (Ginjaar-Maas, 1994). This
approach to teaching was a good fit for CS. Students, it was suggested, should
spend a lot of time doing practical work and working on projects, mainly solving
CS problems. IT applications, in fact, are found in a wide range of areas in
“society,” and they are always about processing, organizing and communicating
large amounts of relevant data. Moreover, IT problems in practice are so intricate
and extensive that one person cannot solve them alone, even when the issues
in question are relatively simple. Keeping in mind that CS education was not
primarily meant to mirror professional practice, these five starting points for
classroom teaching were suggested:

565438 N Grgurina.indd 40565438 N Grgurina.indd 40 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

41

2

CS education should be about students:
1.	 Learning about the field of CS through the acquisition of factual knowledge

and skills relative to the ways of thinking and working methods found
within CS

2.	 Learning to apply CS through solving CS problems, using the CS knowledge
and skills acquired

3.	 Learning to deal with interdisciplinary problems: learning to use CS
knowledge and skills in an interdisciplinary context

4.	 Learning to cooperate: learning to practice CS in a structured collaborative
way

5.	 Learning to reflect: learning how to learn from the previous four points
independently [...] (Ginjaar-Maas, 1994).

2.2.1.6	 Assessment
These points of view are reflected in the way the curriculum prescribes

assessment and this in turn influences the way CS is taught in the classroom. There
is no national exam and all assessments take place at the school level in the form
of a so-called school exam. A student’s CS school exam is a portfolio containing
the following parts8:

A.	 Written examination.
B.	 Practical assignments. The student is to do practical work and come up

with a result. When relevant, the process itself is taken into account by
giving credit for the documentation describing the processes involved.

C.	 Project: system development. This is a larger practical assignment to be
carried out in groups of at least three students. Each student is expected to
work for approximately sixty hours on this project.

D.	 Activities. Taking part in activities intended to provide a picture of the
educational and career perspectives in which IT plays an essential role.

The first version of the 1998 curriculum explicitly states that Part A should
contribute forty percent towards the final grade, Parts B and C thirty percent each,
while Part D only needs to be covered up to a satisfactory level (College voor
Toetsen en Examens, 1998). Soon, however, this was all to change and nowadays
the assessment is as follows: Part D, activities, has been removed. Part C, project,
has become optional. And Part A, written examination, now contributes to up

8  For senior secondary education, see http://www.eindexamen.nl/9336000/1/j9vvgodkvkzp4d4/vg41h1jt-
pgy4/f=/bestand.doc (retrieved August 2007) For pre-university education, see http://www.eindexamen.
nl/9336000/1/j9vvgodkvkzp4d4/vg41h1jtpgy5/f=/bestand.doc (retrieved August 2007)

565438 N Grgurina.indd 41565438 N Grgurina.indd 41 14-09-21 17:0414-09-21 17:04

Chapter 2

42

to fifty percent of the final grade (College voor Toetsen en Examens, 1998). The
practical nature that the course in CS was intended to have is thus emphasized
once again by prescribing that practical assignments and/or a project should
contribute to at least fifty percent of the final grade.

For the 2007 curriculum it was suggested that the assessment should contain
the following parts:

A.	 Written examination.
B.	 Practical assignments.
C.	 Project.
Part A should contribute at least ten percent and at most fifty percent towards

the final grade, and part B/C at least fifty percent and at most ninety percent.
The grade for part B/C is the arithmetic mean of the grades for parts B and C
(Schmidt, 2006).

2.2.1.7	 Teacher Training
Prior to the 1998 modifications to the educational system in the Netherlands,

there was a small number of teachers teaching CS at their own initiative. These
lessons were optional and consisted mostly of programming activities. The
teachers developing these activities were usually mathematics or science teachers
(Tolboom, 1999). There was no formal CS teacher training. When the decision
was taken to introduce CS in the upper grades of senior secondary education and
pre-university education, there were a lot of concerns. One of the most urgent was
that there were no teachers to teach this course. In considerable haste, CODI9, a
consortium of 12 universities and universities of applied science, was set up to join
forces in training teachers, who were to be responsible for the implementation of
the CS course in their schools. In the period between 1998 and 2005, those schools
that planned to introduce CS sent a teacher each for in-service training. Whereas
elsewhere prospective CS teachers were expected to possess extensive knowledge
of the subject (Gal-Ezer, 1995), these teachers were by no means required to have
any prior knowledge of CS and were only expected to be computer literate at a
satisfactory level. In order to obtain their teaching license for CS, they had to
complete a two-year program of about 45 ECTS. This program consisted of the
following parts: (MinOC&W, 1998).

9  CODI is the Dutch acronym for the Computer Science Teacher Education Consortium (in
Dutch: Consortium Omscholing Docenten Informatica).

565438 N Grgurina.indd 42565438 N Grgurina.indd 42 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

43

2

Course ECTS
Orientation on CS 3,5
Computer Architecture and Operating Systems 0,7
Visual Programming with Java 5,7
Information Systems: Modeling and Specifying 5
Databases 0,7
Telematics 3,5
Software Engineering 5
Human-Machine Interaction 1,4
Programming Paradigms and Methods of Information System Development 1,4
Didactics of CS 5,7
CS Projects 2,8
Practical Teaching Assignment 10

Table 1: CODI program

For a description of this curriculum from the perspective of the practice of
teaching, see Dirks and Tolboom (2000). In 2005, CODI was dismantled leaving
a void since no other way was set up to train and license CS teachers. As of 2006,
five universities in the Netherlands offer secondary school CS teacher education
as a Master’s degree program.

2.2.2	 The First Decade of Teaching Computer Science
With all these various objectives, points of view, considerations,

recommendations, as well as the curriculum itself in mind, one question arises:
how does this all work in practice?

CS education has been monitored from the very outset in 1998, and there
have been five detailed reports describing the resulting state of affairs (Hartsuijker
et al., 2003; Hartsuijker, Kuipers, et al., 2001; Hartsuijker, M.A.G, et al., 2001;
Hartsuijker & Westland, 2004; Schmidt, 2007). Other than these reports, there has
been no significant scientific research into any of the aspects of CS education in
secondary education in the Netherlands.

In the Netherlands, not all schools offer the CS course. During the period
2002-2006, out of about 474 independent schools, the percentage of schools
that do offer CS has remained fairly constant at around sixty percent. There are
indications that since 2007, this percentage has been rising (Schmidt, 2007).
During the CODI era, 369 candidate CS teachers began their studies, and 336
(91%) graduated (Zwaneveld et al., 2007).

565438 N Grgurina.indd 43565438 N Grgurina.indd 43 14-09-21 17:0414-09-21 17:04

Chapter 2

44

During the period 2000 – 2006, the number of secondary education graduates
with CS has been on the decrease and seemed to be stabilizing at around ten
percent (of the total student population) (Schmidt, 2007).

Setting aside the start-up difficulties in the beginning, a clear picture of the
problems encountered and of the accomplishments realized has emerged. From
the teachers’ point of view, the curriculum was ostensibly too broad and extensive
(in terms of available teaching time), forcing them to skip parts of it. Concerning
this same issue, they experienced difficulty in judging the amount of attention
and time to be given to particular terms. The three textbooks10 (Bergervoet et
al., 2001; Meijer et al., 2001; Van der Laan et al., 2001) on the market did not
help much in solving this problem, since each of them had different approaches
to the subject matter. Therefore, many teachers were forced to resort to writing
their own teaching material (much of which has now been made available to other
teachers through the online community on www.informaticavo.nl). This situation,
however, was not just perceived as a problem; it was also seen as an opportunity to
pay more attention to the subject matter that students and/or teachers themselves
found interesting. With this in mind, many teachers were happy that there was
no national exam putting pressure on them to work out minutely all of the 53
curriculum terms in the class. In a country where we are used to national exams
that ensure the level of students’ accomplishments and then serve as gateways to
higher education, this has caused quite understandable concerns. What guarantees
are there that students attending different schools will end up acquiring a similar
body of knowledge? At the moment, since CS is not a prerequisite for any study
in higher education, this does not really matter. However, there is an occasional
discussion about whether there should be a national exam for CS. The details of
this discussion will be described in the section 2.2.3, Discussions.

Bearing in mind that virtually all of the CS teachers come from a non-CS
background, it is not surprising to see differing interpretations of the curriculum.
In some cases, CS in the classroom has ended up being treated as an exact science,
and in some cases the emphasis is put on the use of particular software applications,
none of which is in line with curriculum objectives. The picture that students, their
parents, and even guidance counselors and other school officials had about CS was
often limited and did not fit the broad perspective it was supposed to provide. The
experiences of the authors of the original paper (Grgurina & Tolboom, 2008) are

10  These textbooks all consisted of several separate volumes and were accompanied by CD -
ROMs and dedicated websites.

565438 N Grgurina.indd 44565438 N Grgurina.indd 44 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

45

2

a good example: while teaching CS in the tenth grade, they encountered students
who expected to spend the lessons doing “computering,” by which they meant
doing unspecifiable stuff, with the Internet playing a major role in whatever this
was. When asked what they expected to learn in CS, they could not formulate a
clear answer. And then there were those students who already knew so much that
they didn’t even consider taking CS because they thought they already knew it all.
A solution to this problem was sought by providing instructive lectures (Http://
Www.informaticavo.nl/scripts/voorlichting.php.2006) to ninth-grade students
about the CS course right at the very moment when they were set to decide which
courses to take in the higher grades.

Another difficulty encountered came out of the very foundation upon which
the whole CS course was built. On the one hand, this course was meant to be
accessible to all students without any prerequisite. On the other, however, the
students were supposed to acquire an overview of and hands-on experience with
all aspects of CS. When it came to programming, for example, many students
had difficulties with complex programming languages such as Java, as had
many of their teachers without a CS background when they had been faced with
learning this programming language during the CODI training (Tolboom, 1999).
Information modeling using a CASE tool for FCO-IM11 (Bakema et al., 2002)
was another stumbling block where many students went astray. Obviously, then,
occurrences such as these have played a part in making teachers choose their own
interpretations of the curriculum.

Looking on the bright side, both teachers and students appreciated this practical
approach to teaching. The practical assignments were highly motivating, and
proved to be very valuable by encouraging students to cooperate with each other
and take responsibility for their own achievements. They made differentiation
among the students possible. They were also illustrative of the practical nature of
CS. The way CS is taught in the classroom is a fine example of the new didactic
approach behind the modified secondary education system introduced in 1998.

One can get an impression of what is going on in classrooms all over the country
by taking a look at the quite lively online community on www.informaticavo.nl.
The growing diversity of topics found there is remarkable. A quick look at the
collection of tests on programming submitted to the site, for example, shows that
the subject is apparently being taught using Visual Basic, Logo, NQC for Lego
Mindstorms, Java, Gamemaker and Delphi. The practical assignments submitted

11  FCO-IM stands for Fully Communication-Oriented Information Modelling

565438 N Grgurina.indd 45565438 N Grgurina.indd 45 14-09-21 17:0414-09-21 17:04

Chapter 2

46

also show large variations as well, for example, Build a Company Website; Make
a Database for the Administration of a Football Club; Build a User-Friendly
Interface for an Information System; and from the first author’s own classroom:
utilize the debating skills acquired in language classes to debate a particular ethical
issue concerning IT.

This diversification and growth are not surprising in a discipline undergoing
such rapid changes and new developments, and so now is a good time to pose the
question: where do we go from here?

2.2.3	 Discussions
Concerns about the future of CS education in Dutch secondary education were

reflected in a number of discussions that were going on at that moment, in the first
decade of this millennium. One of the hot issues was the question of whether or
not to introduce a national exam. In the 2007 report on the implementation of the
CS course (Schmidt, 2007), a survey of CS teachers reported the following results:

Answer Score

As far as I am concerned, a national exam is out of the question 29.2%

As far as I am concerned, a national exam is only to be considered under strict conditions 26.1%

I am not an advocate of a national exam, but I’m not against it either 16.9%

I can see the advantages of a national exam 13.8%

I truly believe in a national exam 13.8%

Table 2: CS teachers’ survey results on the question of a national exam

When asked about their reasons, the great majority of those opposing answered
that they feared losing the freedom to design the content of the subject they taught,
followed by the argument that CS was not a prerequisite for any subsequent study at
the higher-education level. The advocates of a national exam posited that it might
help strengthen the position of this school subject in the curriculum alongside all
the other school subjects. They also felt that it would lessen the differences in the
levels of accomplishment found in students. As a result, higher education would
have a better picture of what to expect from first-year students who had taken
CS during secondary education. The advocates assumed that only about sixty
percent of the subject matter needed to be examined by means of a national exam,
because only a limited number of curriculum terms were suitable for practical
examination. Furthermore, aspects of the curriculum, such as cooperation, task-

565438 N Grgurina.indd 46565438 N Grgurina.indd 46 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

47

2

sharing and working on projects, were difficult to examine in a national exam.
Therefore, a national exam could, just as in the case of many other school subjects,
contain about 60% of the curriculum (Schmidt, 2007).

CS teachers were obviously not in favor of a national exam, but they were not
the only party involved in this discussion. Universities did advocate one. National
politics, with its tendency to want to exercise a controlling influence on the output
quality of secondary education, saw a national exam as a suitable instrument to
do just that.

Still another discussion surrounding CS was the question of whether to
make CS compulsory. A slight majority of CS teachers thought that CS should
be compulsory in the lower grades of secondary education so that students
would have a better picture of this subject when they choose their profile and
the curriculum to follow from the tenth grade on. CS in the higher grades would
then be able to consist of several modules, since the students would already have
a foundation to build on. In addition, this would create a continuous trajectory
from elementary school all the way through to the higher grades of secondary
education. About one quarter of the teachers, however, were opposed to this idea.
Other scenarios, such as a common core course for all students, with separate
modules for each profile, or even a distinct CS course for each of the profiles, can
count on roughly equal numbers of advocates and opponents, or just simply a
majority of opponents.

As of the fall of 2007, education in the higher grades of secondary education
in the Netherlands has once again been subjected to certain modifications.
The leitmotif was that schools should be granted more autonomy and choice
in the way they organize education, and so make the whole of education more
manageable for schools through, among other things, streamlining the amount
of time each course is allocated. Again, these modifications were favorable for CS
course in general and for individual schools in particular. To begin with, the hours
allocated to the whole of the CS course increased to 320 for senior secondary
education and 440 for pre-university education. Furthermore, the curricula for all
the subjects have been simplified so as to decrease the number of terms, and the
terms themselves are no longer described in such great detail. For CS this means
that, following recommendations based on classroom experience (Hartsuijker
& Westland, 2004), no new terms have been added. The result was that the new
curriculum consisted of the eighteen terms listed in section 2.2.1.4.

565438 N Grgurina.indd 47565438 N Grgurina.indd 47 14-09-21 17:0414-09-21 17:04

Chapter 2

48

There was more good news for CS. Not only were schools being given
total freedom in designing their assessment procedures, they were also being
encouraged to teach topics that extend, deepen, and go beyond the curriculum
terms (Tweede Fase Adviespunt, 2006).

And last but not least, there is news from the research side. The Technical
University of Eindhoven (TUE) and the Open University of the Netherlands have
begun a research project to analyze and summarize the relevant research literature
for pedagogical content knowledge (PCK) for CS teachers and to link this PCK
to practice in the Dutch classroom. The aim is to create an inventory of research-
based best-practice characteristics.

In spite of all this good news for the CS course in general, the prospects for a
bright future were hampered by various problems.

The publishers of two of the three textbooks (Bergervoet et al., 2001; Meijer
et al., 2001) have decided to cease publication of their textbooks. The authors of
these textbooks took steps to continue development of the teaching materials and
to make them available online. There were university-based projects aimed at
developing teaching materials as well. However, together these initiatives did not
provide enough teaching material to meet the needs of the increased number of
study hours, leaving the teachers to their own devices once again.

There were many non-licensed teachers teaching CS –—an estimated two
out of five — the same as was reported in Israel back in the 1990’s (Gal-Ezer,
1995), and this situation did not look like it was going to be changing any time
soon (Schmidt, 2007). Despite the fact that since the fall of 2006 there were five
universities in the Netherlands — Utrecht University, University of Groningen,
University of Twente, Delft University of Technology and Eindhoven University
of Technology— where one could become a licensed secondary education CS
teacher, the numbers of students did not nearly match the demand from schools.
The reasons for this were numerous and complex. In order to become a licensed
CS teacher, as a rule one needs to have a Bachelor’s degree in CS, and then follow
a Master’s in Education and Communication. Almost none of the CS Bachelor’s
students took this route because a career in education was often perceived as
being of low social status, coupled with low pay and presenting almost no career
prospects, while the booming economy had so much more to offer. On top of all
that, a typical school did not have enough weekly CS lessons scheduled to offer
full-time employment to a CS teacher. On the other hand, a lot of the people who
did want to become licensed CS teachers had an IT background and/or were

565438 N Grgurina.indd 48565438 N Grgurina.indd 48 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

49

2

licensed to teach other subjects, but did not qualify for the Master of Education
and Communication due to the lack of a formal CS Bachelor’s degree. Needless to
say, this paradoxical situation did no good for CS education as a whole.

Another problem, probably the toughest of them all, and experienced
internationally as well (Downes, 2007), is the perception of CS held by the whole
of the population, with education policy makers regrettably being no exception.
Two examples illustrate this unfortunate situation:

The Ministry of Education was looking ahead and considering the future of
educational innovations and reforms, and to this end it set up an advisory board
and asked it to formulate a vision for future educational developments. This
board consisted of 33 members, mostly university professors, several secondary
education teachers, along with a few policymakers and students. None of them
had any CS background, which, in our opinion, is regrettable, because the advice
the board presented to the Ministry paid scarcely any attention to CS education,
barely mentioning it at all. The 232-page document mentioned mathematics 263
times, and CS 10 times (Society, 2005).

Another example was even more serious in our opinion. One of the new
courses introduced as part of the educational modifications in 2007 is NLT
(Nature, Life and Technology). It is meant to be a cross-subject science course
offered to those students choosing one of the Nature profiles (see section 2.1).
Even though the proposed NLT curriculum12 contained terms pertaining to IT
and bioinformatics, CS teachers were not licensed to teach it, while the teachers of
mathematics, physics, chemistry, biology and geography were.

2.2.4	 Concluding Remarks about the First Decade of Computer Science
During the first decade of teaching CS in Dutch secondary education, the

objectives outlined in the 1990s do seem to have been achieved. What CS
education was going to look like in its second decade depended on the outcome of
the discussions about the introduction of a national exam and whether to make it
a compulsory subject, as well as on the repercussions from the fact that many CS
teachers were not licensed and/or adequately trained. Furthermore, it was not yet
clear whether the government intended to reform education in the upper grades
of secondary education again, and if so, what consequences this will have for CS
education. And, last but not least, we believe that clearing up the misconceptions
surrounding CS and bringing proper attention to bear on its significance would
contribute to a bright(er) future for CS education.

12  For a description of the NLT curriculum, see http://www.betavak-nlt.nl.

565438 N Grgurina.indd 49565438 N Grgurina.indd 49 14-09-21 17:0414-09-21 17:04

Chapter 2

50

2.3	 The Second Decade of Computer Science in Dutch
Secondary Education

In this second part of the chapter, we report on the second decade of the CS
course in Dutch secondary education: it did not become compulsory and no
national exam was introduced. However, there was a CS curriculum reform, new
technologies have changed our lives in ways unforeseen ten years earlier and
these developments have led to a whole new set of discussions and challenges
surrounding CS.

Here we focus on the events that led to the curriculum reform, the curriculum
itself, the current situation of the CS course, and on other developments related
to CS education such as an advised introduction of a foundational module in
lower secondary education (KNAW, 2012) focusing on digital literacy. In the
Netherlands, digital literacy is considered to consist of four skills: basic ICT-skills,
media literacy, information literacy and computational thinking (Thijs et al.,
2014b), as described in section 1.2.

2.3.1	 Situation in Practice
In this section, we describe the present situation of the CS course in secondary

education in the Netherlands. Beginning with the most recent figures from 2017,
we present the results of the 2014 research project charting the actual situation in
schools, describe the events leading to the new 2019 curriculum, and finally, we
discuss the newest developments.

2.3.1.1	 Schools, Students and Teachers
Looking at the numbers of schools offering the CS course and numbers

of students following it, we see that during the period 2002-2006, out of about
474 independent schools, the percentage of schools that do offer CS was fairly
constant at around sixty percent with about ten percent of students following it
(Schmidt, 2007), cited in (Grgurina & Tolboom, 2008). In the period 2011-2017
out of approximately 500 schools, the percentage of schools offering CS dropped
from 55% to 47%, while the proportion of students following it remained fairly
constant at around 11% for HAVO and around 12% for the VWO type of school
(DUO, 2018).

In 2013, the government commissioned an inquiry and a report by the
Netherlands Institute for Curriculum Development (in Dutch: Stichting
leerplanontwikkeling, SLO) to explore the teachers’ ideas about the necessity to

565438 N Grgurina.indd 50565438 N Grgurina.indd 50 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

51

2

change the CS curriculum. In this section we present the data that were collected
concerning the teachers and their ideas about desired curriculum changes. and
in the section on the curriculum (section 2.3.2), we report extensively about the
results of this inquiry (Tolboom et al., 2014). Regarding the teachers themselves,
89% are male and 11% are female. Almost two out of three are the sole CS teachers
in their schools, with 31% of schools having two teachers and 4% having three
teachers. The majority — 55% — teaches another subject as well, both in science
(mostly mathematics) and in humanities and other subjects (e.g. geography,
history, economy, arts and languages). When teaching CS, almost two-thirds of
them cooperate with the teachers of other subjects, mostly physics, mathematics
and business, but also from other sciences, humanities and, notably, arts. Most of
the teachers — 62% — have been teaching CS for more than six years. Concerning
education they attended to qualify them to teach CS, 52% of the teachers said they
attended the CODI in-service program (see the first part of this chapter), 18%
followed a university educational master, and 36% did something else. Since these
numbers add up to more than 100%, we suspect that a number of teachers took
several educational routes. Most teachers actively engage in staying up-to-date
by following in-service training courses (67%), participating in teacher networks
(65%), reading professional literature (81%) and engaging in other activities
(39%). Still, most of them — 62% — find the in-service training courses offered to
be insufficient and see that as a problem threatening the quality of CS as a school
subject (Tolboom et al., 2014).

When it comes to teaching materials they use, we see that the online books
offered by the three publishers are often combined with each other and with other
teaching material, either found elsewhere or written by the teachers themselves
(Tolboom et al., 2014). Competitions have made their way into the classroom
too: The CS Olympiad13 including CodeCup14 and the international Bebras
competition (Dagienė & Stupuriene, 2016a).

When asked about their opinion on the CS curriculum, 7% of the teachers said
they were not familiar with it. One out of four teachers did not find it useful, 38%
would like it to contain less or other learning objectives, and 36% were satisfied
with it. When asked what learning objectives to strike from the curriculum,
almost half of the teachers — 45% — said none but added that they would like
the curriculum to offer more guidance. Other teachers, those wishing to strike
some learning objectives, most often mentioned those related to business aspects
13  http://www.informaticaolympiade.nl
14  http://www.codecup.nl/intro.php

565438 N Grgurina.indd 51565438 N Grgurina.indd 51 14-09-21 17:0414-09-21 17:04

Chapter 2

52

of CS (organizations and information flow) and information analysis. When asked
what they were missing in the curriculum, they most often mentioned (more)
programming, social and professional aspect of CS, security aspects, and networks
and communication (Tolboom et al., 2014).

2.3.1.2	 Teacher Training
Eight years after the introduction of the CS course in secondary education,

regular pre-service teacher training was established first at the University of
Groningen in 2006, and then another four universities followed. As pre-service
university teacher training for other subjects, this is a two-year educational master.
Specifically, for CS, only students with a university bachelor degree for CS (or
an equivalent) are admitted. During this master, the students both deepen their
subject matter knowledge and learn about teaching through extensive internships
at school and accompanying theoretical underpinnings concerning CS didactics,
pedagogy and educational science (Barendsen & Tolboom, 2016). For those who
already possess a master’s degree in CS, a one-year program is available. The
number of students obtaining this degree and thus becoming qualified CS teachers
in the years 2008-2013 was nation-wide six on average; in 2014 and 2015 there
were four, and in 2016 there were three. These numbers do not come anywhere
near the perceived need: the expected unfulfilled vacancies are estimated to be 36
in 2018, 52 in 2020 and rising to 86 in 2025 — implying that roughly a third of
schools offering CS might not be able to find qualified teachers (Adriaens et al.,
2016).

While the number of regular university students interested in becoming
teachers is tiny, every year in the meetings of CS teachers’ educators from the five
universities involved, we hear about dozens of professionals with a background
in IT industry who show interest in becoming CS teachers. However, due to the
strict requirements, only a few get admitted to the teacher training straight away.

To help people with university degrees in technology or science to meet the
teacher training admission requirements, in 2015 the beta4al15 project was started
for chemistry (chem4all), and in 2016 physics (natk4all) and CS projects were
added: inf4all.16 Beta4all project is a result of a cooperation of universities offering
teacher training (i.e., educational master) where a number of courses are offered
to interested candidates as well as to interested teachers, in the form of specifically
tailored courses of 6 ECTS each. For CS, these courses were Foundations,
15  http://www.beta4all.nl
16  http://www.beta4all.nl/prog_inf4all.htm

565438 N Grgurina.indd 52565438 N Grgurina.indd 52 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

53

2

Algorithms, Advanced Object-Oriented Programming, Networks, Databases and
Information Retrieval; Media, Games and User experience; Artificial Intelligence,
and finally, Internet of Things. The courses are taught biweekly during one
semester in the form of three-hour lectures on Fridays in Utrecht, in the center
of the Netherlands, thus allowing people from all over the country to participate.

The admission procedure is then as follows: a candidate interested in
becoming an CS teacher approaches the university of their choice where their
educational background and relevant professional experience are assessed. In case
the candidate is not admissible yet, a tailored plan is put together consisting of
appropriate inf4all courses (and possibly other courses taught at the university
itself) to be taken.

2.3.2	 Curriculum Reform and Curriculum
Here we describe the events leading to the CS curriculum reform and the new

curriculum itself.

2.3.2.1	 The Royal Netherlands Academy of Arts and Sciences Report (KNAW
report)

Ever since the late 2000’s, in the Netherlands, just like in the international
field of experts (Gander et al., 2013), several stakeholders have been expressing
concerns about outdated curriculum and position of CS as a school subject
in general and advocated a curriculum revision. However, the government
refused to draw consequences from periodic evaluations (Schmidt, 2007) and
the Ministry of Education, Culture and Science maintained that there was no
apparent need for a curriculum reform since there were no complaints “from the
field”. In 2012, triggered by serious concerns expressed by a number of influential
CS education specialists, The Royal Netherlands Academy of Arts and Sciences
(in Dutch: Koninklijke Nederlandse Akademie van Wetenschappen, KNAW)
formed a committee to investigate the situation of CS in secondary education.
This committee wrote a critical report containing five recommendations aimed at
improving CS education in general, reaching far beyond the scope of the current
CS course. The report recommends to “Completely overhaul the optional subject
CS in the upper years of HAVO and VWO” and suggests to make it modular
and flexible, relevant and attractive to all students. Furthermore, it recommends
to “Introduce a new compulsory subject Information & communication in the
lower years of HAVO and VWO” and goes on to make recommendations about

565438 N Grgurina.indd 53565438 N Grgurina.indd 53 14-09-21 17:0414-09-21 17:04

Chapter 2

54

encouraging “interaction between these subjects and other school subjects”,
adequately training teachers, instructing higher education to collaborate in this
regard and, finally; to “promote instruction in digital literacy” to help achieve
the goals set in the nation’s ICT policy concerning innovation and economic
development (KNAW, 2012).

Even though this report was received with great enthusiasm by the CS field,
the government was still reluctant to initiate a curriculum reform

2.3.2.2	 The Netherlands Institute for Curriculum Development Report
In 2013, under pressure from the stakeholders, the government commissioned

an inquiry and a report by the Netherlands Institute for Curriculum Development
(in Dutch: Stichting Leerplanontwikkeling, SLO) in order to assess (1) what is
needed to realize a modern and attractive CS education in upper grades of senior
secondary education and pre-university education and (2) in case it turns out that
a change of curriculum is required, what should that change entail. The Institute
appointed a team of three researchers for this job. First, they conducted a literature
study about the importance of CS education, both nationally and internationally.
Then they invited CS teachers to fill in an online questionnaire about their current
CS teaching practice and about their wishes and suggestions concerning possible
changes in the CS curriculum. Subsequently, they conducted in-depth interviews
with a small number of these teachers. Finally, they consulted a large number of
CS experts, not all of them involved in secondary CS education.

This investigation resulted in early 2014 in a report containing three
recommendations and a description of four factors playing a decisive role in
subsistence of CS in secondary education. First of all, the report recommends to
design a new CS curriculum aimed at a diverse student population, varied enough
to be relevant and attractive to all students. The second recommendation instructs
to design a curriculum containing a limited number of compulsory learning
objectives and a number of objectives from which a student can choose. Finally, it
recommends to keep the assessment as it is (i.e. at the school level only, rather that
introducing a national final exam which most other subject have). Furthermore,
the report lists four critical factors which need to be addressed in order to make
and keep CS a viable school subject:

1.	 quality of the assessment (with no national final exams, there is no quality
control across different schools);

2.	 development of modular teaching material in order to provide for rapid
advances of the discipline;

565438 N Grgurina.indd 54565438 N Grgurina.indd 54 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

55

2

3.	 in-service training of the teachers;
4.	 training of adequate numbers of new teachers (Tolboom et al., 2014).
Within weeks of the publication of this report, the government appointed a

committee of nine members — teachers, CS specialists, experts from higher
education, and curriculum and assessment specialists —to redesign the CS
curricula for the HAVO and VWO types of schools, that was formulated as follows:

•	 The committee’s task is to design a new curriculum for the elective
course CS in the upper grades of HAVO and VWO types of school.

•	 The purpose of the new curricula is to enhance the quality of this
course by updating and modernizing the its learning objectives.

•	 The curricula need to be formulated globally: for the teachers it
needs to be clear what the curricular goals are, while at the same
time the schools keep sufficient room for their own interpretation.

•	 There is sufficient distinction between the HAVO and VWO
curricula without them being two separate curricula.

•	 Each curriculum contains a number of compulsory core components
and elective components. The elective components are related to
the educational tracks the students follow (either one of the two
humanities tracks or one of the two science tracks), yet they are
within reach of all the students choosing CS, regardless of the track
they actually follow.

•	 The curriculum design is to follow the context-concept approach.
Furthermore, when formulating the new curriculum, the committee needs to

take into account the following requirements: The assessment should remain as it
is, consisting of a school exam only and no national exam. This curriculum is to
be aligned with the curricula in lower secondary and primary education, which
are to be developed in the near future. The study load needs to remain the same.
The curriculum should not be overloaded and it must be possible to implement it
within the available time. The curriculum does not favor any particular didactical
approach; it describes the “what” and not the “how”. The new curriculum needs
to be able to count on the wide support of the teacher community. The textbook
publishers need to be kept informed on the progress in order to enable them
to prepare the teaching materials in time (Opdracht vernieuwingscommissie
informatica 2014-2015, 2014).

565438 N Grgurina.indd 55565438 N Grgurina.indd 55 14-09-21 17:0414-09-21 17:04

Chapter 2

56

2.3.2.3	 Lorentz Workshop
At the same time when The Netherlands Institute for Curriculum Development

inquiry took place in 2013, but independently of it, a number of leading Dutch
scholars proposed to organize a Lorentz Workshop.17 By the time the workshop
took place in September 2014, the committee for the reform of the CS curriculum
had already been appointed.

The aim and goal of the Lorentz workshop were described as follows: “secondary
education on CS and digital literacy urgently needs thorough improvement.
The workshop intends to develop a contemporary design for the discipline,
following and learning from similar efforts in other countries.” The attendees were
international experts from Belgium, France, Germany, Israel, Lithuania, UK and
USA and Dutch computer scientists, teachers, education specialists, students and
policy makers. During the five-day workshop, the international experts presented
their country reports and various topics were discussed in focus groups:

•	 Definition: what comprises an ideal curriculum for a “digital
literacy” course in the lower grades of secondary education and an
“CS” course in the upper grades;

•	 Sustainability: how to make “the curriculum sustainable in a rapidly
developing field”;

•	 Concepts and contexts: context-based teaching approach similar to
the one adopted for other science subjects;

•	 Diversity: catering to the needs of students with different educational
backgrounds and interests;

•	 Integration with other subjects in secondary education;
•	 Teacher training (Center for Scientific Workshops in All Disciplines

- Computing in Secondary Education, 2014).
On the final day, the results of the workshop were presented and discussed in

a meeting with a representative of the Ministry of Economic affairs, a member
of parliament specialized in education, a representative of the Dutch CS teacher
association,18 representatives from higher professional education and universities,
a CEO from industry and the chairman of the KNAW committee who authored
the KNAW report (2012).

17  “The Lorentz Center is an international center that coordinates and hosts workshops in
the sciences, based on the philosophy that science thrives on interaction between creative
researchers.” http://www.lorentzcenter.nl/aim.php
18  http://ieni.org

565438 N Grgurina.indd 56565438 N Grgurina.indd 56 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

57

2

2.3.3	 The New Computer Science Curriculum

2.3.3.4	 Design Principles
The new curriculum is based on a number of design principles intended

to make it modern and robust, and to cater to the needs of all those involved
in its use. To ensure the relevance of the new curriculum in the long term, the
curriculum committee decided to follow the so-called concept-context approach
— a pedagogical principle that was already applied to several science subjects,
for example chemistry (Bennett & Holman, 2002). The fundamental concepts
— that were described concretely — were separated from the contexts described
generically. In order to deal with the diversity of students, stemming from their
varying interest in CS, the educational track they follow (science or humanities),
and the fact that division into HAVO and VWO type of school is not always
reflected in students’ achievements for CS, it was decided to divide the curriculum
into a core curriculum that is mandatory for all students taking the CS course
and a number of elective themes. Furthermore, as many see CS as a constructive
discipline where one engages in creation of artifacts, ‘design and development’ is
positioned as a central skill in the new curriculum. Finally, in order to balance
guidance and freedom experienced by the CS teachers, the committee drafted
comprehensive learning objectives: 30 of these are in the core curriculum and
the other 34 in the elective themes, thus allowing the schools to shape their CS
educations according to their preferences (Barendsen et al., 2016; Barendsen &
Tolboom, 2016).

2.3.3.5	 Learning Objectives
The learning objectives of the new curriculum are organized in six compulsory

domains forming the core curriculum and twelve elective themes from which
a HAVO student needs to choose two and a VWO student four. The domains
forming the core curriculum are: (A) Skills, (B) Foundations, (C) Information, (D)
Programming, (E) Architecture, and (F) Interaction. The elective themes are: (G)
Algorithms, computability and logic, (H) Databases, (I) Cognitive computing, (J)
Programming paradigms, (K) Computer architecture, (L) Networks, (M) Physical
computing, (N) Security, (O) Usability, (P) User Experience, (Q) Social and
individual impact of CS, and (R) Computational Science (Barendsen & Tolboom,
2016). The full text of the curriculum is listed in appendix B.

565438 N Grgurina.indd 57565438 N Grgurina.indd 57 14-09-21 17:0414-09-21 17:04

Chapter 2

58

2.3.4	 Teaching Materials for Elective Themes
In this section we describe the project in which teacher teams develop

teaching materials for the elective themes. We first provide the general description
of this project and then focus on one particular team — the one working on
Computational Science.

2.3.4.1	 Teacher Teams Developing Teaching Materials
The curriculum specifies only high-level learning objectives and does not

provide further details about them, nor about the instruction or assessment. In
line with the Dutch tradition, this is left to the educators and authors of teaching
materials, usually employed by publishing companies. In the Netherlands, there
are three publishers of teaching materials for the CS course. With 11 to 12 percent
of the students in HAVO and VWO schools electing to take this course (DUO,
2018), the market for the publishers is rather small. This situation, combined with
the fact that elective themes in the new curriculum will inevitably be chosen by
even smaller numbers of students, means that the publishers have no financial
incentive to develop teaching materials for the elective themes and are only
interested in developing teaching materials for the core domains. To alleviate
this problem, the Ministry of education provided financial means and asked the
Netherlands Institute for Curriculum Development (SLO) to coordinate a project
where teams of teachers would develop teaching materials for elective themes.
SLO developed a procedure describing the participants and stakeholders in
the project, the guidelines outlining the process they engage in, and finally, the
products to be delivered. In accordance with this procedure, for each of the twelve
elective themes a team should be formed, consisting of at least two CS teachers, an
expert and a teacher educator specialized in didactics of CS. First, the team writes
a global description of the module they work on, which specifies the intended
learning outcomes, target audience, planning and other relevant details. Then they
engage in the actual writing of the module which needs to satisfy the following
criteria:

•	 suitable for self-study because not all teachers are expected to
possess adequate expertise for that particular domain

•	 embed the intended learning outcomes in rich and relevant contexts
•	 incorporate at least one of the three basic skills in the curriculum,

namely: design and development, using CS as a perspective, and
finally, cooperation and interdisciplinarity

565438 N Grgurina.indd 58565438 N Grgurina.indd 58 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

59

2

•	 suitable for both the HAVO and the VWO students, yet provide for
their differences

•	 suitable to be published online
•	 accompanied by teachers’ instruction and a suitable form of

assessment (e.g. a test or a practical assignment).
When a module is finished, it should be tested in at least two schools. The

feedback from the teachers and their students who engage in testing of a module
should then be collected, and a new version of a module should be written.
The final version of the module should be presented to an external expert and
a certifying body for final approval. This certification serves as quality control
in multiple ways, not the least to partly compensate the lack of a national exam
and corresponding lack of quality control and lack of ways to compare students’
achievements across different schools.

2.3.4.2	 Development of Teaching Materials for Computational Science
This process is illustrated with the example of teaching materials being

developed for the elective theme R: Computational Science which is the focal
point of this thesis. As a teacher educator specialized in didactics of CS and a
researcher, I lead a team developing teaching materials and assessment for
Computational Science. The results of the research presented in this thesis — the
operationalization of the intended learning outcomes of Computational Science,
suggestions for suitable data sources to monitor students’ learning outcomes,
awareness of students’ challenges when engaging in modeling activities (all
described in section 3.5), teachers’ ideas and suggestions about instruction and
assessment as well as our insight into their PCK (described in section 4.3), together
with our assessment instrument (described in chapter 5) — supplemented with
the decision to employ the 4C-ID instructional design (Kirschner & Merriënboer,
2008), form the starting points for the team and thus insure that the teaching
materials, accompanying assessment instruments and teachers’ manuals will be
set up upon solid theoretical foundations. All aspects of the implementation in
schools will be monitored closely and will form the input for further research into
the teaching and learning of Computational Science.

2.3.5	 Research
During the last decade, CS education research (CSER) in the Netherlands

was given a new impulse with the appointment of the first full professor in CS

565438 N Grgurina.indd 59565438 N Grgurina.indd 59 14-09-21 17:0414-09-21 17:04

Chapter 2

60

education. He set up a nation-wide research group conducting research on
various aspects of teaching and learning of CS in primary, secondary and tertiary
education. The research topics in secondary education include programming,
design-based CS education, assessment, context-based teaching and learning of
fundamental concepts including algorithms, and finally, Computational Science
— the research project described in this thesis. In all of the research projects
mentioned here, specific attention is given to the teachers and their pedagogical
content knowledge (PCK).

We consider this as a special and a beneficial situation when aiming at research-
based CS curriculum development.

2.3.6	 Computer Science Curriculum Reform in Primary and Lower
Secondary Education

One of the recommendations of the 2013 report by The Royal Netherlands
Academy of Arts and Sciences (2012) was to introduce digital literacy into
the Dutch lower secondary education. The report led to the chain reaction
described earlier in this chapter, thus mainly focused at what already existed in
the curriculum: CS in upper secondary education. Nevertheless, both primary
and secondary schools started experimenting with integrating digital literacy in
their school-based curriculum. Very interesting initiatives emerged, deployed
by creative and innovative teachers at primary and secondary schools. While
experimenting, the question arose at schools, from teachers, students and parents:
is what we are doing now aligned with the formal national curriculum? The
answer to this question was: yes, but only because in this formal curriculum —
outside upper secondary education — the relevant learning objectives are global
and non-specific.

The somehow strange situation — where educators were asking for guidelines
that did not exist — was resolved in March 2018, when the curriculum.nu project
(mentioned in section 1.2) was started: design teams consisting of selected teachers
and school administrators started to rethink the whole of the curriculum. One of
the domains to be inspected is digital literacy. A national system for feedback was
implemented in order to facilitate revision of and wide support for the vision. This
project is planned to end in the fall of 2019 with an advice by the design team on
how to revise the Dutch primary and secondary curriculum with respect to digital
literacy. This may lead to the introduction of learning goals with respect to digital
literacy in primary and lower secondary education.

565438 N Grgurina.indd 60565438 N Grgurina.indd 60 14-09-21 17:0414-09-21 17:04

Twenty Years of Computer Science in Dutch Secondary Education

61

2

We see that CS, now clearly visible in the upper secondary education, has
gained that much momentum, that it could possibly contribute to reforms in the
Dutch educational system.

2.3.7	 Conclusion and Discussion
In this chapter, we described the present situation of the elective CS course in

upper secondary education in the senior general secondary education (HAVO)
and the pre-university education (VWO) in the Netherlands, the CS curriculum
reform together with the events leading to it and we sketched the developments
related to teaching CS in primary and lower secondary education. We see that on
one hand, significant progress has been made with five universities offering regular
teacher training (in the fall of 2019 joined by both universities in Amsterdam: the
University of Amsterdam and the VU Amsterdam), a nation-wide research group
performing research of international relevance and a grassroots movement with
parents, teachers, headmasters and other stakeholders demanding more, earlier
and broader CS education. On the other hand, the teacher population forms one
of the weak spots in the CS ecosystem: many teachers are underqualified, far too
few new CS teachers are being trained, and it is not clear who should teach CS or
digital literacy if it gets introduced into primary and lower secondary education.
Some stakeholders see the CS curriculum reform as a missed opportunity to make
CS a mandatory subject or for the introduction of a national exam. Finally, it is
not clear yet what will happen with the desire and all the initiatives employed to
introduce CS, in whatever form, into the primary and lower secondary education.

However, in 2015, when the contours of the new 2019 CS curriculum
became visible and it was clear that it was going to contain the elective theme
Computational Science, we decided to embark on this research project to explore
the pedagogical aspects of teaching Computational Science in the Computer
Science course in secondary education in the Netherlands, and the result is this
thesis.

565438 N Grgurina.indd 61565438 N Grgurina.indd 61 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 62565438 N Grgurina.indd 62 14-09-21 17:0414-09-21 17:04

Chapter 3

Defining and Observing Modeling
and Simulation in Computer

Science
In this chapter, we describe our first study focusing on the Computational Thinking
aspect modeling and simulation. We conducted a case study analyzing the projects
of 12th grade secondary education CS students in which they made models and
ran simulations of phenomena from other disciplines. We constructed an analytic
framework based on literature about modeling and analyzed students’ project
documentation, recordings of student groups at work and during presentations,
survey results and interviews with individual students. We examined how to
discern the elements of our framework in the students’ work. Moreover, we
determined which data sources are suitable for observing students’ learning.
Finally, we investigated what difficulties students encounter while working on
modeling and simulation projects. Our findings result in an operational definition
of the learning objective Computational Science19 contained in the 2019 Dutch
secondary CS curriculum, and provide input for future development of both
assessment instruments and instructional strategies.

This chapter is based on the paper Grgurina, N., Barendsen, E., Zwaneveld, B., van
Veen, K., & Suhre, C. (2016). Defining and observing modeling and simulation
in informatics. In International Conference on Informatics in Schools: Situation,
Evolution, and Perspectives (pp. 130-141). Springer, Cham.

19  In this thesis, we use terms modeling, modeling & simulation, simulation modeling and
computational science interchangeably, unless explicitly stated otherwise.

565438 N Grgurina.indd 63565438 N Grgurina.indd 63 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 64565438 N Grgurina.indd 64 14-09-21 17:0414-09-21 17:04

 Defining and Observing Modeling and Simulation in Computer Science

65

3

3.1	 Introduction

Following the increasing availability of computers in schools, several initiatives
have been employed to support students’ learning in various disciplines through
the use of computer models (Blikstein & Wilensky, 2009; Pfefferova, 2015; Taub et
al., 2014). Caspersen and Nowack (2013b) argue why they „believe understanding
and creating models are fundamental skills for all pupils as it can be characterized
as the skill that enable us to analyze and understand phenomena as well as
design and construct artifacts.” Wilensky argues, “Computational modeling has
the potential to give students means of expressing and testing explanations of
phenomena both in the natural and social worlds” (Wilensky, 2014). Granger
claims: „Modeling is the new literacy” (2015). This belief is also expressed in the
fact that as of 2019, modeling and simulation (together called Computational
Science), will be included in the new Dutch secondary education CS curriculum,
described by the following high level learning objectives: “Modeling: The candidate
is able to model aspects of a different scientific discipline in computational terms”
and “Simulation: The candidate is able to construct models and simulations, and
use these for the research of phenomena in that other science field.” Modeling
itself will be a part of the compulsory core curriculum, described as “Modeling:
The candidate is able to use context to analyze a relevant problem, limit this to a
manageable problem, translate this into a model, generate and interpret model
results, and test and assess the model. The candidate is able to use consistent
reasoning.” (Barendsen & Tolboom, 2016)

Modeling and simulation can be viewed as aspects of Computational Thinking
(CT) (Wing, 2006) as they involve decomposition of open-ended problems and
the construction and evaluation of models that simulate the nature of these
problems in order to be able to provide solutions to those problems.

Prior to this study, we refined the CSTA definition of CT (Grgurina, 2013),
explored teachers’ PCK (Grgurina et al., 2014a, 2014b); and made an initial
exploration of the computational modeling process (Grgurina et al., 2015).

3.1.1	 Aim of the Study
In this study, we focus on CT skills related to modeling and simulation and we

explore highly cognitively complex set of students’ activities related to modeling,
in particular as an aspect of CT rather than as an aspect of e.g. mathematics
(Maaß, 2006). Our primary goal is to establish an operational description of the

565438 N Grgurina.indd 65565438 N Grgurina.indd 65 14-09-21 17:0414-09-21 17:04

Chapter 3

66

learning objectives of Computational Science — Magnusson’s component M1 (i.e.
goals and objectives), and additionally to determine what data sources are suitable
to monitor students’ learning outcomes when engaging in modeling activities,
and finally to explore what specific challenges do the students experience when
engaging in modeling activities.

We address the following research questions:
1.	 How can the intended learning outcomes of Computational Science

(modeling and simulation) be described in operational terms?
2.	 What data sources are suitable to monitor students’ learning

outcomes when engaging in modeling activities?
3.	 What specific challenges do the students experience when engaging

in modeling activities?
The first question addresses Magnusson’s component M1 — goals and

objectives. The second question contributes to Magnusson’s component M4 —
methods of assessment — as we plan to use our findings as input for a later study
into a CT assessment instrument (see chapter 5). The third question addresses
Magnusson’s component M2 — students’ understanding as our findings will help
to design teaching materials for modeling and simulation and thus indirectly
contribute to Magnusson’s component M3 — instructional strategies.

3.1.2	 Related work
Previous work on characterizing modeling is done mainly in the areas of

mathematics and natural sciences; see the following section. Research on making
students’ learning process and outcomes visible has focused mostly on CT
aspects such as algorithmic thinking or programming. The employed assessment
instruments range from tests with closed questions (Gouws et al., 2013b), tests
with open questions (Meerbaum-Salant et al., 2013; Werner et al., 2012), surveys
(Werner et al., 2012), recordings or observations of students at work (Meerbaum-
Salant et al., 2013), examination of programming projects (Brennan & Resnick,
2012; Meerbaum-Salant et al., 2013; Werner et al., 2012) to interviews with
students (Brennan & Resnick, 2012; Grover, 2011) and teachers (Meerbaum-
Salant et al., 2013). In particular, Brennan and Resnick (2012) “are interested in
the ways that design-based learning activities […] support the development of
computational thinking in young people” and they explore three approaches to
assessment of the development of CT of the children engaged in such activities.
They discuss strengths and limitations of each of these approaches extensively

565438 N Grgurina.indd 66565438 N Grgurina.indd 66 14-09-21 17:0414-09-21 17:04

 Defining and Observing Modeling and Simulation in Computer Science

67

3

and subsequently advocate a comprehensive approach to assessment that utilizes
several data sources — an approach that we explore in this study too.

3.1.3	 Context of the study
Our exploratory case study was carried out during a project-based lesson series

within the CS course in the 12th grade of secondary education (in Dutch: VWO 6)
where students studied modeling and simulations. They used NetLogo to program
models of phenomena from other disciplines and to explore them through running
simulations. During a six-weeks period they studied Modeling and Simulations
with NetLogo. The first three weeks were dedicated to studying the instructional
materials from a regular textbook (Heuvelink, A. et al., 2008). During the rest of
the period, the fourteen students comprising this class worked in seven groups on
a practical assignment where they investigated a phenomenon of their choice by
making a model in NetLogo and exploring it through running simulations. When
necessary, students were assisted in formulating their hypotheses or research
questions. The entire process was strictly planned and contained milestones when
the students turned in the required project documentation. At the end of the
period, each group presented its model to the rest of the class and the students
were encouraged to discuss their models, results, design choices, programming
issues and other relevant questions. After the presentations, they turned in the
final part of the project documentation where they described the feedback they
got and their reaction to it. A few days later, twelve students (six groups) who
finished their projects, turned in their final reports and NetLogo programs.

3.2	 Modeling and Simulation

There is extensive literature on modeling in science and especially in
mathematics. We take the latter as starting point and discuss modeling in
mathematics first, and then simulation modeling (in section 3.2.2) as a special
case of modeling.

3.2.1	 Modeling
Van Overveld et al. (2015) distinguish two purposes of modeling: scientific

research and technological design, and lists a number of goals that can be obtained
through modeling: explanation, prediction, compression, abstraction, unification,

565438 N Grgurina.indd 67565438 N Grgurina.indd 67 14-09-21 17:0414-09-21 17:04

Chapter 3

68

analysis, verification, communication, exploration, decision, optimization,
specification, steering and control, and finally, training. The mathematical
modeling process can be viewed as a problem-solving activity (cf. (Polya, 2008)).
We adopt the operationalization by Van Overveld (2015):

1.	 Definition stage: the problem is stated and researched in the context
domain (this is also considered a core aspect of CT (Wing, 2006)).
The purpose of the model is formulated and a study is planned.

2.	 Conceptualization stage: Data are collected and a conceptual model
is constructed and validated. In the process of abstraction, it is
decided what details to highlight and what details to ignore.

3.	 Formalization stage: the conceptual model is transformed into a
formal model.

4.	 Execution stage: the model is being used for its purpose: this means
solving the (mathematical) problem.

5.	 Conclusion stage: the results of the execution stage are analyzed and
translated back into the problem domain, involving the presentation
and interpretation of the results.

In addition, Perrenet and Zwaneveld (2012) explicitly distinguish between the
non-mathematical world containing the definition stage, conceptualization stage
and conclusion stage on the one hand, and the mathematical world containing
the formalization and execution stages on the other hand. Following each of these
stages, reflection needs to take place: to check if any revisions are necessary by
repeating that stage, to validate and verify the model, to assess the plausibility
of the result and answer the initial purpose, to communicate the results and to
learn from what one has done. After the completion of the modeling process, a
reflection takes place and the whole process is possibly repeated. Hence, modeling
can be seen as a cyclic process (Overveld et al., 2015; Perrenet & Zwaneveld, 2012).

3.2.2	 Simulation Modeling
Simulation modeling can be seen as a special case of modeling in which the

model consists of a computer program and therefore is executable. In comparison
to the mathematical modeling process, the simulation modeling process
shows a computational — rather than mathematical — interpretation of the
conceptualization, formalization and execution stages:

1.	 Conceptualization stage: Data are collected and a conceptual model
is constructed and validated. In the process of abstraction, it is

565438 N Grgurina.indd 68565438 N Grgurina.indd 68 14-09-21 17:0414-09-21 17:04

 Defining and Observing Modeling and Simulation in Computer Science

69

3

decided what details to highlight and what details to ignore. Problem
is formulated in a way that enables us to use a computer and other
tools to help solve them (CSTA Computational Thinking Task Force,
2011).

2.	 Formalization stage: a computer program is constructed, i.e.
requirements and specifications are stated and the system is
implemented and tested (Comer et al., 1989). This includes making
pilot runs, verifying the program and checking validity of the
simulation model. If necessary the program is adjusted (Law, 2015).
Thus, the formalization stage is a cyclic process in itself.

3.	 Execution stage: the model is being used for its purpose: designing
and running experiments (Law, 2015).

Simulation modeling encompasses three methods: (1) System dynamics,
associated with high level of abstraction where the individual objects are
aggregated. The models can be described in terms of differential equations that are
often non-trivial to solve. (2) Discrete event modeling, where the system modeled
is considered to be a process, “i.e. a sequence of operations being performed across
entities”. The level of abstraction is lower. (3) Agent based modeling (ABM), which
is made possible with recent growth of availability of CPU power and memory,
does not assume any particular abstraction level. Agents have their properties
and behavior and one can start building a model by identifying agents and
describing their behavior even without knowing how a system behaves as a whole.
ABM makes it possible to model systems that are difficult to capture with older
modeling approaches (Borshchev, 2013) and it does not require familiarity with
differential equations or mathematics beyond reach of secondary students. In our
view, the characteristics of the ABM make it a suitable modeling method for our
students who often lack deep understanding of the phenomena they model and
make models specifically to deepen their understanding. To conclude, we consider
conceptual representation which could be realized through the employment of
ABM methods and software, in which “you give computational rules to individual
agents and then observe, explore analyze the resultant aggregate patterns”
(Wilensky, 2014) suitable for use in a secondary CS class “because the individual-
level behavior of agents is relatively simple, [and] ABMs feature relatively simple
computer programs that control the behaviors of their computational agents”
(Wilensky, 2014).

565438 N Grgurina.indd 69565438 N Grgurina.indd 69 14-09-21 17:0414-09-21 17:04

Chapter 3

70

In simulation modeling, repeating the conceptualization stage or going
back and forth between the conceptualization stage and formalization stage are
considered to be an integral part of the modeling process (Law, 2015). In the
specific case of ABM, the boundaries between all modeling stages are blurred
and it is considered a good modeling practice to develop a model in minute
increments, cycling continuously through all modeling stages (Wilensky & Rand,
2015).

3.3	 Method

The data were collected by the first author during the project-based lesson
series. In view of existing studies involving algorithmic thinking and programming
(see the introduction), we decided to use a combination of several data sources as
a promising approach for our exploration of the students’ activities and learning
difficulties in their projects.

During their work in the class and the final presentations, screen and voice
recordings were made of students’ groups. (No recordings were made of students
working elsewhere, such as at home). Except for a few corrupted recordings, they
were all transcribed verbatim. The project documentation of each group was
collected. After receiving their grades, twelve students filled in an online survey
individually where they were asked about how they approached the work on this
project, difficulties they encountered, what they have learned, what they liked or
disliked, and what suggestions they had for the improvement of the assignment.
Students were also invited to be interviewed. Five semi-structured interviews were
conducted with individual students. The students were requested to describe their
projects and they were asked if they could design a new NetLogo model on the fly
(i.e., draw a sketch of the interface on paper and describe the model in terms of
agents and interactions). Finally, they were asked what they learned during their
work on the projects. The interviews were recorded and transcribed verbatim.

Using atlas.ti CAQDAS software we performed a qualitative analysis of the
recordings, project documentation, survey results, and interviews, with coding
categories based on the elements of our operational definition: purpose, research,
abstraction, formulation, requirements, specification, implementation, verification,
validation, experiment, analysis, and finally, reflection. After coding, we ascertained
the visibility of the modeling elements in each of the data sources (see table 3)
and examined the students’ activities more in-depth, looking specifically for

565438 N Grgurina.indd 70565438 N Grgurina.indd 70 14-09-21 17:0414-09-21 17:04

 Defining and Observing Modeling and Simulation in Computer Science

71

3

indications of students’ difficulties connected to each of the elements (see the
following section).

3.4	 Results

There were seven project teams. Five teams consisted of two students; one of
three students, and one student opted to work by himself. Six of seven projects
were successful; Team 5 did not finish theirs and did not turn in all the required
project documentation.

Team 1 modeled chemical reactions and explored the resulting pH factor.
Team 2 modeled lottery and explored how long people are willing to keep playing,
depending on their winnings. Team 3 modeled the propagation of the Ebola virus
and explored the possible effect of a vaccine on its propagation and the survival
rate of those infected. Team 4 explored the influence of various factors to the
length of time people stay at a party. Team 5 — who did not finish their project
— set out to explore the influence of various factors on ice cream sales. Team 6
explored the growth and evolution of a colony of bacteria. Finally, team 7 explored
whether mousetraps were more effective than cats in catching mice.

3.4.3	 Results
We first present an overview of visible occurrences of the elements of our

modeling operationalization, organized by data source and student (team): see
table 3. Some elements were combined — see the descriptions below.

We now summarize the findings of our more in-depth analysis, organized
by the elements of our operational description. We state our findings in general
terms and illustrate them with characteristic text segments taken from the data.

Purpose. In the project documentation all teams clearly stated the purpose of
their models. However, in the recordings we saw students tinkering with NetLogo
and looking at existing models before deciding what phenomenon they wanted
to model and explore. In answering the survey question whether it was difficult
to decide what phenomenon to model and explore, four students answered
affirmative and told us they had difficulties figuring out what could or could not
be modeled. For S4a, who explored the behavior of partygoers together with S4b,
the most important lesson learned during his work on this project was that it was
important to have a clear idea of the purpose of the model before engaging in the
modeling process — a thought shared by three other students in the survey.

565438 N Grgurina.indd 71565438 N Grgurina.indd 71 14-09-21 17:0414-09-21 17:04

Chapter 3

72

 P
ur

po
se

 R
es

ea
rc

h

 A
bs

tr
ac

tio
n

 F
or

m
ul

at
in

g

 R
eq

ui
re

m
en

ts

 a
nd

 sp
ec

ifi
ca

tio
n

 Im
pl

em
en

ta
tio

n

 V
er

ifi
ca

tio
n

an
d

 V

al
id

at
io

n

 E
xp

er
im

en
t

 A
na

ly
si

s

 R
efl

ec
tio

n

Pr
oj

ec
t

do
cu

m
en

ta
tio

n

Team 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 2 ✓ ✓ ✓ ✓ ✓ ✓
Team 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	✓ ✓
Team 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 5 ✓ ✓
Team 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Su
rv

ey
s

S1a ✓ ✓ ✓ ✓ ✓
S1b ✓ ✓
S1c ✓ ✓ ✓ ✓ ✓
S2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S3a ✓ ✓ ✓ ✓ ✓ ✓ ✓
S3b ✓ ✓ ✓ ✓ ✓ ✓ ✓
S4a ✓ ✓ ✓
S4b ✓ ✓ ✓ ✓ ✓ ✓ ✓
S5a ✓ ✓ ✓ ✓ ✓
S6a ✓
S7a ✓ ✓ ✓ ✓ ✓ ✓
S7b ✓ ✓ ✓

In
te

rv
ie

w
s S1a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S3a ✓ ✓ ✓ ✓ ✓ ✓ ✓
S3b ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S7a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Re
co

rd
in

gs

Team 1 ✓ ✓ ✓ ✓ ✓ ✓
Team 2 ✓ ✓ ✓ ✓
Team 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 6 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Team 7 ✓ ✓ ✓ ✓ ✓

 Presentations ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Frequencies of simulation modeling elements per data source per team or student. For
example, Team 3 consists of students S3a and S3b.

Research. In the recordings we saw three students from two groups searching
the Internet to learn about the phenomena they modeled. Team 3 reported in the
documentation of their project about the possibilities to control the spread of
the Ebola virus: “Virus: does not spread through the air but through contact with
an Ebola patient (sex, blood), slaughtering and eating of a sick animal, non-sterile

565438 N Grgurina.indd 72565438 N Grgurina.indd 72 14-09-21 17:0414-09-21 17:04

 Defining and Observing Modeling and Simulation in Computer Science

73

3

needles. […] incubation about 21 days, 9 out of 10 people die”, without reporting the
source. In the survey, S3b mentioned consulting her sister who studied medicine.
Team 6, exploring the effect of ambient warmth and the presence of food on life
of bacteria, did not report any research in their project documentation. Others
did not visibly engage in research but developed their models based on what they
already knew about the phenomena they modeled (e.g. Team 1 who explored
chemical reactions — in the survey S1a wrote they learned that in chemistry
lessons) or their presumptions (e.g. Team 7, who explored whether mousetraps
were more effective than cats in catching mice, or Team 5, who explored the
influence of weather on ice cream sales).

Abstraction. All students engaged in abstracting: choosing a level of abstraction,
based on the decision they made with respect to relevancy of particular features
and deciding what to include into their models and what to leave out.

In the recording we observed several students struggling to determine such a
level of abstraction. For example, Team 1 — who initially neglected the teacher’s
instruction to study the textbook first — had difficulties understanding the idea
behind ABM and got ‘stuck’ in the notion of an aggregate state, e.g. thinking
about pH as a contributing factor in a chemical reaction rather than the result
of it. During the interview, S7a told us that he wanted his mice to reproduce but
did not include this feature because he did not know how to implement males
and females. It did not occur to him that gender of the mice was not relevant in
his model. Finally, as required, all students who finished the project turned in
wish lists with features or aspects that were not implemented yet but should be
considered for the next version of the model, thus demonstrating they were able to
decide what to include or leave out.

Formulation. The assignment required a description of the behavior of the
model in a natural language, and all the students who finished their projects
did that. However, several students needed help to formulate their problems
appropriately: e.g., only after choosing the right level of abstraction did Team 1
manage to formulate their problem appropriately and, in the recordings, we heard
S1a say, “Two of these things have to collide with each other and then something
needs to happen”.

Requirements and Specification. In the recordings it turned out to be hard to
observe a distinction between requirements and specifications — see the results
on Verification and Validation for a comprehensive example.

565438 N Grgurina.indd 73565438 N Grgurina.indd 73 14-09-21 17:0414-09-21 17:04

Chapter 3

74

A description of requirements and specifications was a part of project
documentation and all the students who finished their projects provided it. Team
7 wrote, “The mousetraps need to be placed at random locations since we don’t
know what the perfect locations would be. If a mouse contacts a mousetrap, then
the mouse needs to die/disappear.” In their project documentation, Team 1 stated
requirements: “In our program, two particles react to form two other particles. The
probability that two particles react can be specified, as well as the reaction speed of
the particles.” Then they wrote specifications extensively: “If two initial turtles (red
and yellow) meet, then the current catalyst value (the left slider) determines whether
they react.” Team 3, who explored the propagation of the Ebola virus, wrote, “In
our model there is only one [breed of] turtles and it stands for people. These turtles
can have various properties, such as being ill or healthy. They can be influenced by
external factors such as medicine and their life span.”

While all students managed to implement something, some of them
experienced difficulties. In the recordings we heard S1a say, “I know what I want to
do, but I don’t know how to code it. I don’t think it’s all that difficult, but...” During the
interview, S7a told us he refrained from including mouse reproduction because he
did not know how to design this feature and program it. When constructing their
programs, only one team worked top-down: the others rather engaged in bottom-
up incremental development constantly adding new features to their models.

Verification and Validation. The recordings revealed a complex picture in
which the distinction between validation and verification was not always clear.
Team 4’s approach is representative of students’ strategy: they constructed their
model (program) by cycling among stating requirements and specifications,
implementing and testing, in minute steps: “We have to do that with time, man,
that they can only drink one beer in ten seconds or so, otherwise they drink too
much!” When testing, it was not clear whether they were validating their model or
verifying their code: often they would run their program, see remarkable behavior
and subsequently change the code. S4b: “All dead.” S4a: “It begins to deteriorate
now [in the simulation, the beer is gone and people leave the party quickly]” S4b:
“But how could they all get the same amount of beer?” S4a: “That’s because of that
piece of code.” S4b: “Really? Can’t that be changed? How did they do it with the
sheep? [Referring to an example from NetLogo’s models library]” Subsequently they
would change their code and continue their work in a similar fashion. Team 6
worked similarly. It was not clear whether S6b was validating or experimenting:
“It works now but it is not balanced, so to speak.” S6a: “Yeah.” S6b concluded: “Yeah.

565438 N Grgurina.indd 74565438 N Grgurina.indd 74 14-09-21 17:0414-09-21 17:04

 Defining and Observing Modeling and Simulation in Computer Science

75

3

That remains to be done” and went on to change the code. Later on they tried
again. S6b: “And if we make this one a bit lower, say seven or so, then they die, that
is really abrupt, like, either they live or so, or all dead.”

In the project documentation, all of the students reported that their models
behaved as expected (validation). Several students described validating their
models and adjusting when necessary. To this end, Team 1 wrote: “to prevent
particles from reacting with each other immediately following a reaction, we built in
a reaction pause. […] That way you prevent particles from being stuck in a constant
back-and-forth reaction.”

Experiment. Team 7 was the only team who documented systematically
performed experiments with their model: they reported the initial parameter
values (e.g. ten cats and nine mice) and included the resulting data plots in
their project documentation. In the recordings we saw other students engage in
experimenting to various degrees, but most failed to mention this in the project
documentation.

Analysis. Not all the students provided an analysis of the results of the
experiments, but in the project documentation, they all reported answers to the
purpose of their models. Team 7’s analysis revealed, “The mousetraps were not
always effective. Some mousetraps go off but the mouse manages to escape.” Finally,
they concluded that mousetraps were more effective than cats in catching mice.
In the recordings we saw Team 3 analyze their data, without reporting it in the
project documentation, and their conclusion was, “We expected that the new
medicine would decrease the spreading of Ebola. It turned out that the medicine
worked rather quickly, but that the rate of infectiousness was of influence as well.”

Reflection. As required, all the students reflected on their models in the project
documentation. Team 7 wrote: “Not everything in our model corresponds with the
reality. But it is nice to experiment with it. You can make your model as large and
complex as you wish.” In the survey the students were asked what they learned. S3b
wrote: “It [modeling] is a good means to predict/research hypotheses. A good aid
for research. I take chemical reactions as an example. You can make it and thus see
(visualize) what happens,” a thought reflected by S1a too. S4a learned that it was
important to have a clear idea of the purpose of the model before engaging in the
modeling process and that models and simulations never completely correspond
to the reality. Contrary to S4a’s reply, during the interview S1a expressed his
astonishment about how easy it was to make a model that “actually reasonably
corresponded” to what was modeled. He even went on to show it to his chemistry
teacher.

565438 N Grgurina.indd 75565438 N Grgurina.indd 75 14-09-21 17:0414-09-21 17:04

Chapter 3

76

3.5	 Conclusion and Discussion

As to the first research question — How can the intended learning outcomes of
Computational Science (modeling and simulation) be described in operational terms
— we have obtained an operational description based on literature on modeling
and simulation. The elements of the description turned out to be suitable to
classify simulation modeling activities of the students in our study. However,
some of these had to be grouped together since the separate elements could not
be distinguished. The resulting operationalization contains the elements purpose,
research, abstraction, formulation, requirements/specification, implementation,
verification/validation, experiment, analysis, reflection. This ‘blurring’ of activities
is also described by Wilensky and Rand (2015).

In answering our second research question — What data sources are suitable
to monitor students’ learning outcomes when engaging in modeling activities —
we found that every source enabled us to observe some aspects of the modeling
process. The interviews provided the opportunity to observe all the aspect of
the modeling process, closely followed by recordings of students at work. In the
project documentation, the description of the model and the reflection are well
represented and experimenting and analysis not so: contrary to the presentations,
where exactly the opposite happens. The surveys, in their present form, did not
provide much insight into the modeling stages the students engage in.

We are planning to use our results to develop an assessment instrument. In
order for such an instrument to be feasible for classroom usage, a combination
of project documentation and class presentation are promising data sources that
enabled us to capture all aspects of students’ work. Our findings suggest that the
instructions for documentation and presentation could be sharpened to improve
visibility of (systematic) experimentation and data analysis within the model.

Finally, in answering our third research question — What specific challenges do
the students experience when engaging in modeling activities — we identified some
difficulties. Many students could not decide what to model exactly, and found it
hard to decide on the level of abstraction and formulate the problem suitably for
modeling through ABM. While all students managed to program something, not
all of them were able to program all they wanted because either they could not
decide on the relevance of a feature, or they did not know enough NetLogo to

565438 N Grgurina.indd 76565438 N Grgurina.indd 76 14-09-21 17:0414-09-21 17:04

 Defining and Observing Modeling and Simulation in Computer Science

77

3

code it. During testing it appeared to be difficult to attribute unexpected behavior
to a fundamental modeling mistake, a programming error, or unexpected
(i.e. emergent) behavior that was characteristic for the phenomenon under
scrutiny. Students tend to rely on an incremental trial-and-error strategy while
implementing their simulation model. Only a few conducted systematic and well
documented experiments. Most of these experiments, together with the analysis
of the results, were intermingled with the construction of the models.

This incremental development is consistent with description of the modeling
practice, for example by Wilensky and Rand (2015). An ad hoc incremental
development (trial-and-error strategy) is typical for novices (Robins et al., 2003).

General remarks. Although this was a small study with a limited number of
participants, we learned a lot about students’ understanding of modeling and
simulation. Also, our findings indirectly informed us about the quality of the
instruction, which leaves room for improvement. The instructional materials
used were written with Artificial Intelligence (AI) and the role modeling could
play in AI in mind. We feel they lacked specific focus and depth needed to teach
modeling to a satisfactory degree.

Several students told us that through work on this project, they learned about
the phenomena they modeled, which is in line with earlier findings (Blikstein &
Wilensky, 2009; Taub et al., 2014). We often heard them laugh during their work
and we observed that many students enjoyed working on this project. We saw that
these CS students were able to utilize their CS/CT knowledge and skills to advance
their learning in other disciplines.

In the subsequent phases of this research project, we will use these findings
to explore CS teachers’ initial pedagogical content knowledge of Computational
Science in our second study (see chapter 4), and to develop instructional materials
which will be used for the study on the assessment instrument (third study, see
chapter 5) and the study on students’ understanding and difficulties while working
on Computational Science assignments (fourth study, see chapter 6).

Furthermore, we believe that the results of this research will contribute to the
development of the CS curriculum in secondary education in the Netherlands, CS
teacher training and CS education in general.

565438 N Grgurina.indd 77565438 N Grgurina.indd 77 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 78565438 N Grgurina.indd 78 14-09-21 17:0414-09-21 17:04

Chapter 4

Investigating Computer Science
Teachers’ Initial Pedagogical

Content Knowledge on Modeling
and Simulation

In this chapter, we describe our second study focusing on the CS teachers’
pedagogical content knowledge (PCK) on modeling and simulation. We
interviewed ten CS teachers and analyzed their PCK, distinguishing its four
components — knowledge of (M1) goals and objectives, (M2) students’
understanding, (M3) instructional strategies and (M4) assessment — and
investigated potential differential features of their PCK in order to typify teachers’
individual PCK. We charted the teachers’ PCK in terms of these four components
and found differential features related to knowledge of goals and objectives and
related to knowledge of assessment, dividing these teachers into four distinct
groups. However, these differential features do not lead to distinct types of PCK,
thus not providing a typification that would allow to match each teacher’s PCK to a
distinct type of PCK. Our findings will be used to explore the future development
of teachers’ PCK and they will contribute to the development of teaching materials,
assessment instruments and teacher training courses on modeling.

This chapter is based on the paper Grgurina, N., Barendsen, E., Suhre, C., van
Veen, K., & Zwaneveld, B. (2017). Investigating informatics teachers’ initial
pedagogical content knowledge on modeling and simulation. In International
Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp.
65-76). Springer, Cham.

565438 N Grgurina.indd 79565438 N Grgurina.indd 79 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 80565438 N Grgurina.indd 80 14-09-21 17:0414-09-21 17:04

Investigating CS Teachers’ Initial PCK on Modeling and Simulation

81

4

4.1	 Introduction

Modeling plays a significant role in the development and learning of science
(Justi & Gilbert, 2002) and CS provides the means for students to actively engage
in learning science by providing tools and techniques to engage in modeling.
The new 2019 Dutch secondary education CS curriculum recognizes this and
includes an elective theme comprised of modeling and simulation, together
called Computational Science. It is described by the high-level learning objectives:
“Modeling: The candidate is able to model aspects of a different scientific discipline
in computational terms” and “Simulation: The candidate is able to construct
models and simulations, and use these for the research of phenomena in that other
science field.” Modeling itself will be a part of the compulsory core curriculum,
described as “Modeling: The candidate is able to use context to analyze a relevant
problem, limit this to a manageable problem, translate this into a model, generate
and interpret model results, and test and assess the model. The candidate is able
to use consistent reasoning.” (Barendsen & Tolboom, 2016). The curriculum does
not provide further details about these objectives, instruction or assessment. In
line with the Dutch tradition, this is left to educators and authors of teaching
materials. The elaboration of this learning objective, the development of teaching
materials, assessment tools and teacher training courses are already taking place
and the studies described in this thesis are an integral part of that effort.

Following Magnusson et al. (1999), we distinguish four components of content-
specific pedagogy: (M1) goals and objectives, (M2) students’ understanding and
difficulties, (M3) instructional strategies, and (M4) assessment.

In our first study, we obtained an operational description of the intended
learning outcomes of the learning objective Computational Science — thus
focusing on Magnusson’s component M1 about the goals and objectives, observed
students working on modeling tasks — focusing on Magnusson’s component M2
about students’ understanding, and established what data sources were suitable
for assessment — Magnusson’s component M4 about methods of assessment (see
chapter 3).

4.1.1	 Aim of this Study
In this study, we turn our attention to teachers and focus on teachers’ PCK on

modeling. We address the following research questions:
1.	 How can the teachers’ PCK be portrayed in terms of the four

components of PCK?

565438 N Grgurina.indd 81565438 N Grgurina.indd 81 14-09-21 17:0414-09-21 17:04

Chapter 4

82

2.	 What differential features of PCK can be used to identify patterns of
individual PCK in terms of the four components of PCK?

The answer to the first question will serve as input to the second question that
seeks to determine whether it is possible to recognize distinct types of PCK and
subsequently match each teacher’s PCK to one of these types.

Our findings will serve as input for the subsequent studies on designing
teaching materials and assessment instruments, the development of teachers’
PCK, and they will contribute to the development of teacher training courses.

4.1.2	 Related Work
The construct of PCK has proven to be a powerful one to help capture teachers’

views and knowledge on teaching various topics — both in STEM and in other
disciplines — such as models and modeling in science (Justi & Gilbert, 2002) and
as a part of public understanding of science (Henze et al., 2007), programing in
CS (M. Saeli, 2012) and designing digital artifacts in CS (Rahimi et al., 2016), to
expose the relation between the quality of teachers’ PCK and their subject matter
knowledge (M. Saeli, 2012; Sanders et al., 1993) to explore the PCK repertoire of
beginning teachers (E. Lee et al., 2007) and to chart the development of teacher’s
PCK as the experience with teaching a particular topics increases (Henze et al.,
2008).

We investigate PCK through the lens of the operational description of the
intended learning outcomes of the learning objective Computational Science
obtained in our previous study, describing the modeling cycle for simulation
modeling through its elements purpose, research, abstraction, formulation,
requirements/specification, implementation, verification/validation, experiment,
analysis, and reflection obtained in our first study (see chapter 3.4).

4.2	 Method

We conducted individual semi-structured interviews with ten CS teachers
from the local CS teachers’ network who replied to our invitation to be
interviewed. Four of the teachers have an CS background and three of these are
qualified teachers with an MSc degree in CS education while the fourth one is still
studying to get this qualification. Out of the other six teachers, one has no teacher
qualification, one is qualified for mathematics only, and other four are qualified

565438 N Grgurina.indd 82565438 N Grgurina.indd 82 14-09-21 17:0414-09-21 17:04

Investigating CS Teachers’ Initial PCK on Modeling and Simulation

83

4

teachers for other subjects — such as physics or history — who additionally
attained teacher qualification for CS through in-service training CODI scheme,
described in chapter 2. The teaching experience of these ten teachers ranges from a
few months to several decades. Eight of these teachers were about to take a course
on agent-based modeling. Interviews lasted between half an hour and an hour,
depending on the extent of a particular teacher’s PCK. In our interview protocol,
we first enquired about the teachers’ educational and professional background
and whether they had already taught modeling. We then asked detailed question
arranged around the four PCK components described by Magnusson, that were
inspired by Justi and Gilbert (2002, 2003), Rahimi (2016) and Henze et al. (2007).

•	 M1: Knowledge of goals and objectives
What comes to mind when you hear the word ‘model’? In which context(s)

does this word make sense to you? (Justi & Gilbert, 2003) What are models for?
In which circumstances are they used? (Justi & Gilbert, 2003) What do you expect
to be your main objective in teaching modeling and simulation in CS? (Henze et
al., 2007) Why do you intend to teach this to your students in CS? What do expect
you will like or dislike about modeling projects by your students? (Rahimi et al.,
2016)

•	 M2: Knowledge of students’ understanding
Do your students need any specific prerequisite knowledge to be able to

learn about modeling and simulation in CS? (Henze et al., 2007) What sorts
of skills do students need to acquire in order to be able to develop models and
run simulations? (Rahimi et al., 2016) What do you expect to be successful for
your students? (Henze et al., 2007; Rahimi et al., 2016) What do you expect to
be difficulties for your students? (Henze et al., 2007; Rahimi et al., 2016) What
do expect your students to actually learn from their modeling (and simulation)
projects? (Rahimi et al., 2016)

•	 M3: Knowledge of instructional strategies
In what activities and in what sequence do you expect your students to

participate in the activities of learning modeling and simulation? What to teach
students to achieve the modeling objectives? (Rahimi et al., 2016) How to teach
students to achieve the modeling objectives? (Rahimi et al., 2016) What do you
expect to be your role as a teacher when teaching about modeling and simulation?
(Henze et al., 2007) What do you expect are going to be the teaching difficulties/
problems concerned with the modeling projects in your classroom? (Rahimi et al.,
2016) What technological tools do you intend to use in your classroom? (Rahimi
et al., 2016)

565438 N Grgurina.indd 83565438 N Grgurina.indd 83 14-09-21 17:0414-09-21 17:04

Chapter 4

84

•	 M4: Knowledge of assessment
How do you intend to assess your students’ learning and achievement during

their modeling projects? (Rahimi et al., 2016) How do you intend to establish
whether your students reached the learning goals with regard to modeling and
simulation? How would you know? (Henze et al., 2007)

The interviews were recorded and transcribed verbatim. We first coded the
transcripts using the coding categories derived from our operational description
of modeling: purpose, research, abstraction, formulation, requirements/specification,
implementation, verification/validation, experiment, analysis, and reflection
obtained in our first study (see chapter 3). We then classified the interview
transcripts using Magnusson’s four components of PCK (Magnusson et al., 1999)
as main coding categories. Within these categories, we applied inductive coding
to characterize the teachers’ responses. In an axial coding process (Cohen et al.,
2007), the codes were grouped and merged where necessary. We used the codes
to describe the teachers’ PCK in the results section (section 4.3). In a subsequent
analysis, we tried to identify differential features in terms of Magnusson’s
components M1 through M4 in order to typify teachers’ individual PCK.

4.3	 Results

In this section, we first present the results of our characterization of the
teachers’ PCK organized around the four components of PCK (M1 through M4).
Subsequently, we then explore differential features in order to distinguish types of
teachers’ PCK.

4.3.1	 Knowledge about Goals and Objectives (M1)
No teacher has taught Computational Science as a separate topic in the context

of the CS course yet and only one of them taught system dynamics modeling in a
physics course. Since we did not enquire about the modeling process explicitly, we
performed a detailed analysis of the interviews through the lens of our theoretical
framework on the modeling cycle and thus reconstructed the teachers’ content
knowledge (CK) pertaining to the aspects of Computational Science obtained in
our first study (see chapter 3), as shown in Table 4.

565438 N Grgurina.indd 84565438 N Grgurina.indd 84 14-09-21 17:0414-09-21 17:04

Investigating CS Teachers’ Initial PCK on Modeling and Simulation

85

4

Aspect Teacher 1 2 3 4 5 6 7 8 9 10

purpose x x x x x x
research x
abstraction x x x
formulating x x x x x x
requirements/ specification x x
implementation x x x x
verification/ validation x x x x x x x
experiment x x x x x
analysis x x x x
reflection x x x x x x x

Table 4: Teachers’ PCK on modeling cycle

Concerning the nature of models, six teachers said that models were a
simplified representation of reality, three reported that models were something
to be used for calculations, two saw models as something for visualization and
communication, and one also mentioned physical models. Regarding the contexts
for the use of models, the teachers mentioned information systems, scientific
research and cited several examples (e.g. exploring group forming on ethnical
basis). Several teachers stressed the fact that CS served other disciplines — an idea
that persistently permeates their thinking about modeling and teaching modeling.

According to the teachers, the objectives of teaching modeling are twofold:
•	 Conceptual objectives: these objectives emphasize learning to

master skills associated with CS subject matter. Teachers mention
CT aspect automation, software design cycle, the necessary
research skills, analysis of the world the students live in, linking and
translating reality to model through abstraction, building a model
and, in words of teacher 9, “using it […] so that you can predict things
or test things, or … ehm …, understand things”.

•	 Motivational and practical objectives: these objectives focus
on students’ engagement, motivation, attitude, skills, practical
benefits, insight and awareness about relevance. Teachers mention
perseverance, building confidence about students’ own ability,
developing self-reliance, and realizing that models are useful tools
that can be used in specific situations. In this light, learning to model
helps to enhance students’ insight, it helps develop cooperation and
communication skills, it is interesting or fun, it serves as preparation

565438 N Grgurina.indd 85565438 N Grgurina.indd 85 14-09-21 17:0414-09-21 17:04

Chapter 4

86

for the future, and it concerns “soft CS”. Furthermore, modeling lays
a connection between CS and other disciplines and models could be
useful for students’ subsequent studies. In words of teacher 10, “…
that you need to be able to design a test setup with CS, ehm, digital
means so that you can get a lot of results, but processing these results is
no more CS, that’s physics.”

4.3.2	 Knowledge of students’ understanding (M2)
The prerequisite knowledge needed to learn modeling and skills needed to

make models are related to:
•	 Student’s characteristics: such as age and development, mindset,

attitude, and other skills. For example, teacher 6 believes “it is all
very complex, they [students] are only 15 years old” and teacher 7
is reminded of Bloom’s taxonomy and fills in “it gets easier as they
get older”. Fantasy, creativity and an analytical mindset also play a
role. Attitude is important: several teachers stress the significance of
perseverance. Some mention differences among students: teacher 6
expects to see different skill levels when it comes to tackling practical
assignments.

•	 Student’s knowledge pertaining: the other discipline, programming
or computational thinking, and modeling aspects. Teachers 4, 5, 6
and 8 expect the students to know something about the phenomenon
from other discipline they are modeling. Almost all the teachers
expect their students to be familiar with programming before they
embark on modeling. However, teacher 9 also sees the possibility
to use modeling as a vehicle to teach programming. Teachers 4, 8
and 10 expect their students to be familiar with several modeling
aspect such as being able to explain how a particular model works,
abstraction, and in words of teacher 8, “you need to learn to recognize
the actors and you need to be able to see the relations among them, to
…ehm … to describe them, to translate them into a model”.

•	 The chosen teaching approach: teacher 8 mentions the interplay
between the teaching materials used and the necessary prerequisite
knowledge and says “but you need to sense what extras you should
offer” and adds, ”It’s quite abstract so I think about the 12th grade,
but if you present it simply enough, then you could teach it in the 10th

565438 N Grgurina.indd 86565438 N Grgurina.indd 86 14-09-21 17:0414-09-21 17:04

Investigating CS Teachers’ Initial PCK on Modeling and Simulation

87

4

grade as well, without ever having taught any CS before that”. He also
stresses the importance of re-activating the knowledge the students
already possess.

The issues teachers regard as successful:
•	 Relevance: through modeling, learning about familiar phenomena

encountered in other courses (e.g. biology, economy) rather than
distant ideas. As teacher 6 puts it: “You concoct nice stories about
nuclear power plants, but how many children end up in there?”

•	 Perception: attitude, experiencing success, interest and fun,
and student’s characteristics. Several teachers expect students’
confidence would grow through their perseverance when facing
problems and experiencing success by making a model on their
own. Teacher 2 admits that achieving this with his students poses
a challenge. Numerous teachers expect these aspects, together with
the relevance experienced by students and the possibility to come
up with creative solutions and implementation of students’ own
ideas, to make modeling interesting and fun. Teacher 10 mentions
Gardner’s multiple intelligences to explain why he expects students
in science tracks to perform differently than students in humanities
tracks.

•	 Skills: programing and computational thinking. Most teachers
expect that programming the models would not pose a problem.

•	 Organizational issues: teaching strategies to meet students’ needs.
Several teachers describe how to contribute to the students’ success
by choosing a suitable teaching approach. A number of teachers who
intend to use NetLogo to teach modeling prize its user-friendliness
and see this as a success factor.

•	 Interest and fun: Teacher 5 says, “even if I never teach this, I still
find it fun for myself ” and goes on to reflect how to transfer this
enthusiasm to his students.

•	 Finally, teachers 1, 3, 4 and 9 do not know what to say. As teacher 4
puts it, “I’ve never taught modeling, so I wouldn’t know what would be
a success.”

The issues teachers regard as difficult:
•	 Technical issues: programing and computational thinking, aspects

of modeling and development. For example, the meaning of the

565438 N Grgurina.indd 87565438 N Grgurina.indd 87 14-09-21 17:0414-09-21 17:04

Chapter 4

88

term parameter in physics or mathematics differs from the meaning
in a simulation model and that might be confusing. Students who
follow physics course are already familiar with models, as opposed
to students in humanities tracks. Teacher 2 expects that in the
beginning, students will have difficulties understanding existing
models and how their components interact. Teacher 4 expects her
students to have problems getting used to the programming language
and subsequently to have problems programming. Numerous
teachers expect that modeling aspects such as abstraction – deciding
what is relevant for a model and what to leave out — will be difficult.
Some teachers expect problems with implementation — translating
conceptual model into program code. Teacher 7 expects his students
could be too ambitious with the models they want to make and
suggests keeping an eye on his students all the time to be able to
intervene and help in case they encounter any of these problems.

•	 Perception: attitude, skills, interest or fun, relevancy, age and
development. Teacher 9 expects problems with motivation if the
students do not see the relevance of modeling. He also mentions
lack of perseverance and inability to go on after getting stuck.
Teacher 6 believes that abstract aspects of modeling are difficult for
the students of this age – 16 years old. He also mentions students not
using common sense.

•	 Approach: work method, possibility to work on their own case.
Some teachers expect problems with students who dive right into
building their models without giving it sufficient thought first, and,
with students who lack oversight and do not know where to begin.
According to teacher 9, the last problem could be alleviated by good
teaching material. Several teachers believe some students would
have difficulties coming up with a suitable case to model.

Again, some teachers do not know what to say.

4.3.3	 Knowledge about instructional strategies (M3)
When asked about their teaching approach, some teachers are cautious about

replaying due to lack of experience, but in the end all the teachers have similar
ideas that can be summarized as follows: during a period ranging from six to
twelve weeks, scaffold learning by beginning with an introduction about models

565438 N Grgurina.indd 88565438 N Grgurina.indd 88 14-09-21 17:0414-09-21 17:04

Investigating CS Teachers’ Initial PCK on Modeling and Simulation

89

4

in general, show and explain the working of few models and their code, then give
students several assignments to expand existing models or develop simple models
from scratch, possibly differentiate to account for students interests, level (HAVO
or VWO) or the track they follow (humanities or science), and finally, engage
them in a large (group) project where they develop a model from scratch during
several weeks. While describing their teaching approach with various degree of
detail, the teachers report about:

•	 Their role as a teacher: to coach, to explain, to show, to help, to
encourage, to keep an eye on students’ progress, and simply to be
there. Teacher 9 says, “and then you come in there to steer. And if it
gets stuck, not just to answer the question, but to help them find the
answer themselves”. Teacher 5 is cautious: “well, when they’re working
on a new model, I don’t always have a ready-made answer.” Teacher
7 would have his students recreate a small program to check their
understanding before they embark on the large project. During the
project, he would have a double role, both as the teacher and as a
client. As the teacher, he would keep an eye on the progress of the
whole project. As the client, he would come in every two weeks and
tell his students things like “hey, you have things that make no sense”
and have students fix the problems themselves.

•	 Assignments the students work on: open and closed problems and
making models. Teacher 6 would have a number of closed problems
together with answers for students to practice before embarking on
the open problem they have to work on as their final project. For the
final project, most teachers would let their students come up with
their problems themselves, but would also have a list of problems
available for those who cannot think of something themselves.

•	 Student’s characteristic to take into account: level and the track
they follow. Teacher 8 would have different assignments for students
to practice on, catering to their needs and preferences, depending
on the educational track they follow. Teacher 2 would not require his
HAVO students to develop a model from scratch, but would rather
have them expand and adjust an existing model.

•	 Organizational aspects: the daily teaching practice, planning,
organizing, SCRUM20, rapid prototyping and playing the role of the

20  https://www.scrum.org

565438 N Grgurina.indd 89565438 N Grgurina.indd 89 14-09-21 17:0414-09-21 17:04

Chapter 4

90

client. Teacher 3 teaches 60-minutes lessons and would start each
lesson with a short central instruction and let the students work
for themselves the rest of the time. He would use Trello boards for
planning and, like teacher 9, employ SCRUM to organize the work.
Teacher 10 would send his students to a teacher of a different subject
who would then pose as a client, while he himself would be a process
supervisor. Teacher 9 would pose as a client himself.

•	 Difficulties and problems: technical problems, problems related
to teaching materials and other problems. Teacher 9 warns that no
matter how simple the software used is, there is always a possibility
of getting an error message, not understanding it and then getting
stuck.

4.3.4	 Knowledge about Assessment (M4)
When asked about assessment, all teachers agree that the large practical

assignment the students worked on to learn modeling could serve for the
assessment purpose as well. Teacher 9 could possibly give his students a written
exam instead. Teacher 8 would use a small written exam to ascertain the students
learned enough about modeling before they are allowed to start working on a
large project. When talking about assessment, the teachers report on:

•	 Assessment form: written exam — formative and summative,
project to be done individually or in groups.

•	 Problems to work on: given by the teacher or provided by the
students themselves, open or closed, opportunity for differentiation.

•	 Organizational issues: SCRUM and rapid development.
•	 Assessing the work: quality of the end product and project

documentation, aspects of modeling cycle, teacher’s impression
about the students’ activities in the lessons during work on the project.
When assessing the results of the final project, most teachers want to
look into the quality of the model — and some of them the code too
— as described by the students in the project documentation they
are required to turn in. The teachers mention various aspects of the
modeling process as relevant for the assessment. However, no clear
quality criteria are elaborated and teacher 1 would simply estimate
the quality of the project. Teacher 8 adds that technical aspects are
easy to assess, but it is difficult to see if the students realize the full

565438 N Grgurina.indd 90565438 N Grgurina.indd 90 14-09-21 17:0414-09-21 17:04

Investigating CS Teachers’ Initial PCK on Modeling and Simulation

91

4

spectrum of possibilities the modeling offers to them. Some teachers
would rely mainly on their observation of students while they work
on the projects, again without elaborating on specific quality criteria.
Additionally, teacher 10 would talk to his students to ascertain
whether they understand what they are doing. Teacher 6 would also
assess the quality of the report the students wrote for the customer.
Teacher 7 would have his students present their models, he would
assess the product (i.e. model and project documentation) and
additionally the process (SCRUM) and he stresses the importance of
reflection, together with number of other teachers. He adds, “even if
they didn’t succeed, I find you can’t say they don’t know what modeling
is”. Teacher 5 is not sure what to say: “if the model works, is that
sufficient?”

4.3.5	 Differential Features and Typification
We found two characteristics that distinguish among teachers:
•	 Knowledge of goals and objectives (M1). Teachers 1, 2, 4, and 6

stress the importance of conceptual objectives such as learning how
to employ programming or how to make models, while teachers 3,
5, 7, 8, 9 and 10 put more emphasis on broader motivational and
practical objectives such as enhancing insight or preparing for the
future.

•	 Knowledge of assessment (M4). Teachers 1, 2, 4, 8, 9 and 10
predominantly put to use product-based assessment stressing the
quality of the students’ product, while teachers 3, 5, 6 and 7 prefer
process-based assessment stressing the importance of the employed
working procedures.

Combining these two differential features leads to four groups of teachers as
shown in Table 5:

M1

Conceptual objectives Practical and motivational objectives

M4
Product 1, 2, 4, 8, 9, 10

Process 6 3, 5, 7

Table 5: Distinct groups of teachers

565438 N Grgurina.indd 91565438 N Grgurina.indd 91 14-09-21 17:0414-09-21 17:04

Chapter 4

92

Our analysis revealed, however, that the knowledge of students’ understanding
(M2) and instructional strategies (M3) varies within each of these four groups,
so the above differential features do not give rise to a typification of the teachers’
overall PCK that would allow to match each teacher’s individual PCK to a distinct
type of PCK.

4.4	 Conclusion

In answering the first research question — How can the teachers’ PCK be
portrayed in terms of the four components of PCK? — we portrayed each of these
components:

Concerning teachers’ knowledge about goals of objectives on teaching
modeling, we charted teachers’ content knowledge and described learning
objectives in terms of conceptual, and motivational and practical objectives.

Concerning the knowledge about students’ understanding, the teachers
reported on the prerequisite knowledge, attitudes, skills, abilities and various
approaches students have to learning, in line with Magnusson et al. (1999).
However, when talking about the difficulties, they mentioned problems due to
the abstract nature of modeling and inefficient students’ strategies, but no teacher
mentioned misconceptions.

Concerning the knowledge about instructional strategies, we see an
agreement about subject-specific strategies (Magnusson et al., 1999) — scaffolding
learning with a final project which serves both to give students the opportunity to
learn how to develop a model from scratch and as assessment.

Concerning knowledge of assessment, there is an agreement about a suitable
form — a large practical assignment. Teachers mentioned a range of assessment
criteria focused on the quality of students’ products and teachers’ impressions of
the students work process. In contrast to the uniformity regarding the form of
assessment, there is a great variation in granularity and depth of their description
of assessment criteria. We saw similar diversity regarding the knowledge of
dimension to assess (Magnusson et al., 1999), i.e. the aspects of modeling process.

In answering the second research question — What differential features of PCK
can be used to identify patters of individual PCK in terms of the four components
of PCK? — we found two characteristics that distinguish among teachers: their

565438 N Grgurina.indd 92565438 N Grgurina.indd 92 14-09-21 17:0414-09-21 17:04

Investigating CS Teachers’ Initial PCK on Modeling and Simulation

93

4

focus on conceptual versus motivational and practical objectives (M1) and their
emphasis on product-based versus process-based assessment (M4) leading to four
distinct groups of teachers. However, none of these differential features leads to an
overall typification of the teachers’ PCK.

4.5	 Discussion

Reflections on findings. As a possible explanation for the variations found
in the teachers’ PCK, we explore the relation with the teachers’ background. Not
surprisingly, we saw that teachers 1, 2, 4 and 9, who all have a background in CS,
displayed rich knowledge of modeling. Teachers 1 and 4 — both young teachers
— had limited idea about what to expect from their students beyond the general
remarks about students needing to plan before acting and lack of perseverance.
On the other hand, teachers 2 and 9 exhibited rich knowledge of students’
understanding and related their extensive knowledge of instructional strategies
to it. Teachers 6, 7, 8, and 10 possess rich and well-connected PCK. Finally, we
saw that teachers 3 and 5, despite their limited content knowledge, were able to
relate their general knowledge of their students to their teaching strategies. The
knowledge of their students’ understanding and difficulties was the strongest
component of their PCK. Other components of their PCK were weaker and so
were the relations among these components too.

Regarding the instructional strategies, the teaching approach described here is
in line with prevailing CS teaching practices in the Netherlands (Schmidt, 2007).
The extent of knowledge of topic-specific strategies (Magnusson et al., 1999) varies
across teachers and seems to be related to their subject matter knowledge and
teaching experience. The findings about young teachers 1 and 4 are in line with
the results by Lee et al. (2007) who found that “a strong science background does
not guarantee a proficient level of PCK.” The more experienced teachers sometimes
behave like novices too, — e.g., teacher 5 — while in others, their extensive PCK
seems to sustain them in the non-familiar area of modeling, in line with results of
Sanders et al. (1993) who found in a similar situation that rich PCK for general
science topic seems to sustain teachers “in whatever content they are teaching”.

We observed two characteristics allowing us to distinguish among teachers
that were observed by Rahimi et al. (2016) as well — in the knowledge of goals
and objectives (M1), with preference for either conceptual objectives or broader

565438 N Grgurina.indd 93565438 N Grgurina.indd 93 14-09-21 17:0414-09-21 17:04

Chapter 4

94

motivational and practical objective, and in the knowledge of assessment (M4),
with preference for either product-based assessment or process-based assessment.
However, our findings are not completely in line with those findings because in
our case, for example, teachers 1 and 10, both leaning toward predominantly
product-based assessment, require students to keep logbooks to document
the modeling problems, difficulties and dead ends they encountered. On the
other hand, teacher 6 would take customer’s feedback into account and teacher
7 would have his students present their work in the class, while they both lean
toward predominantly process-based assessment. Unlike Rahimi et al., we were
not able to typify teachers’ PCK through relating their knowledge of students’
understanding and instructional strategies on one hand, to their knowledge of
goals and objectives and knowledge of assessment on the other.

Remarkably, despite the great variation of assessment criteria mentioned, there
is hardly any evidence of quality indicators used to judge to what extent these
criteria are met and to what extent the students are able to apply the elements of
modeling to a satisfactory degree.

Limitations of the study. In this study, we charted PCK of a small group of
CS teachers. However, because of the variations in their educational background,
teacher qualification and teaching experience we expect that our findings are
fairly typical for the population of Dutch CS teachers. This is to be confirmed in
further research.

Implications for educational development. We believe that teachers would
benefit not only from a course on modeling, but also from the availability of
teaching materials. We are convinced that the quality of assessment — an issue
attracting a lot of attention in modern CS education (Alturki, 2016) — would
improve if teachers get assistance with designing assessment instruments that
would take into account both product and process.

In the subsequent phases of this research project, we will use these findings
when we focus on the development of teaching materials (the fourth study, see
chapter 6) and assessment instrument (the third study, see chapter 5). In parallel,
in-service teacher training based on these findings will be offered to interested
teachers. Finally, all the participants in this study will be followed to chart the
development of their PCK of Computational Science in the future — an endeavor
that falls beyond the scope of this thesis.

565438 N Grgurina.indd 94565438 N Grgurina.indd 94 14-09-21 17:0414-09-21 17:04

95

565438 N Grgurina.indd 95565438 N Grgurina.indd 95 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 96565438 N Grgurina.indd 96 14-09-21 17:0414-09-21 17:04

Chapter 5

Assessment of Modeling and
Simulation in Secondary

Computing Science Education

Using the findings from the first two studies, we developed a curriculum
intervention including a practical assignment and an accompanying assessment
instrument consisting of grading rubrics based on the SOLO taxonomy. In this
chapter we focus on the assessment instrument. We describe its development
and report on a pilot study carried out in the secondary computing science
course implementing the curriculum intervention. The instrument proved to be
reliable and effective in tracing high and low levels of the students’ achievements
in modeling and simulation projects and exposed the expected differences in
performance levels of various groups of students, which renders it useful for
both formative and summative assessment. Furthermore, our application of the
instrument has provided new insights into the needs of specific groups of students
to receive instruction prior to and during the work on the assignments.

This chapter is based on the paper Grgurina, N., Barendsen, E., Suhre, C.,
Zwaneveld, B., & van Veen, K. (2018). Assessment of modeling and simulation in
secondary computing science education. In Proceedings of the 13th Workshop in
Primary and Secondary Computing Education (pp. 1-10) (Grgurina, Barendsen,
Suhre, Zwaneveld, et al., 2018).

565438 N Grgurina.indd 97565438 N Grgurina.indd 97 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 98565438 N Grgurina.indd 98 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

99

5

5.1	 Introduction

The new 2019 secondary computer science curriculum recognizes the
importance of modeling and includes an elective theme comprised of modeling
and simulation, together called Computational Science. It is described by the
high-level learning objectives: “Modeling: The candidate is able to model aspects
of another scientific discipline in computational terms” and “Simulation: The
candidate is able to construct models and simulations, and use these for the research
of phenomena in that other science field.” (Barendsen & Tolboom, 2016). The
curriculum does not provide further details about these objectives, instruction or
assessment. In line with the Dutch tradition, this is left to educators and authors of
teaching materials. The elaboration of these learning objectives, the development
of teaching materials, assessment tools and teacher training courses are already
taking place. We participate in these endeavors with practical assistance to
teachers developing teaching practices that help to attain these objectives, and
by monitoring these developments through research described in this thesis. In
our first study, we obtained an operational description of the intended learning
outcomes of the learning objective Computational Science — thus focusing on
Magnusson’s component M1 about the goals and objectives, observed students
working on modeling tasks — focusing on Magnusson’s component M2 about
students’ understanding, and established what data sources were suitable for
assessment — Magnusson’s component M4 about methods of assessment (see
chapter 3). In our second study (see chapter 4), we investigated teachers’ initial
pedagogical content knowledge on modeling and simulation. We then proposed
an assessment instrument (Grgurina, Barendsen, Suhre, Veen, et al., 2018)
pertaining to Magnusson’s component M4 about methods of assessment.

In this study, we further focus on monitoring the levels of understanding in
the learning outcomes of students engaging in modeling projects — Magnusson’s
component M4. We aim to examine the agreement and validity of that assessment
instrument to assess students’ proficiency in modeling a (problematic) situation
and to provide answers to improve the situation. We seek answer to these
questions:

1. Can the instrument be used by different teachers without having a
distinguishable effect on the assessment?

2. Does the instrument allow for a valid measurement of students’
proficiency level?

565438 N Grgurina.indd 99565438 N Grgurina.indd 99 14-09-21 17:0414-09-21 17:04

Chapter 5

100

Two steps are taken to obtain the necessary data to answer both questions.
First, inter-rater agreement is assessed by having two teachers rate the same
products and compute the inter-rater agreement. Second, the proficiency levels of
projects made by students of different education level — HAVO and VWO — are
compared to investigate whether differences are in the expected direction.

5.2	 Background and Related Work

5.2.1	 Computational Thinking: Modeling
Formulating problems in a way that enables us to use a computer to solve them

and representing data through abstractions such as models and simulations are
integral parts of computational thinking (CT) (CSTA Computational Thinking
Task Force, 2011). With the arrival of computers into schools, new venues are
created to support students’ learning in various disciplines through the use
of computer models, i.e. models that are implemented and run as computer
programs (Blikstein & Wilensky, 2009; Overveld et al., 2015). Wilensky argues,
“Computational modeling has the potential to give students means of expressing
and testing explanations of phenomena both in the natural and social worlds”
(Wilensky, 2014), as do Caspersen and Nowack (2013b). Indeed, modeling plays a
significant role in the development and learning of science (Justi & Gilbert, 2002)
and CS equips the students to actively engage in learning science by providing
tools and techniques to engage in modeling, thus enabling them to provide
meaning to the learning both of the discipline at hand (Gilbert, 2006) and CS.

In the new 2019 CS curriculum, for the intended learning outcomes of the
learning objective Computational Science, in one of our previous studies we
developed an operational description that describes the modeling cycle for
simulation modeling through its elements purpose, research, abstraction,
formulation, requirements/specification, implementation, verification/validation,
experiment, analysis, and reflection. Furthermore, in that study we advocated to
use agent-based modeling (ABM) when teaching Computational Science since
it is a suitable simulation modeling method for use in secondary CS education
(Grgurina et al., 2016) and here we focus specifically on ABM type of computer
models.

565438 N Grgurina.indd 100565438 N Grgurina.indd 100 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

101

5

5.2.2	 Documenting Models
In order to describe what is the purpose of a model, how does it work and

other relevant details, it is necessary to document the model. Several techniques
have been proposed to do this in order to help to understand a model, to facilitate
completeness of the description, and to make it easier to reproduce a model.

The ODD protocol is specifically devised to standardize the descriptions of
individual-based and agent-based models (Grimm et al., 2006, 2010). It describes
a model in terms of its Overview, Design concepts and Details — hence the
acronym ODD. In the updated ODD protocol, the overview contains the elements
(1) purpose, (2) entities, state variables and scales, and (3) process overview and
scheduling. The eleven elements of the design concepts are the basic principles,
emergence, adaptation, objectives, learning, prediction, sensing, interaction,
stochasticity, collectives and observation. Finally, the details deal with the elements
initialization, input data and submodels. However, this approach to documenting
models has several weaknesses: due its textual nature, it is inherently ambiguous
and furthermore, it does not allow for documentation of all the relevant details
and thus hampers the reproduction of models, as noted by Amouroux et.al (2010).
They charted the strengths and weaknesses of the ODD protocol and suggest the
addition of an “Execution environment” section to support the model replication.
A different approach to documenting models recognizes the common traits of
agent-based modeling and object-oriented programming and suggests to expand
the Unified Modeling Language (UML) to accommodate the specifics of ABM. The
UML supports the following kinds of models: static models, dynamic models, use
cases, implementation models and object constant language (OCL) (Rumbaugh
et al., 2004). Odell et al. (2000) suggest the agent-based extension AUML, that
is, “agent-based extensions to the following UML representations: packages,
templates, sequence diagrams, collaboration diagrams, activity diagrams, and state
charts.” Similarly, Bauer et al. (2001) propose Agent UML with four agent-based
extensions to UML representations: packages, templates, sequence diagrams and
class diagrams. Muller et al. (2014) go a step further to explore the suitability of
particular types of model descriptions for specific intended purposes. To this end
they distinguish eight possible purposes of models: communication of the model
— to peers, for education or for stakeholders; in-depth model comprehension,
model assessment — to establish its suitability for its purpose, model development
— design and collaborative, model replication, model comparison, theory building,
and finally, code generation. They go on to assess how well these purposes are met

565438 N Grgurina.indd 101565438 N Grgurina.indd 101 14-09-21 17:0414-09-21 17:04

Chapter 5

102

by the different description types: natural language — either with a prescriptive
structure, such as ODD protocol, or without it, such as verbal description;
formal languages — ranging from various ontologies, source code, pseudo code
to mathematical description, and finally graphics — either formal such as UML,
or non-formal. In case of communication for education, they suggest that non-
formal verbal description, source code made with the program-level tools (such
as, for example, NetLogo (Wilensky, 1999)) and non-formal graphics are among
the most suitable description types, while formal descriptions with ODD protocol
or UML as well as non-specialized programming languages are less suitable. They
conclude by suggesting “a minimum standard of model description”.

5.2.3	 Assessment
Brennan and Resnick focused on assessment of the development of CT during

learning in informal settings and developed a CT framework distinguishing three
dimensions: computational concepts describing the concepts designers employ
when programming, namely sequences, loops, parallelism, events, conditionals,
operators, and data; computational practices describing the practices designers
employ when engaging with the concepts, namely being incremental and iterative,
testing and debugging, reusing and remixing, and abstracting and modularizing,
and computational perspectives describing the perspectives designers form about
the world around them and about themselves, namely expressing, connecting and
questioning (Brennan & Resnick, 2012). Zhong et al. (2016) brought these three
dimensions of CT into the classroom when designing an assessment framework
for elementary school students and they redefined them as follows: computational
concepts as ”objects, instructions, sequences, loops, parallelism, events, conditionals,
operators, and data”; computational practices as “planning and designing,
abstracting and modeling, modularizing and reusing, iterative and optimizing, and
testing and debugging”, and computational perspectives as “creative and expressing,
communicating and collaborating, and understanding and questioning”. Using this
framework, Lye and Koh (2014) analyzed 27 intervention studies in K-12 aiming at
the development of computational thinking through programming and found that
the majority focuses on computational concepts and only six on computational
practices. In order to promote focus on computational practices and computational
perspectives in a K-12 classroom, they suggest an instructional approach
providing “a constructionism-based problem-solving learning environment, with
information processing, scaffolding and reflection activities.” Brennan and Resnick

565438 N Grgurina.indd 102565438 N Grgurina.indd 102 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

103

5

offer six suggestions for assessing computational thinking via programming,
among others to make assessment useful to learners, to incorporate creating
and examining artifacts, and to have the designer illuminate the whole process
(Brennan & Resnick, 2012). These views are corroborated by the findings in our
prior study on CS teachers’ pedagogical content knowledge (PCK) of modeling
and simulation, where we learned that the interviewed teachers mostly suggest a
hands-on approach to learning and that the preferred assessment form for most
of them would be a practical assignment lasting several weeks, where student
groups would construct models and use them to run simulations and conduct
research while extensively documenting the whole process. At the same time, we
observed a great diversity in the assessment criteria teachers mentioned, but very
few corresponding quality indicators used to judge to what extent these criteria
are met (Grgurina et al., 2017).

In the eyes of the students, the assessment defines the actual curriculum,
according to Biggs and Tang (2011). In their constructive alignment network,
the curriculum is stated in the form of clear intended learning objectives (ILO)
specifying the required level of understanding, the teaching methods engage
students in doing things nominated by the ILO’s, and the assessment tasks
address these ILO’s. Learning outcomes can be classified using the Structure of
the Observed Learning Outcome (SOLO) which describes the learning progress
through five levels of understanding. The first three levels — prestructural,
unistructural and multistructural — are considered to be quantitative in the sense
that prestructural indicates missing the point, unistructural means meeting only a
part of the task and multistructural shows a further quantitative increase in what
is grasped: “knowing more”. Relational, on the other hand, indicates a qualitative
change indicating conceptual restructuring of the components — “deepening
understanding”, and extended abstract takes the argument into a new dimension
(Biggs & Tang, 2011).

Looking into the use of SOLO taxonomy to assess the novice programmers’
solutions of code writing problems, Whalley et al. (2011) noted that previous
research had indicated difficulties in mapping from student code to the SOLO
taxonomy “since the mapping process seems very context bound and question
specific”. Indeed, Meerbaum-Salant et al. (2013) remarked that while the strength
of the SOLO taxonomy lies in the fact that it offers a holistic, rather than a local
perspective, “using [it] for various types of activities, simultaneously, is not
straightforward”. When they set out to combine the Revised Bloom taxonomy

565438 N Grgurina.indd 103565438 N Grgurina.indd 103 14-09-21 17:0414-09-21 17:04

Chapter 5

104

(Krathwohl, 2002) with SOLO in order to construct assessment for programming
tasks of novice programmers, they started out with the interpretation of SOLO as
five ordered categories:

•	 Prestructural: Mentioning or using unconnected and unorganized
bits of information which make no sense.

•	 Unistructural: A local perspective — mainly one item or aspect
is used or emphasized. Others are missed, and no significant
connections are made.

•	 Multistructural: A multi-point perspective — several relevant items
or aspects are used or acknowledged, but significant connections are
missed and a whole picture is not yet formed.

•	 Relational: A holistic perspective — meta-connections are grasped.
The significance of parts with respect to the whole is demonstrated
and appreciated.

•	 Extended abstract: Generalization and transfer — the context is seen
as one instance of a general case (Meerbaum-Salant et al., 2013)

The issue of assessing the learning of the students engaged in larger
programming projects attracts attention as well. Casto and Fisler (2017) explored
how to track program design skills through an entire CS1 course at university
level and suggest a multi-strand SOLO taxonomy, thus corroborating the idea
that using SOLO taxonomy simultaneously for various types of activities is not
straightforward. They suggest a multi-strand SOLO-taxonomy without the
extended abstract level since none of the students in their study reached that
level (Castro & Fisler, 2017). A multi-strand SOLO taxonomy is in line with
the idea that one assessment task might address several ILO’s and vice versa,
one ILO might be addressed by several assessment tasks (Biggs & Tang, 2011).
Assignments for complex tasks encompassing diverse ILO’s — such as in case
of Computational Science, thus going through a modeling cycle by formulating
a problem, pinpointing the research question, designing a model and using it
to answer the research question — warrant the elaboration of criteria defining
performance for each of the ILO’s involved.

565438 N Grgurina.indd 104565438 N Grgurina.indd 104 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

105

5

5.3	 Assessment Instrument

Based on these findings, we developed constructionist teaching material about
agent-based modeling with NetLogo meant for the CS students in the 11th and
12th grades of both HAVO and VWO who are preferably no novice programmers
but rather somewhat experienced, probably in other programming languages. The
teaching material covers all the aspects of the ILO’s of Computational Science we
identified earlier (Grgurina et al., 2014b), and addresses not only computational
concepts such as programming to implement the model, but also computational
practices such as the validation of the model and computational perspectives such
as formulating the research question to be answered through the use of the model.
Together with this teaching material, we also developed an assessment instrument
on which we focus here.

Following the teachers’ suggestions about the desirable form of assessment
(Grgurina et al., 2017) and our findings about suitability of various data sources for
assessment confirming the suitability of project documentation (Grgurina et al.,
2016), we developed an assessment instrument consisting of a practical assignment
where students design models and use them to conduct research of phenomena
in another science field, and accompanying rubrics for assessment based upon
the project documentation and models themselves (i.e. program code). Guided by
the suggestions for the rubrics construction by Wolf and Stevens (2007), from the
modeling cycle we first identified the criteria that defined performance as: stating
the case and the research question, designing the model and implementing it,
validation, experiment, analysis, answering the research question, and reflection.
Subsequently, we designed a practical assignment that provides several cases
and research questions for students to choose from, a detailed description of the
modeling process they need to engage in, and a corresponding rubrics based on
SOLO taxonomy.

An example of the cases provided is the question whether sustainable human
life is possible on Mars. The students are pointed to the websites of NASA and
SpaceX to learn about the current state of affairs and subsequently have to explore
whether, after the initial supplies and shelter were delivered, it would be possible
to produce sufficient water, air and food to survive and thus whether it would be
possible to found a sustainable human colony on Mars. Among other cases are
the questions, what is better for traffic flow on a junction: a roundabout or traffic
lights, and to investigate the optimal number and task division of bank counters as

565438 N Grgurina.indd 105565438 N Grgurina.indd 105 14-09-21 17:0414-09-21 17:04

Chapter 5

106

to minimize the waiting time of the customers with various needs. In line with our
dedication to stimulate student engagement, the students are allowed to come up
with their own research questions instead.

While these assignments allow students to make their own choices and
decisions when designing their models, we needed a standard that allows
educators using our assessment instrument to easily assess the quality of their
students’ models. To set such a standard, for each case we constructed a minimal
expert model — a description of a minimal model that fulfills the stated purpose
and contains all the necessary agents with their correct behavior and interactions.
Since we wanted these minimal expert models to be described on a conceptual
level only, we refrained from implementing them in NetLogo because we believed
that that would hinder the assessment process rather than contribute to it. Instead,
for the models that our students are expected to make — two-dimensional,
containing only a few types of agents, no links and no advanced behavior such as
learning or sensing — we devised our own format to describe them. This format
is partly narrative, borrows aspects of class diagrams from UML and exploits the
idea of graphical representation of timed automata where it is possible to require
that particular state transitions are allowed only under certain conditions, or only
synchronously with other state transitions (Vaandrager, 2011). Here we illustrate
this approach with the description of our minimal expert model of the roundabout.
First of all, there is the agent type21 vehicle with its representation — inspired by
UML class diagram — stating that an agent of this type has properties22 current
position and target position, and behavior consisting of actions show up, wait,
move and leave.

Vehicle
current position
target position
show up
wait
move
leave

Figure 3: UML class diagram for vehicle

Then there is a graphical representation of a state diagram of a vehicle (figure
4) which is interpreted as follows: during the NetLogo setup procedure, the first

21  NetLogo speaks of breeds of agents, but we use the term type to cater for those not familiar
with NetLogo.
22  NetLogo speaks of agent’s own variables

565438 N Grgurina.indd 106565438 N Grgurina.indd 106 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

107

5

transition from the state begin to the state ready occurs, and that is the action show
up. The NetLogo go procedure then runs repeatedly until the program stops and
according to our convention, every time it runs, exactly one transitions originating
from the ready state takes place, and when the procedure has finished one run
the vehicle is back in the ready state unless it reached the gone state. This is not
to say that during one run of the go procedure an agent may engage in one state
transition only: rather, it means that one full cycle of actions emanating from the
ready state takes place. For each transition, there might be conditions that need to
be met in order for the transition to occur, and properties could be updated. For
example, move only occurs if the position in front of the vehicle is free and then its
property current position is updated. State transitions could be synchronized with
each other as well, such as in the famous Wolf Sheep Predation model: a wolf can
eat only if one of the sheep simultaneously dies (Wilensky, 1997).

Begin Ready GoneShow up Leave
Guard:

current position == target position

Move

Guard: the position in front is free
Update: update current position

Wait

Guard: the position
in front is not free

Figure 4: State diagram for vehicle

Finally, there is an additional textual description of a number of relevant
aspects of the model. It mentions that a roundabout itself can be modeled as well
while that is not strictly necessary since the vehicles know where they are through
their current position property; that the show up action does not necessarily
require a vehicle to stop in front of an empty roundabout, and that it is up to the
modeler to decide on design details such as how far can a vehicle move during one
run of the go procedure.

As elaborated in the section on assignment (section 5.3.1), the evidence the
students provide about their models is twofold: the textual descriptions they
formulate when designing the model and the implemented model, i.e. NetLogo
program code (Müller et al., 2014). Our description format helps educators to
distil the relevant aspects of the models from the descriptions and code students
turn in and to employ the rubrics based on the SOLO categories.

565438 N Grgurina.indd 107565438 N Grgurina.indd 107 14-09-21 17:0414-09-21 17:04

Chapter 5

108

With our format in mind, for the characterization of these SOLO categories we
followed the local-to-global perspective. The first three levels describe quantitative
progression. Prestructural indicates not answering the question at all or missing
the point. Unistructural indicates fragmentary knowledge from a local perspective
like mentioning only some of the relevant aspects — such as only a few agents or
only some of their states — or missing important details. Multistructural indicates
a more complete and coherent multi-point picture of the aspect under scrutiny
— like listing all necessary agents and their states — but missing significant
connections and without substantiating, clarifying, analyzing or explaining. These
activities, however, are characteristic for the last two levels that add qualitative
aspects: the relational level requires additionally the understanding of the relations
among the parts of the aspect under scrutiny, such as recognizing all the actions
an agent can perform, properly identifying conditions for these actions to occur
and acknowledging their consequences. Finally, generalizing or theorizing —
what if? — about aspects indicate going beyond what was given and typify the
extended abstract level (Biggs & Tang, 2011; Meerbaum-Salant et al., 2013). In
section 5.3.2, we elaborate the description of the SOLO levels for each criterium
defining performance in detail.

5.3.1	 Assignment
The assignment consists of a number of questions the students need to answer

in writing while designing their model and using it to answer their research
question, and of course, the task of implementing the model. After forming groups
and choosing a case to model, the students answer the following questions:

Case and research question. Describe what you are going to model and with
what purpose:

1.	 What do you know about this phenomenon? If need be, carry out
the necessary research.

2.	 What part of your phenomenon would you like to build a model of?
3.	 What do you hope to observe from this model? (Questions 2 and 3

suggested by Wilensky and Rand (2015).)
Design the model. Design and describe the model following the questions

listed here. Report the considerations and choices you make. (E.g., “The sheep
can reproduce. If two sheep meet, there is a chance of 20% that a new sheep will be
breed. We decided not to take into account the gender of the sheep because that is not
relevant in this case.”)

565438 N Grgurina.indd 108565438 N Grgurina.indd 108 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

109

5

1.	 What are the principal types of agents involved in this phenomenon?
2.	 In what kind of environment do these agents operate? Are there

environmental agents?
3.	 What properties do these agents have (describe by agent type)?
4.	 What actions (or behaviors) can these agents take (describe by agent

type)?
5.	 How do these agents interact with this environment or each other?
6.	 If you had to define the phenomenon as discrete time steps, what

events would occur in each time step, and in what order? (All
questions suggested by Wilensky and Rand (2015).)

Implement the model. Implement the model in NetLogo. Write your code in
small chunks and keep testing!

Validate the model.
1.	 Microvalidation: to what extent does the agents’ behavior resemble

the observations of the phenomenon in reality? If the behaviors are
(somewhat) dissimilar, is this variation relevant to your research
question?

2.	 Macrovalidation: to what extent does the behavior of the system as
a whole resemble the observations of the phenomenon in reality? If
the behavior is (somewhat) dissimilar, is this variation relevant to
your research question?

Experiment, analysis and conclusion. Use the model to answer your research
question:

1.	 Describe the experiment in detail. If you use Behavior Space, report
the number of experiments conducted and the parameters used.

2.	 Report the findings in an appropriate manner (e.g., a narrative, a
table, a graph, etc.)

3.	 Analyze the results.
4.	 Answer the research question.
Reflection. Reflect on your modeling process:
1.	 What went well and what could be better?
2.	 Did you make any assumptions which, in retrospect, you would like

to reconsider?
3.	 Are there any aspects of your model which you would like to change?

Are there any aspects of your model (agents or behavior) you decided
not to include in you model while now you believe they do need to

565438 N Grgurina.indd 109565438 N Grgurina.indd 109 14-09-21 17:0414-09-21 17:04

Chapter 5

110

be included? Make a wish list of aspect of your model that need to be
added, removed or changed in the next version of the model.

Students were also asked to log their activities, problems, and successes;
possible explanations for problems and successes, and, lessons learned.

5.3.2	 Grading Rubrics
After we identified the criteria that defined performance, we created

performance descriptions (Wolf & Stevens, 2007) to describe the appropriate level
of understanding for intended learning outcomes (Biggs & Tang, 2011). Here we
quote these descriptions:

Case and research question. (1) What do you know about this phenomenon?
If need be, carry out the necessary research.

•	 Prestructural: Nothing or simplistic idea of the phenomenon.
Performed no research.

•	 Unistructural: Some general description. Performed no research or
only limited to isolated aspects of the phenomenon

•	 Multistructural: Performed some research. Able to name more
relevant aspects of the phenomenon, but mentions no relations
among these aspects

•	 Relational: Performed research. Complete idea of the phenomenon.
Able to name relevant aspects of the phenomenon, have insight into
relations among these aspects

•	 Extended abstract: Additionally, described the relation of
this phenomenon to other phenomena in the world and/or
conceptualized this phenomenon so as to be able to use it other
contexts restricted and its relevance explained. Stated its relevance
for other phenomena

(2) What part of your phenomenon would you like to build a model of?
•	 Prestructural: Nothing, or a few non-specific remarks but missing

the point
•	 Unistructural: Few isolated aspects of the phenomenon identified
•	 Multistructural: Described what (part of the) phenomenon is being

modeled.
•	 Relational: Clearly explained what (part of the) phenomenon is

being modeled, together with limits of what is being modeled and its
significance for the whole.

565438 N Grgurina.indd 110565438 N Grgurina.indd 110 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

111

5

•	 Extended abstract: Additionally, theorize about possible
generalization of the model or transfer into a different context.

(3) What do you hope to observe from this model?
•	 Prestructural: Research question not clear
•	 Unistructural: Identified the question from a local perspective
•	 Multistructural: Described the question from a multi-point perspective
•	 Relational: The research question clear and predicts possible outcomes.
•	 Extended abstract: Additionally, theorize about possible

generalization or transfer into a different context.
Design the model and implement it.
•	 Prestructural: No agents mentioned
•	 Unistructural: A few agents and actions identified
•	 Multistructural: Several agents and actions described.
•	 Relational: Agents, actions and interactions correct and substantiated.

Their contribution to the whole acknowledged.
•	 Extended abstract: Additionally, generalize or hypothesize about

similar models in different contexts or extend the model beyond the
minimal requirements.

Validate the model.
•	 Prestructural: Nothing. No working program.
•	 Unistructural: Identified some resemblances and differences between

the model and reality. Relevance for the research question not clear.
•	 Multistructural: Described resemblances and differences between

the model and reality. Relevance of the differences for the research
question not clear

•	 Relational: Resemblances and differences between the model and
reality described. Analyzed and explained their relevance for the
research question.

•	 Extended abstract: Additionally, hypothesized over model
adjustments to improve its validity for a more general purpose

Experiment.
•	 Prestructural: nothing
•	 Unistructural: a few model runs (i.e. simulations) without a clear plan
•	 Multistructural: Simulations performed systematically but the

relevance for the research question not clear (e.g. not clear why
certain data is gathered)

565438 N Grgurina.indd 111565438 N Grgurina.indd 111 14-09-21 17:0414-09-21 17:04

Chapter 5

112

•	 Relational: Simulations performed systematically. The relevance for
the research question is made clear.

•	 Extended abstract: Additionally: The relevance for the research
question is clear and substantiated.

Analysis.
•	 Prestructural: nothing
•	 Unistructural: some results reported
•	 Multistructural: results described in an appropriate manner
•	 Relational: results described in an appropriate manner. The relation

between the values of model parameters and the output data
analyzed

•	 Extended abstract: Additionally, explain or hypothesize about the
relation between the values of model parameters and the output data

Answer the research question.
•	 Prestructural: No answer
•	 Unistructural: Simple answer
•	 Multistructural: Elaborate answer, but the coherent picture not

formed
•	 Relational: Elaborate answer, coherent picture of the parts and the

whole formed
•	 Extended abstract: Additionally, discussion
Reflection.
•	 Prestructural: No answer
•	 Unistructural: Few aspects mentioned
•	 Multistructural: Several aspects described
•	 Relational: Aspects analyzed and explained
•	 Extended abstract: Additionally, discuss the possible consequences

in the future

5.4	 Method

5.4.6	 Educational Context
Four classes participated in this study: one 11th grade VWO class and two 12th

grade VWO classes which we all treated as one for the purpose of this research,
and one 11th grade HAVO class. The data were collected in two schools in classes

565438 N Grgurina.indd 112565438 N Grgurina.indd 112 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

113

5

that were taught by two teachers: the thesis author and her colleague who worked
in both schools. All the students have previously learned to program in Python or
a similar high-level textual programming language. The course on Computational
Science lasted eight weeks in total. The first five weeks were dedicated to instruction
using the teaching material we developed for our curriculum intervention, and
during the last three weeks, the students formed groups of two or three (a few
students choose to work alone) and worked on the practical assignment. After
choosing the cases to model, the students went on to answer the questions form
the assignment and to develop their models in NetLogo. The students from
the two 12th grade VWO classes presented their models in the classroom and
got feedback from other students. In other classes there was no opportunity to
organize presentations. Finally, the students answered the last questions from the
assignment and turned in their documentation and models, i.e., Netlogo code.

We analyzed only the completed projects turned in by sixteen students forming
eight groups in 11th grade HAVO, fifteen students forming five groups in 11th
grade VWO and twenty-four students forming twelve groups in 12th grade VWO.

5.4.7	 Data Collection
Both the teachers assessed the students’ work — project documentation and

program code — using the rubrics presented here, assigning 0 up to 4 points for
the prestructural up to extended abstract level, respectively, First, they separately
assessed work of two groups. They compared their scores, and then the scoring
guidelines and the interpretation of the rubrics were fine-tuned where necessary.
Additionally, they agreed to take into account the answers students supplied while
answering other questions — e.g., elaborating on the research of the phenomenon
under scrutiny while answering the question about validation. Then, one teacher
assessed the work of all the groups while the other teacher assessed only the work
of the 12th grade VWO groups in order to establish the inter-rater agreement.

5.4.8	 Analysis
Our aim was to investigate the inter-rater agreement and the discriminative

validity of instrument. The inter-rater agreement was evaluated by computing
Krippendorf ’s alpha for each of the criteria. Discriminative validity was assessed
by comparing the scores of HAVO students and VWO students. While it is to
be expected that both HAVO and VWO students can be taught to design and
implement a model equally well, VWO are expected to outperform HAVO

565438 N Grgurina.indd 113565438 N Grgurina.indd 113 14-09-21 17:0414-09-21 17:04

Chapter 5

114

students in defining and analyzing the consequences of manipulation of factors
in problem contexts due to their ample preparation in scientific thinking. One-
tailed t-tests for independent samples were used to evaluate these expectations.
We expect that the majority of scores vary between score 0 (prestructural) and
3 (relational). If the projects of VWO students are more often awarded a score
of 4 (extended abstract) than those of HAVO students, this too can be regarded
as (partial) evidence that the instrument differentiates satisfactorily between
students’ level of learning outcomes. In order to see whether the students’ results
meet our expectations and in search of possible explanation for the observed
differences in the performance between HAVO and VWO groups, we additionally
performed qualitative in-depth analysis of the students’ projects.

5.5	 Results

All the results of the assessment using the grading rubrics are visually presented
in figure 5 and figure 6, and in aggregate form as mean values of scores per school
type (HAVO or VWO) per criterium in table 6, where the significance levels of
the t-tests are presented too. In the figures, each row represents the results of one
student group for the nine criteria assessed, and the height of each block represents
the score, ranging from 0 for prestructural level to 4 for extended abstract level.

To assess the inter-rater agreement, we computed Krippendorf ’s alpha
assuming ordinal scale from the scores of the twelve 12th grade VWO project
assessed by both teachers. The result is 0.78 which is a satisfactory value. Then,
we used t-tests to find out whether the achievements of all the VWO groups taken
together differ significantly from the achievements of the HAVO groups. We used
a one-tailed t-test with significance level of 0.05. The results show that the groups
differ significantly (printed bold in Table 6) for all the criteria except designing
and implementing model, and for reflection.

We now examine the students’ projects per criterium and per type of school,
i.e. HAVO vs. VWO. We state our findings in general terms and illustrate them
with characteristic text segments taken from the data.

565438 N Grgurina.indd 114565438 N Grgurina.indd 114 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

115

5W
ha

t d
o

yo
u

kn
ow

?
M

od
el

in
g

: w
ha

t?
O

bs
er

vi
ng

: w
ha

t?

D
es

ig
n

an
d

 im
pl

em
en

ta
tio

n
Va

lid
at

io
n

Ex
pe

rim
en

t
An

al
ys

is

An
sw

er

Re
�e

ct
io

n

Cheese barn 2

Mars 2

Tra�c 1

Potato farm 1

Fire 2

Potato farm 2

Bank 2

Cheese barn 3

W
ha

t d
o

yo
u

kn
ow

?
M

od
el

in
g

: w
ha

t?
O

bs
er

vi
ng

: w
ha

t?

D
es

ig
n

an
d

 im
pl

em
en

ta
tio

n
Va

lid
at

io
n

Ex
pe

rim
en

t
An

al
ys

is

An
sw

er

Re
�e

ct
io

n

Fire 1

Cheese barn 1

Flood

Mars 1

Bank 1

Cheese barn 4

Fire 2

Tra�c 2

Mars 3

Bank 3

Ohm's law

Bank 4

Potato farm 2

Cheese barn 5

Fire 3

Mars 4

Tra�c 3

W
ha

t d
o

yo
u

kn
ow

?

M
od

el
in

g:

w
ha

t?

O
bs

er
vi

ng
:

w
ha

t?

D
es

ig
n

an
d

im
pl

em
en

-
ta

tio
n

Va
lid

at
io

n

Ex
pe

rim
en

t

A
na

ly
sis

A
ns

w
er

Re
fle

ct
io

n

Total 1.38 1.43 1.68 2.43 2.08 1.58 1.64 1.66 1.77
HAVO 0.88 0.88 1.25 2.25 1.50 0.57 0.71 0.57 1.63
VWO 1.52 1.59 1.79 2.48 2.24 1.83 1.86 1.93 1.81
t-test significance 0.031 0.031 0.049 0.188 0.012 0.002 0.007 0.002 0.284

Table 6: Mean scores and significance levels of differences in the performance of the HAVO
groups compared to the VWO groups.

Figure 6: Cases and scores of the VWO groupsFigure 5: Cases and scores of the HAVO groups

565438 N Grgurina.indd 115565438 N Grgurina.indd 115 14-09-21 17:0414-09-21 17:04

Chapter 5

116

Case and research question. While many groups — in HAVO as well as in
VWO — did not engage in any form of research and relied on their existing
knowledge of the phenomenon under scrutiny, we see significant differences
between HAVO groups on one hand and VWO groups on the other. Among the
HAVO groups, none rose above the quantitative levels of SOLO. For example, the
group exploring life on Mars (case Mars 2), when answering what do they know
about it, simply wrote, “that life on Mars will not happen for a long time”. However,
this group made a good model and showed reasonable performance in the rest of
the assignment. In the VWO groups, we saw a great variation with some groups
reaching the relational level of SOLO by performing extensive research (e.g,
looking up how much carbon dioxide does a person produce) and hypothesizing
about possible outcomes of the model. For example, when describing what do
they hope to observe form their model, the VWO group exploring the optimal
strategy for potato farming (case Potato farm 2) wrote, “we hope to find out what
factors help increase the profit and what factors do not influence it that much. […]
Out hypothesis is that fertilizer will really increase the profit but that pesticides have
little influence on it. To prevent diseases and pests, we believe it is important to have
large distance between the plants and to remove affected plants immediately.” They
continue in their logbook, “We discussed what aspects of the phenomenon influence
the profit. We decided not to take into account the seasons, weather and water. We
did this because we look at the ideal conditions and other factors will not have a big
influence.”

Designing and implementing the model. For this part of the assignment, we
see the highest scores achieved and small variation among the classes. Every
group managed to design a model and more than half of them arrived at a model
matching or exceeding our minimal expert model. A small number of groups,
while succeeding in writing some code, did not manage to write a meaningful
program and subsequently failed to use it to perform an experiment. An example
is the VWO group working on case Flood who stated their case and research
question but failed to implement their model properly.

Validate the model. Here we see a great variation in scores and the VWO groups
outperforming the HAVO groups significantly. From the HAVO groups only one
reached relational level and one group did nothing meaningful to validate their
model. The response from the Cheese barn 3 group is exemplary: “The agents
simulate the production and sales of a cheese barn, thus the cheese production, the
sale of cheese, the agents simulated the production and sale of cheese as it happens
in the real world, so this corresponds well with each other.” All the VWO groups

565438 N Grgurina.indd 116565438 N Grgurina.indd 116 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

117

5

validated their models to some extent and almost a third of them reached the
relational level, e.g. saying in case of life on Mars (case Mars 4), “… maintenance of
buildings and solar panels … are not relevant for the results of our model but could
play a small role for our research question.”

Experiment, analysis and answering the research question. Again, here we see
a great variation in the scores with the VWO groups significantly outperforming
the HAVO groups. While 15 out of 17 VWO groups performed an experiment
and a number of them extensively employed the Behavior Space (a feature of
NetLogo allowing for systematic parameter sweeping and recording the results
of each model run), out of the eight HAVO groups only three provided evidence
of performing an experiment and none of them used Behavior Space. The
quality of the subsequent analysis of the results and the answers to the research
question seem to be directly related to the quality of the experiment. Analysis
and answering the research question are the only aspects of the assignment where
a total of four VWO groups reached extended abstract level. The VWO group
exploring the case of bank counters (case Bank 3) notes, “assigning the tasks to
specific counters leads to specialization of employees … this division of labor leads
to faster and more efficient performance: by performing the same task all the time,
the employees become specialized in particular tasks allowing them to carry out
these tasks quicker. Conversely, non-specialized employees will carry out their tasks
slower: because they get varying tasks all the time, they lack specific knowledge and
need to look up things for the customers, causing the task to last longer. Because of
this, tasks in scenarios 2 and 3 would take longer. However, the question is to what
extent does this counterbalance the efficient engagement of the bank counters. This,
then, is something that would require further research.”

Reflection. The HAVO groups and VWO groups perform similarly. Interestingly,
none of the groups in the 12th grade VWO reached relational or extended abstract
level. One of the 11th grade VWO groups reaching that relational level explored
evacuation of a burning building (case Fire 1) and wrote in their wish list, “What
we’d like to implement in our model is turtles making a clear choice what emergency
exit to take. … Sometimes they seem to doubt what exit to take, walk back and forth
between the exits and eventually wait for too long — dead through fire. That’s a pity
because in reality, they could’ve survived.”

Logbooks. In one of the schools the students were asked to keep a logbook, and
in the other they were not, so the logbooks were not assessed separately. However,
following the assessment finetuning guidelines, we read the submitted logbooks
looking for evidence of answers to other questions.

565438 N Grgurina.indd 117565438 N Grgurina.indd 117 14-09-21 17:0414-09-21 17:04

Chapter 5

118

5.6	 Discussion and Conclusion

We designed and investigated an assessment instrument for the assessment of
the intended learning outcomes for Computational Science. The design process
was all but straightforward due to the fact that some ILO’s of modeling are at the
core of CS (e.g. implementation of the model), while others are not often seen in
a CS classroom (e.g. experiment). Even for implementation, which comes down
to programming, it was not easy to find related work addressing assessment of
programs at just the right level of abstraction. The same holds true for validation:
while there is plentiful literature on validation of computational models, we could
not find any focusing on the assessment of validation in a formal learning setting.

The project documentation and program code proved to be sufficient sources
for assessment. However, when possible, we suggest to let students present
their projects in the classroom too, and we encourage the teachers using this
assessment instrument to take into account their observations of students at work
when assessing their projects, as suggested by a number of teachers participating
in one of our previous studies (Grgurina et al., 2017). Indeed, the teacher who
cooperated in this research noted that, while assessing his students’ work, he
constantly thought of his impressions from the classroom and wanted to take
these impressions into account. This might be especially important for students
who perform poorly when verbalizing their thoughts, as witnessed with many
HAVO students in the parts of the assignment requiring textual descriptions
such as stating the case and research question. We saw that none of these students
achieved extended abstract level, while in the 12th grade VWO one teacher
found four instances of student groups reaching it. The other teacher, however
— while assessing the same projects — found none and said, “it was difficult to
see clearly where the boundary lies between relational and extended abstract levels.”
Therefore, it could be argued that the extended abstract level is unobtainable for
HAVO students, which would signify a situation similar to the one described
by Castro and Fisler who found no instances of extended abstract level in their
students’ work (2017). Meerbaum-Salant et al. (2013) did not consider it at all and
designed assessment with only the three intermediate SOLO categories to monitor
novices’ learning of CS concepts. An issue to consider here is the question,
what level of understanding is intended for the HAVO students, as opposed to
the VWO students, and with what purpose are the students learning about
Computational Science. The HAVO students are following education stressing a

565438 N Grgurina.indd 118565438 N Grgurina.indd 118 14-09-21 17:0414-09-21 17:04

 Assessment of Modeling and Simulation

119

5

hands-on approach and leading to higher professional education and are often
described as thinking actors (Barendsen & Tolboom, 2016), which could explain
why there is no significant difference in their performance levels — compared
to those of the VWO students — when designing and implementing models.
The VWO students — often described as acting thinkers (Barendsen & Tolboom,
2016) — prepare for universities in an educational setting embracing a scientific
frame of mind and it is not surprising that they significantly outperform HAVO
students when validating their models and using them to conduct research — i.e.
perform experiments, analyze results and draw conclusion. Therefore, we want
to encourage teachers using this instrument to put more emphasis on the aspects
of the modeling process related to the specific needs of their students. Arguably,
for the HAVO students it might be more important to get a clear picture of the
phenomenon being modelled and focus on the development — or possibly only
enhancement — of a model, while for the VWO students, with the whole of their
education emphasizing the scientific attitude, it might be more important to view
a model as a vehicle to engage in scientific research and develop and use it as
such. In order to cater to their needs, we repeat our recommendation to further
sharpen the instruction about experimentation and data analysis (Grgurina et al.,
2016) and add a suggestion to actively coach students in the first phases of their
modeling projects when stating the case and research question and performing
the accompanying research.

In conclusion, our assessment instrument in the form of a practical assignment
and accompanying rubrics based on the SOLO taxonomy proved to be reliable,
as indicated by a high rate of inter-rater agreement. Its validity is corroborated
by exposing the significant differences in the performance levels of the HAVO
students compared to the VWO students: as expected, the performance levels of
the VWO students were significantly higher for almost all the criteria.

The results of this study exposed the needs of specific groups of students to
receive instruction prior to and during their work on the assignments, and they
informed us about the shortcomings in the curriculum intervention. All of these
findings will contribute to the further refinement of the instrument itself, to the
development of the teaching materials — an effort that will be reported elsewhere
— and to the development of the CS curriculum in secondary education in the
Netherlands, CS teacher training and CS education in general.

565438 N Grgurina.indd 119565438 N Grgurina.indd 119 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 120565438 N Grgurina.indd 120 14-09-21 17:0414-09-21 17:04

Chapter 6

Modeling and Simulation:
Students’ Understanding and

Difficulties Related to Verification
and Validation

In this final study, we focus on students’ understanding and difficulties while
working on Computational Science assignments in CS class. We interviewed eleven
12th grade secondary education students who made models and ran simulations
of phenomena from other disciplines, and we charted their understanding related
to modeling aspects research, abstraction, verification/validation and reflection
together with difficulties they experience. We saw that the initial phases of the
modeling cycle did not represent great challenge to the students, but that they still
experience difficulties in the abstraction and verification/validation phases. The
results of this study will inform the further development of the teaching materials,
teaching methods and teacher training.

565438 N Grgurina.indd 121565438 N Grgurina.indd 121 14-09-21 17:0414-09-21 17:04

122

565438 N Grgurina.indd 122565438 N Grgurina.indd 122 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

123

6

6.1	 Introduction

In this final study of our project, we focus on students’ understanding and
difficulties while working on Computational Science assignments.

In our first study (chapter 3) — focused on Magnusson’s component M1
concerned with the goals and objectives as well as curricula related to a specific
topic being taught — we obtained an operational description of the learning
objective Computational Science that describes the modeling cycle for simulation
modeling through its elements purpose, research, abstraction, formulation,
requirements/specification, implementation, verification/validation, experiment,
analysis, reflection. We also identified specific challenges the students experience
when engaging in modeling activities: difficulties to decide what phenomenon to
model, to determine the right level of abstraction, and to formulate the problem
under scrutiny suitably for modeling through ABM; inadequate programming
knowledge, inability to correctly attribute unexpected program behavior to either
errors in the model itself or to emergent behavior of the model, and finally, not
conducting experiments with their models in a systematic fashion. In our second
study (chapter 4), we explored computer science teachers’ initial PCK on modeling
and simulation and in particular, their ideas about instructional approach to
teaching Computational Science and assessment. The finding of these two studies
informed the development of our teaching materials, a practical assignment
and an accompanying assessment instrument. In our third study (chapter 5), we
focused on the development of that assessment instrument to monitor the levels
of understanding in the learning outcomes of students engaging in modeling
projects, thus focusing on Magnusson’s component M4.

In this study, we focus on students’ understanding and difficulties while
working on Computational Science assignments using the teaching materials we
developed — Magnusson’s component M2. Our aim is to explore these, with a
particular focus on their actions leading to the development of valid models. We
seek to answer the following research question:

1.	 How can the students’ understanding of model validation be
portrayed in terms of validation techniques they employ to ensure
the development of valid models?

2.	 What difficulties do the students encounter when verifying and
validating their models?

565438 N Grgurina.indd 123565438 N Grgurina.indd 123 14-09-21 17:0414-09-21 17:04

Chapter 6

124

Our findings will serve to complete our exploration of teaching Computational
Science in the context of the CS course in Dutch secondary education and they
will contribute to the further development of teaching materials and teacher
training courses.

6.2	 Theoretical Background and Related Work

6.2.1	 Modeling Cycle
Building and using a simulation model is an iterative, cyclic process consisting

of five stages and reflection on modeling process, as described in detail in chapter 3.
In the definition stage, the intended purpose of a model is stated and the

modelers perform research about the phenomenon that is being modeled.
In the conceptualization stage, in the process of abstraction it is decided what

aspects to include in the model and what to leave out, and the problem is formulated
in a way that enables us to use a computer and other tools to help solve them
(CSTA Computational Thinking Task Force, 2011). This leads to the development
of a conceptual model which is validated to ensure conceptual validity of a model.
During this validation step, it is determined whether the conceptual model is built
upon correct theories and assumptions (Sargent, 2013) and the modeler can consult
domain experts and the customer to ensure this aspect (Law, 2009). If necessary,
these steps are repeated until the conceptual model is satisfactory (Sargent, 2013).

In the subsequent formalization stage, a conceptual model is implemented —
i.e. programmed using software engineering techniques — yielding a simulation
model which is verified to make sure the programming is correct, i.e. ensuring
that it really does what the modeler think it is doing (Brade, 2004; Sargent, 2013;
Sturrock, 2015). Again, this step — and possibly adjusting the conceptual model
too — can be repeated until a satisfactory simulation model is obtained (Law,
2015). This simulation model is then subject to operational validation to determine
whether the model’s output behavior has a satisfactory range of accuracy (Sargent,
2013). The results of the operational validation process can prompt adjustments
of the conceptual model or the implemented simulation model, and in that case,
these steps can be repeated until a satisfactory simulation model is obtained.

In the execution stage, the model is used for its purpose, i.e. to design and run
experiments.

565438 N Grgurina.indd 124565438 N Grgurina.indd 124 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

125

6

Finally, in the conclusion stage, the results of the execution stage are analyzed
and translated back into the problem domain.

Following each of these stages and upon the completion of the modeling
process, reflection takes place and the whole process is possibly repeated.

6.2.2	 Validity
While it is impossible to make a perfect model (Rand & Wilensky, 2006;

Sturrock, 2015), there are many validation approaches and techniques ensuring
that the produced model is accurate, credible, and fit for the intended purpose
(Law, 2009).

The measures modelers can take to contribute to the development of valid
models include the model construction, testing the models, enlisting the help of
others and reflection about the models, as illustrated in the figures 7.

"

ValidatingWith others Modelers themselves

Figure 7: Validating a model

During the iterative process of the model development, the construction and
testing of a model are intertwined. Models are constructed upon assumptions
(Sargent, 2013) resulting from research into the existing theories and possibly
historical data concerning the phenomenon to be modelled, and abstraction —
as described in the section on the modeling cycle (see figure 8). A model can be
calibrated in order for it to be in harmony with the real world (Carley, 1996).

Construct the model Reasoning
Research

Abstraction

Figure 8: Constructing a model

On one hand, the validity of a model can be derived by having confidence in
on validity by construction, thus relying on philosophy of science — rationalism
approach which entails that a model is correctly developed from clearly stated
reasoning (Sargent, 2013).

565438 N Grgurina.indd 125565438 N Grgurina.indd 125 14-09-21 17:0414-09-21 17:04

Chapter 6

126

 On the other hand, numerous validation techniques rely on testing to judge the
validity of a constructed model depending on its behavior and outcomes that are
generated as the input parameters are varied, and then observed and interpreted.

Test the model

Generate outcomes

Observe outcomes

Interpret outcomes

Figure 9: Testing a model

To generate the outcomes, several tests can be performed. Examples of such
test are stress test (i.e testing with wide range of parameters and random numbers)
(Carson & John, 2004), parameter variability–sensitivity analysis (i.e. varying the
values of parameters and observing the resulting outcomes to determine whether the
relations correspond to those of the real system), extreme condition test (i.e. checking
that the model’s structure and outputs are plausible for extreme and unlikely
combinations of the system’s levels of factors) and degenerate tests (i.e. looking into
the degeneracy of the model’s behavior) (Sargent, 2013).

To observe the generated outcomes, several methods can be employed.
The generated outcomes can be observed visually through animation (i.e.
graphical display of the model’s behavior as it is run) and trace (i.e observation
of the behavior of a specific entity during the run of the model) (Sargent, 2013).
Another way to observe the generated outcomes is by making use of quantitative
measures expressed through operational graphics (i.e. graphical display of various
performance measures as the model runs) (Sargent, 2013) or numerically through
various performance measures (Law, 2009).

Finally, the outcomes are interpreted. Several techniques can be used to
interpret the model’s outcomes. Examples of such techniques are comparison with
real data through historical data validation or predictive validation and checking
for event validity (i.e. comparing the ‘events’ occurring during the model run with
those occurring in the real system), checking input-output consistency and data
relationship correctness (i.e. making sure “Data relationship correctness requires data
to have the proper values regarding relationships that occur within a type of data,

565438 N Grgurina.indd 126565438 N Grgurina.indd 126 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

127

6

and between and among different types of data.”) (Sargent, 2013). Furthermore, a
model can be compared to other models (Bungartz et al., 2014; Wilensky & Rand,
2015), and finally, its consistency with previously verified theories can be checked
(Bungartz et al., 2014). Notably, when a real system does not exist, a model can
still be considered valid while not accurate (Schmid, 2005).

When interpreting the model’s outcomes, the judgement about the model’s
validity can be based on objective criteria that use statistical tests on the outcomes
of a model (Law, 2009; Sargent, 2013), or on subjective criteria.

Figure 10: Testing a model — various techniques

In addition to these techniques, the modelers can involve various stakeholders
to support the validation process. A peer group can be involved to assess the
model’s correctness through a structured walkthrough (Law, 2009; Sargent, 2013).
The customer ordering the model can be asked to participate in the review of the
model (Carson & John, 2004) or domain experts can be consulted to assess the face
validity of a model (Sargent, 2013; Wilensky & Rand, 2015) through, for example,
Delphi test involving a panel of experts (Carley, 1996) or Turing test where experts

Test the model

Generate outcomes

Stress test

Extreme condition test

Degenerate tests

Observe outcomes

Animation

Trace

Operational graphics

Performance measures

Interpret outcomes

Techniques to interpret data

Checking input - output consistency

Checking consistency with
previously verified theories

Approaches to data interpretation
Objectively for example comparizon using

statistical tests

Subjectively

Parameter variability – sensitivity
analysis

Comparison to other models

Comparison to real data
Historical data validation

Predictive validation

Event validity

Data relationship correctness

565438 N Grgurina.indd 127565438 N Grgurina.indd 127 14-09-21 17:0414-09-21 17:04

Chapter 6

128

are asked whether they can distinguish the model’s outcomes from the outcomes
of the real system (Sargent, 2013).

With othersDiscuss the model

Structured walkthrough

Delphi test

Turing test

Consultation of domain experts

Review

Figure 11: Validating a model with others

Reflecting on the model takes place alongside with technical aspects of
validation, establishing the degree of confirmation (Naylor & Finger, 1967) — and
similarly, accuracy (Schmid, 2005) — by determining satisfaction that the desired
results were sufficiently achieved (Bungartz et al., 2014) and credibility — i.e.
degree of confidence in the model (Brade, 2004) — play a crucial role. Both the
modeler and the customer who ordered the model need to be convinced that the
model is plausible — i.e. its results do not contradict previously validated theories
— and sufficiently fit for purpose (Brade, 2004; Law, 2009; Sargent, 2013).

Reflect

Plausibility

Accuracy

Satisfaction

Credibility

Figure 12: Reflecting on a model

As mentioned in the section on the modeling cycle, any of these actions can be
repeated until a sufficiently valid model is obtained.

565438 N Grgurina.indd 128565438 N Grgurina.indd 128 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

129

6
Fi

gu
re

 1
3:

 C
od

in
g

ca
te

go
rie

s

Va
lid

at
in

g
W

ith
 o

th
er

s
M

od
el

er
s

th
em

se
lv

es

Te
st

 th
e

m
od

el

G
en

er
at

e
ou

tc
om

es

S
tre

ss
 te

st

E
xt

re
m

e
co

nd
iti

on
 te

st

D
eg

en
er

at
e

te
st

s

O
bs

er
ve

 o
ut

co
m

es

A
ni

m
at

io
n

Tr
ac

e

O
pe

ra
tio

na
l g

ra
ph

ic
s

P
er

fo
rm

an
ce

 m
ea

su
re

s

In
te

rp
re

t o
ut

co
m

es

Te
ch

ni
qu

es
 to

 in
te

rp
re

t d
at

a

C
he

ck
in

g
in

pu
t -

 o
ut

pu
t c

on
si

st
en

cy

C
he

ck
in

g
co

ns
is

te
nc

y
w

ith

pr
ev

io
us

ly
 v

er
ifi

ed
 th

eo
rie

s

A
pp

ro
ac

he
s

to
 d

at
a

in
te

rp
re

ta
tio

n
O

bj
ec

tiv
el

y
fo

r e
xa

m
pl

e
co

m
pa

riz
on

 u
si

ng

st
at

is
tic

al
 te

st
s

S
ub

je
ct

iv
el

y

P
ar

am
et

er
 v

ar
ia

bi
lit

y
–

se
ns

iti
vi

ty

an
al

ys
is

C
on

st
ru

ct
 th

e
m

od
el

R
ea

so
ni

ng
R

es
ea

rc
h

A
bs

tra
ct

io
n

C
om

pa
ris

on
 to

 o
th

er
 m

od
el

s

C
om

pa
ris

on
 to

 re
al

 d
at

a
H

is
to

ric
al

 d
at

a
va

lid
at

io
n

P
re

di
ct

iv
e

va
lid

at
io

n

E
ve

nt
 v

al
id

ity

D
at

a
re

la
tio

ns
hi

p
co

rr
ec

tn
es

s

D
is

cu
ss

 th
e

m
od

el

S
tru

ct
ur

ed
 w

al
kt

hr
ou

gh

D
el

ph
i t

es
t

Tu
rin

g
te

st

C
on

su
lta

tio
n

of
 d

om
ai

n
ex

pe
rts

R
ev

ie
w

R
ef

le
ct

P
la

us
ib

ili
ty

A
cc

ur
ac

y

S
at

is
fa

ct
io

n

C
re

di
bi

lit
y

565438 N Grgurina.indd 129565438 N Grgurina.indd 129 14-09-21 17:0414-09-21 17:04

Chapter 6

130

6.3	 Method

6.3.1	 Educational Setting
The study took place within the regular CS course the first author teaches

to 12th grade students. For them, this was the last year of their three-year CS
course. During an eight-week period they studied Modeling and Simulations
with NetLogo using newly developed teaching materials. The first five weeks
were dedicated to studying the teaching material and making the accompanying
assignments. During the rest of the period, the students worked in small groups
(mostly in pairs) on a large practical assignment where they investigated various
phenomena by making a model in NetLogo and exploring it through running
simulations. This process was strictly planed and contained milestones when the
students produced the required project documentation and kept logbooks. At
scheduled moments, the students handed in all the documentation through google
forms. In these forms, they had to describe their phases of the modeling process
and in particular, they were asked to elaborate on the validation they performed.
This practical assignment is detailed in chapter 5. At the end of the period, each
group presented its model to the rest of the class and the students were encouraged
to discuss their models, results, design choices, programming issues and other
questions they found relevant. A few days later the students turned in their final
reports and NetLogo programs. They were encouraged to improve their models
taking into account the feedback they got during the presentations.

6.3.2	 Participants
Out of the twelve students in the class, one opted out and decided not to

participate in the study. The eleven participating students — two girls and nine
boys — formed six groups. The overview below shows the six groups (G1 through
G6) consisting of students S1 through S11 and the cases they worked on.

•	 G1 (S1 and S2): Potatoes. A potato farmer wants to maximize
the profit while taking into account the costs for seed plants and
fertilizer, contagious diseases and pests whose propagation depends
on the distance among the plants and the engagement in clearing
out affected plants. What is the optimal strategy for planting and
farming potatoes?

565438 N Grgurina.indd 130565438 N Grgurina.indd 130 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

131

6

•	 G2 (S3 and S4): Fire evacuation. In case of fire, it is important that
people are alarmed quickly in order to leave the building on time.
What are the optimal numbers of alarm bells and emergency exits
on the ground floor of your school to achieve this goal?

•	 G3 (S5 and S6): Life on Mars. After the initial supplies and shelter
are delivered to Mars, would it be possible to produce sufficient
water, air and food to survive? In other words, would be possible to
found a sustainable human colony on Mars?

•	 G4 (S7 and S8): Ohm’s Law. Check the Ohm’s law for series circuit
and parallel circuit.

•	 G5 (S9 and S10): Cheese barn: A cheese farmer produces cheese
and stores it in a warehouse with limited capacity. The older the
cheese, the high the price it fetches. The farmer can sell the cheese
to supermarkets with guaranteed purchase and fixed price, or at the
farmers market for higher price but uncertain sales volume. What
are the optimal production and selling strategies?

•	 G6 (S11): Bank counters. Investigate the optimal number and task
division of bank counters as to minimize the waiting time of the
customers with various needs.

The purpose of the most of these models was to find an optimal solution for
a problem through experimentation. Only one of the models — Ohm’s Law —
had a different purpose, namely, to seek explanation for Ohm’s Law as a result of
behavior of electrons.

6.3.3	 Data Collection
After the project were graded, these eleven students were interviewed. We

performed individual semi-structured interviews with them using the protocol
cited below. While we were primarily interested in verification and validation, for
the sake of a naturally flowing conversation and completeness, we enquired about
the entire modeling process and emphasized the part concerning verification and
validation. To help recollection during interviews, we ran students’ models on a
computer and presented their documentation.

565438 N Grgurina.indd 131565438 N Grgurina.indd 131 14-09-21 17:0414-09-21 17:04

Chapter 6

132

Here we cite the interview protocol we used.

•	 Introduction, stating the purpose of the interviews
•	 Showing the students the documentation and models they turned in
•	 Discussing their modeling process through the following questions:

1.	 What phenomenon did you model?
2.	 What did you know about this phenomenon beforehand? Have you

performed any research and what were your findings?
3.	 What did you hope to find out using this model?
4.	 How did you test your model?
	 4.1.	� What did you do to debug and verify your model (i.e., your

NetLogo program)?
	 4.2.	 Validation
		 4.2.1.	� How did you perform microvalidation to validate the

behavior of individual agents?
		 4.2.2.	� How did you perform macrovalidation to validate the

behavior of the entire system?
	 4.3.	� Was this a linear or a cyclic process? What did you encounter?

Have you been changing code to achieve “better” behavior of
the model?

	 4.4.	� On what basis did you conclude that your model was valid?
(note to interviewer: pay attention to: criteria formulated in
advance, consultation with an expert and common sense.)

	 4.5.	 To what degree are you convinced?
	 4.6.	 To what degree are you satisfied with the validity?
5.	 Were you able to perform experiments with this model?
6.	 Did you obtain useful results?
7.	 Are you satisfied?
8.	 What is you wish list for a next version of your model?
9.	 Please reflect on the whole modeling process you engaged in.

The interviews were recorded and transcribed verbatim and the transcripts
were used for data analysis.

565438 N Grgurina.indd 132565438 N Grgurina.indd 132 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

133

6

6.3.4	 Data Analysis
We performed a qualitative analysis of the interviews and of the documentation

students turned in. We first identified text segments of documentation and
interview transcripts in which model validity played a role. The units of analysis
were coherent chunks of text pertaining to a specific action related to aspect
contributing to determining validity, and reasoning behind it.

In the first analysis phase, the text segments were classified according to the
core categories in our validation process model (see Figure 13):

•	 Construct the model through reasoning (by the modelers
themselves)

•	 Test the model (by the modelers themselves)
•	 Discuss the model (with others)
•	 Reflect
In the second phase, we analyzed the strategies employed by the students

within each category by means of an open coding process. In subsequent coding
cycles, we grouped the descriptions of the students’ validation activities into more
abstract descriptive categories, using the elements of our validation process model
(see white ovals in Figure 13) whenever possible.

In the third phase we looked for students’ difficulties and misconceptions
within each of the resulting categories and classified them in a similar open coding
process.

In the process of determining the coding schemes for strategies and difficulties,
the first and second author analyzed parts of the interviews separately and
discussed their findings until they agreed on the classification.

6.4	 Results

In this section, we portray the activities the students reported employing in
order to develop validated models while constructing and testing their models,
and while reflecting. We use our theoretical framework depicted in figure 13 to
organize the presentation of the results. We state our findings in general terms and
illustrate them with characteristic text segments taken from the data.

565438 N Grgurina.indd 133565438 N Grgurina.indd 133 14-09-21 17:0414-09-21 17:04

Chapter 6

134

6.4.5	 Constructing the Model
Models need to be built upon correct theoretical assumptions in order to make

them conceptually valid, and, ideally, calibrated to fit the empirical data which
are adequate and correct, thus ensuring data validity. To this end, one needs to
possess adequate understanding of the phenomenon under scrutiny and engage
in the process of abstraction.

Research
Adequate understanding of the phenomenon under scrutiny can be obtained

through active engagement in research, as some of the students did, or by other
means such as exploiting their own experience or utilizing what they learned at
school.

In total, students reported relying on three sources of their knowledge of the
phenomena they modeled.

1.	 Experience. All students rely on their experience or what they would
consider common sense to a certain degree when considering
their understanding of the phenomenon under scrutiny. Some of
them consider this to be sufficient and feel no need to do extensive
additional research, such as group G2 and presumably G6. Student
S3 reported, “well, we had a fire drill once, bur further than that, we
didn’t know the science behind it” but added that they consulted an
article on how to model fire drills. Student S11 did not report doing
any research or using any form of real-world data.

2.	 Learning at school. With several of the phenomena modeled, students
involve what they learned at school within some other school subject
into their modeling either to inform the essential assumptions, or
for some additional detail. Group G4, who modeled Ohm’s law,
relied on their existing knowledge of chemistry and physics and did
not perform any additional research.

3.	 Research. In addition to their own experience or knowledge from
school, some students go to great lengths when researching the data
necessary for their model, and they subsequently calibrate their
models to fit the data they found. Yet, this still does not guarantee a
realistic model since some data are hard to find or it does not occur
to students they need them. Groups G1 and G3 performed extensive
research about the phenomena thy modeled and group G5 looked

565438 N Grgurina.indd 134565438 N Grgurina.indd 134 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

135

6

up some of the data. Group G1 researched how many tubers a potato
plant yields, what are the costs of fertilizer and spray, and other
relevant data for potato farming. However, when asked how come
their results suggested not to use fertilizer and spray, S1 responded
that it was difficult to find out how much money a potato earns, and
how much does it cost to fertilize and spray a single potato plant.
Similarly, group G3 who modeled sustainability of human colony
on Mars, investigated how much electricity does a solar panel
produce, how much oxygen and tubers a potato plant produces,
how much energy, oxygen and water a person needs to survive, how
photosynthesis works, and many other relevant details. Student S6
comments, “we simply looked up many things the way they would
resemble reality.” On the other hand, group G5 did look up the
categorization of cheese depending on age (young, mature, etc.) but
did not investigate specific economic aspects of cheese production
and sales. Rather, they relied on what they learned in the economy
class about market forces in general.

Abstraction
All students pay careful attention to build their models upon correct theoretical

assumptions and thus engage in the process of abstraction (Grgurina et al., 2016)
where they decide which aspects of the phenomenon under scrutiny to take
into account and in what form, and which ones to leave out. When employing a
proper perspective, students use sound judgement and make appropriate choices
concerning the theoretical assumptions underlying their models. This paves the
road to building a model that is sufficiently fit for its purpose. For example, in
the process of abstraction, group G1 chose to unite all possible potato diseases,
infestations etc. into one phenomenon and call it pests. This decision simplifies
the design of their model by disposing of the unnecessary details while retaining
the essence of infectious and transferable diseases and infestations.

Among the six groups observed, we see three erroneous perspectives when
performing abstraction.

1.	 Oversimplification occurs when the students go too far in their
quest for feasible assumptions, leading to a very specialized model
of limited usefulness. This is a conscious course of action caused
by inability to design or implement a model that would be based

565438 N Grgurina.indd 135565438 N Grgurina.indd 135 14-09-21 17:0414-09-21 17:04

Chapter 6

136

on more general and not so specific assumptions. Group G2 tried
to make a model for evacuation of a burning building in general,
thus with any floor plan. In their initial attempts, the agents in their
model were walking through the walls on their way to the nearest
emergency exit and the students did not know how to program the
model to alleviate this behavior. Instead, they decided to use only
a particular floor plan in combination with additional measures to
prevent this problem from occurring.

2.	 Omission occurs when students are not aware there are aspects of
the phenomenon under scrutiny that are essential in order for the
model to represent that phenomenon correctly and thus make the
model fit for its intended purpose. An example of such an omission
is given by group G5 who modeled a cheese barn. In their model, the
cheeses only get the opportunity to ripen if they do not get sold first,
whereas in this case it is essential to put cheeses aside and let them
wait until reaching their intended age before being sold.

3.	 Circular reasoning is a misguided attempt by a modeler to use the
outcomes of a model as model’s assumptions. Similarly to omissions,
students are not aware of this logical fallacy when they employ it as
a solution to the problem for which they have no idea how to solve
otherwise. Group G4 unwittingly used Ohm’s law to prove it. When
the teacher pointed this out, student S7 commented, “and that was
purely because at the moment we had no idea how we’d calculate
the resistance and it didn’t occur to us, like, you can’t use that at all”
and went on to conclude, “the result is that our model works like the
Ohm’s law, but it doesn’t confirm it.”

6.4.6	 Testing the Model
Once the assumptions are established as a result of the research and abstraction

process, the model is developed and implemented, i.e., programmed. In the
process of verification, the modeler ensures that the model really does what they
think it is doing (Sturrock, 2015). The simple fact that a program runs, i.e. there
are no syntax errors, is no proof of a correct implementation.

In this section we report on what students saw as errors themselves and in
the next section we report on what techniques they employed to diagnose those
errors.

565438 N Grgurina.indd 136565438 N Grgurina.indd 136 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

137

6

Students report building their models iteratively in small steps and running
them all the time to test them, intertwining verification with validation (Wilensky
& Rand, 2015). They report two types of errors encountered:

1.	 Data omissions happen when students erroneously copy or
implement constants from their research data into their programs.
Student S2 reported their program produced unexpected and
improbable fluctuations of the number of people in their Mars
colony. The error was caused by the fact that, in an early version of
their program, a tick represented a day in the life of a person and a
month in the life of a potato plant. When this error was fixed, the
number of people showed smaller, acceptable fluctuations.

2.	 Process omissions occur when assumptions underlaying a model lack
sufficient detail. For example, student S5, when modeling Ohm’s law,
observed in an early version of the model that the electrons “become
stuck and could not go any further. I don’t think it works like this, so
we had to change it.” They added a random component to the angle
at which the electrons bounced from the atoms and that solved this
problem.

If a model is to be useful, it needs to be valid. Here we describe techniques
students employed to validate their models and report on measures they took to
improve their models’ validity.

During an iterative cyclic process, the students used a twofold approach to
establish the validity of their models. They relied on the correct construction of
their models from appropriate assumptions and then reasoned about their models
to draw conclusion about the validity of the models, or alternatively, they tested
their models: they generated model outcomes by varying the input parameters of
their models, observed and interpreted the behavior of their models.

Generating Outcomes
All the students who tested their models engaged in parameter sweeping —

a technique where the model’s parameters are systematically varied to generate
outcomes, and they subsequently observed and interpreted the outcomes.

Varying the parameters as a validation technique serves two purposes: to
determine the influence of various parameter values to the model’s output
(parameter variability - sensitivity analysis) and to determine whether the

565438 N Grgurina.indd 137565438 N Grgurina.indd 137 14-09-21 17:0414-09-21 17:04

Chapter 6

138

model’s outputs fall into acceptable range (operational validation). The parameter
variability - sensitivity analysis technique was employed by groups G1 and G2. For
example, student S2, who modeled potato farming, when asked if their group was
playing with the distance between potato plants, answered, “yes, that is the density
percentage. How many plants are being planted.” Almost all the groups employed
operational validation to make sure their models’ outputs fall into acceptable
range. Student S4, modeling the evacuation of people in a burning building,
said, “Alarm bell number 5 was in the middle, so then you had alarm bells, four
emergency exits, that was I believe almost the best. […] was around 600 [tics],
everything was around 600, that was good. Except, one alarm bell [only], that is
alarm bell number one, I believe it was down there in the left corner. Well, then it
takes really 900 tics.”

The students we interviewed employed the parameter sweeping techniques
not only to validate their models by getting confirmation that the models were
good enough, but also to calibrate their models by choosing the appropriate
parameter values, and during experiments which some of them saw as additional
confirmation of the validity of their models as well. Groups G1 and G5 are
examples of groups who employed systematic parameter sweeping while running
their models to perform experiments and reported that the results thus obtained
additionally convinced them of the validity of their models. So did group G3
too: they tested various parameter values and discovered that their Mars colony
was sustainable when it contained 17 people. Group G4 also reported finding
parameter values that guaranteed a desired constant output value.

Several students report hard coding some of the values into their models rather
than having the user determine these parameter values when running the model.
For example, the model made by group G6 has no input parameters at all, but
the model’s parameters are determined at random during the execution of the
program.

Observing Outcomes
As the outcomes are generated, there are two main ways to observe the outcomes

and behavior of a model: visual inspection and making use of quantitative
performance measures.

Visual Inspection. We saw that almost all the groups employed visual
inspection either by looking at the animation of the whole model, or by tracing

565438 N Grgurina.indd 138565438 N Grgurina.indd 138 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

139

6

some of the agents. Consequently, some students were content with what they
observed, while others realized their models needed to be improved.

Some students observed model’s behavior, established event validity and
interpreted the model’s outcomes to be in line with reality and thus acceptable.
For example, student S2, who modeled potato farming, said, “And that is what
we looked at […] that a plant doesn’t get sick at a random spot, but that it really
gets infected [by the neighbors]”. Student S11 traced the behavior of the individual
agents waiting in the queue as well as observed the lengths of the queues through
animation and also concluded that the model’s behavior was realistic enough.

Other students encountered what they experienced as unrealistic behavior of
their models. We observed twofold approach to dealing with this phenomenon:
either fixing the problem or deciding that the problem is not relevant. Student S8,
who modeled Ohm’s law, saw an error concerning electrons not bouncing back
when colliding with atoms, and fixed it, as described in the section on verification.

Group G2, who modeled the evacuation of a burning building, partly fixed the
problem, as described in the section on abstraction (section 6.4.1). After fixing
the problem, they observed that people in their model left the building quickly
enough, so they decided that their model was nevertheless realistic enough.

Two groups did not employ visual inspection: in the cheese barn model made
by group 5, visual aspects such as position, movement or interactions of cheeses
play no role and cheeses only change color to indicate their age. Similarly, group
G3 modeled no visual interactions in their Mars colony model and therefore relied
on observation of quantitative measures to validate their model.

Quantitative Measures. Almost all the students observe the outcomes of
their models through quantitative measures. To this end, they observe relevant
numerical values produced by the model by keeping an eye on monitors23 to
observe performance measures, or charts produced while the model runs to observe
operational graphics — and thus interpret the model’s outcomes subjectively. In
their report, group G1 who modeled potato farming, said, “We tested these things
extensively by using monitors.” Student S5, who modeled sustainability of human
colony on Mars, said,” we got a very oscillating line of the number of people on
the planet, say, because there were a lot of people being born and, say, if there
was enough food, then the potatoes were gone, then everyone died.” Student S10,
who modeled cheese barn, said, “… so you can never have more than 144, […]

23  A monitor in NetLogo is an interface element displaying the value of a variable.

565438 N Grgurina.indd 139565438 N Grgurina.indd 139 14-09-21 17:0414-09-21 17:04

Chapter 6

140

144 cheeses are what, that you could see in the chart.” Interestingly, student S11,
who modeled bank counter queues, made extensive use of monitors in the model
to observe its behavior and outcomes, but does not explicitly refer to them when
asked about validating the model.

Interpreting Outcomes
In order to assess the validity of a model, the observed outcomes can be

interpreted, either subjectively or objectively — for example using statistical tests.
When possible, the model’s outcomes can be compared to the behavior of the

real system.
Three groups reported comparing the events occurring in their model to those

of a real system as they perceive it, thus employing event validity technique and
checking for consistency with previously verified theories. However, they made no
use of historical data. When asked what they think would happen in reality if the
farmer did not intervene, student S1 replied, “I think the affected plants would
take over. And here, the new, healthy plats are added all the time” and later went
on to add, “affected plants die and in reality, a new plant would not be planted
there. So it is, wait first for everything to be harvested and only then will the new
plants be added.” When the model results indicated that use of fertilizer made no
difference, student S2 commented, “right, that is not realistic, so we knew through
our common knowledge […] that the outcomes were not good.” Yet, this group
found their model sufficiently valid, as described in the section on plausibility
and accuracy. Group G2 compared the behavior of their model with their own
experiences of a fire drill at school and concluded that the model was satisfactory.
Student S11 commented, “In reality people enter the building and join the queue,
the shortest queue.”

Reasoning about the Model
When the data from the real system are not available, validity of a model can

be derived through reasoning. Here, one asserts that if the assumptions and the
implementation of a model are correct, then it follows that the model is valid.
This is what group G5 did and student S9 said, “so then we looked if this and this
happened one after another, does that happen one after another in reality too? If
that’s right, then it should be right in the model too, because, say, we had no real
information if it was really right, so no real information from cheese producers
that you could fill in, like, are the outcomes the same.”

565438 N Grgurina.indd 140565438 N Grgurina.indd 140 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

141

6

6.4.7	 Reflection
The validity of a model is related to its intended purpose. The modelers

make subjective judgements expressing how plausible, accurate and credible they
perceive their models and whether they are satisfied with them.

While some students go to great lengths to ensure their models are built upon
realistic data and sufficiently calibrated, checking their models’ outcomes against
realistic data remains a problem.

Groups G1, G5 and G6 are aware of this issue and realize that a model can
be valid without being accurate (Schmid, 2005) and that model’s plausibility
is substantiated when its outcomes do not contradict previously verified theories
(Bungartz et al., 2014). Student S2 said they were satisfied with their model,
“when there was a visible difference between a higher density value or a higher
contagiousness value. First there was no visible difference. When there was
somewhat bigger visible difference, […] we knew that it was more realistic than at
first.” Group G5 was unable to validate their model against real data, but observed
the outcomes of their model instead and concluded their model was valid when
the trends in the output data resembled what they would expect to happen in
the reality. Similarly, Student S11 said, “Because you can’t really with numbers
— I haven’t checked with numbers if it worked. But rather, what do I see, does it
somewhat correspond with what I’d expect in reality.”

All other groups, except G6, commented on the plausibility of their models
in light of possible contradiction with previously verified theories or unnatural
behavior. Student S3 said they were satisfied with their model,” when, to begin
with, as many people as possible left the building and it happened within realistic
time frame — not like initially spending ten minutes in some corner walking to
and fro.” Group G3 was satisfied when their model’s outcome was that the number
of people in their sustainable Mars colony turned out to be relatively stable at
around 17, without extreme oscillations.

On the other hand, student S7 has doubts about their model and any other
model of electrons as well, “well, what is bothering me, every model is actually
wrong in my view”, but still goes on to say, “yet it was a good model, because, at
least it showed, what we could see was that the values it produced corresponded
rather well, so then we thought, we’ll use it.”

All the students commented on the confidence in their models — i.e., credibility,
and satisfaction that the desired results were achieved sufficiently. Four groups found
their models reasonably credible and were satisfied, albeit with the necessary, yet
unspoken, reservations in the light of the context where their models were made

565438 N Grgurina.indd 141565438 N Grgurina.indd 141 14-09-21 17:0414-09-21 17:04

Chapter 6

142

— that is, within computer science lessons, as their first encounter with modeling.
Student S11 was satisfied with the model, “because the model works the way I
wanted, and the results, of course I’m happy with. Because you can do something
with it, say something about it.” When asked about being convinced about their
model, student S2 replied, “I don’t think this would happen like this for real. But I
wouldn’t know what I’d need to improve.” Student S4 commented their model, “we
saw of course that the program, running once, that everyone escaped, so it was
like, it worked”; then went on to say, “but I think we were happy it worked, and
yeah, maybe it is a suboptimal solution” and finally concluded, “if it works and it’s
somewhat realistic, then we find it all right.” Student S3 elucidated, “Yeah, we were
happy when everyone who heard the alarm just really went outside. Not through
the wall but just through a doorway.” However, student S3 doubts this model is
sufficiently realistic to be useful and would first need the people in the model to
react to each other and to move more realistically. Student S6 commented their
model, “I find that for the most part it corresponds [to reality], but if you look at
the small details, we didn’t find them relevant and they don’t correspond in my
opinion.” When asked when they would consider their model a success, student
S6 replied, “when people stay alive for a longer period of time, it succeeded” and
went on to comment, “with the assumptions we made and the stuff we looked up,
I’m quite happy with the result.”

Two groups were not confident. Student S9 commented, “I know of course
that this is not 100% correct, that it isn’t exactly realistic. So I think to myself, can
you really do something with it — that a cheese producer would really use this
to determine his sale strategy, I doubt it.” Student S7, when asked about being
convinced about their model, replied, “Not at all. Well, it’s the small things, I don’t
know, it doesn’t work the way I was taught it works” and went on to elaborate
that nobody actually knows about electrons for certain, and that the notion of an
electron as accepted in modern science is also only a model.

6.5	 Conclusion and Discussion

In this section we present our findings and reflect on them.

6.5.1	 Findings
In answering our first research question — How can the students’ understanding

of model verification and validation be portrayed in terms of validation techniques

565438 N Grgurina.indd 142565438 N Grgurina.indd 142 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

143

6

they employ? — we characterized the students’ understanding in terms of these
elements:

•	 Construct the model upon assumptions resulting from research and
abstraction process.

•	 Test the model: generate, observe and interpret outcomes.
•	 Reflection after the model is built: plausibility, accuracy, credibility

and satisfaction.
In answering our second research question — What difficulties do the students

encounter when verifying and validating their models? — we observed a number of
issues and problems:

•	 Performing the research necessary to build the models does not
always happen. Erroneous perspectives are sometimes employed
in the process of abstraction. Omissions are being made during the
implementation of the model.

•	 When testing the model, a systematic approach to generating
outcomes is seldom employed and is lacking when observing and
interpreting the outcomes.

•	 Finally, during the reflection upon the models, there is satisfaction
with a clearly unrealistic model, and even cases of not understanding
the essence of modeling altogether.

6.5.2	 Reflection on the Findings
Next to the validation aspects we observed, it is interesting to mention what

we did not observe.
A category of validation techniques we did not observe in this study has to

do with numerical aspects of modeling. None of the students reported extreme
conditions test — making sure the models’ outputs were plausible in extreme
conditions (Sargent, 2013). Also, none of them used historical data to not only
calibrate the model, but also to check whether the model behaves as the real
system (Sargent, 2013). No-one performed predictive validation, i.e. used the
model to forecast the outcomes and then compared those forecasted outcomes
to the behavior of the real system (Sargent, 2013) either. Finally, no student
used statistical tests or other appropriate techniques to objectively interpret the
outcomes their tests. We could speculate about the reasons students did not
engage in these techniques. It is plausible to think that it was difficult for them
to get sufficient real data. Furthermore, their understanding of the phenomena
they modeled was rather limited, which is not strange considering the position

565438 N Grgurina.indd 143565438 N Grgurina.indd 143 14-09-21 17:0414-09-21 17:04

Chapter 6

144

and scope of their assignments: within a CS course, and not within a course
on a particular (scientific, engineering, etc.) discipline. Finally, some of these
techniques are rather advanced and belong into the repertoire of a professional
modeler, rather than a student attending secondary education.

Another type of validation technique students did not report using was the
engagement of external experts in any phase of their modeling process. They did
not consult domain experts (Wilensky & Rand, 2015), performed no Delphi tests
to seek consensus of experts on problematic outcomes (Carley, 1996), nor carried
out structural walkthroughs of their models with peer groups (Sargent, 2013) —
all of which they arguably could have done. None of them did a Turing test either,
where they would have asked knowledgeable individuals whether it was possible
to distinguish between the outcomes of the model and those of a real system
(Sargent, 2013). We could have expected students to call upon experts. In one of
our previous studies (Grgurina et al., 2016), we reported about our student talking
to a medicine student to learn more about a particular disease; so it would not
have surprised us if the students in this study had consulted their peers, teachers,
or other people either to learn more about the phenomenon under scrutiny, or to
seek feedback on any aspects of their models.

When we set side by side the findings from this study with the outcomes of the
study we performed in 2016 (Grgurina et al., 2016), we noticed a few things.

Then, the students were expected to decide themselves what to model and some
of them had difficulties coming up with a suitable problem. This time, the students
choose problems from a list rather than coming up with their own problems.
Consequently, all of the students this time had a clear idea of the purpose of the
model they were developing and using.

Concerning the research the students did (or neglected to do), they reported
similar sources of their knowledge — except this time, no-one reported consulting
with an expert.

When it is time to state the assumptions the model is built upon, i.e. it is
time to engage in abstracting, in this study we not only observed students having
difficulty with this aspect of modeling — as we did in the 2016 study — but have
also identified three distinct errors: oversimplification, omissions and circular
reasoning.

Regarding the construction of the models and subsequent testing, in both
of our studies, the students reported developing their models in small steps,
continually testing, adjusting and expanding their models. This time we focused

565438 N Grgurina.indd 144565438 N Grgurina.indd 144 14-09-21 17:0414-09-21 17:04

 Students’ Understanding and Difficulties

145

6

specifically on verification and validation and we portrayed the students’ activities
and difficulties in great detail.

In this study, we asked students to extensively reflect on their models in terms
of contentment with them, and thus we limited the scope of students’ responses.
To our surprise, several students declared lack of confidence in models in general
— a thought we did not encounter in our previous study.

6.5.3	 Reflection on the methodology
In this study, similarly to the one from 2016 (see chapter 3), a small number

of students was involved which allowed us to perform an in-depth investigation
of their understanding of model validation. It would be interesting to repeat the
study at larger scale to see if similar practices regarding model validation can be
observed.

All of the students involved in this study were in the final stages of their pre-
university education, which implies that they probably experienced less difficulties
that can be expected from younger students or those attending the senior general
secondary education — an assertion corroborated by our findings from the study
on assessment instrument (see chapter 5). Furthermore, we did not observe the
students at work and only relied on the project documentation they turned in
and on what they reported themselves during the interviews. Even though the
researcher interviewing the students was their teacher, we have no reason to
expect this fact influenced their responses.

Finally, we believe that our findings help identify both the improvements and
weaknesses in the teaching materials used — as compared to teaching materials
used for the previous study — and will inform the further development of the
teaching materials, teaching methods and teacher training. We suggest to put
more emphasis on teaching a small selection of validation techniques and giving
students more guidance in using them, while simultaneously making them aware
of the availability of a whole range of additional validation techniques which are
not easily used within the constraints of a limited CS course in general secondary
education.

565438 N Grgurina.indd 145565438 N Grgurina.indd 145 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 146565438 N Grgurina.indd 146 14-09-21 17:0414-09-21 17:04

Chapter 7

General Conclusions and
Discussion

In this chapter, we summarize the main findings of the research project. Then
we discuss its scientific contributions, reflect on the method and describe the
practical implications. Finally, we present suggestions for future research.

565438 N Grgurina.indd 147565438 N Grgurina.indd 147 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 148565438 N Grgurina.indd 148 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

149

7

7.1	 Motivation for this Project

The integration of computational thinking into various disciplines is gaining
interest in CS education where training for computational problem-solving is seen
as “a truly interdisciplinary undertaking” (Tedre et al., 2018). This is exemplified
in the Netherlands, where the new 2019 secondary CS curriculum introduces
the topic Computational Science which is specified by the learning objectives
about modeling and simulation. The curriculum describes these high-level
learning objectives as follows: “Modeling: The candidate is able to model aspects
of a different scientific discipline in computational terms” and “Simulation: The
candidate is able to construct models and simulations, and use these for the
research of phenomena in that other science field.” Additionally, modeling itself is
a part of the compulsory core curriculum, described as “Modeling: The candidate
is able to use context to analyze a relevant problem, limit this to a manageable
problem, translate this into a model, generate and interpret model results, and
test and assess the model. The candidate is able to use consistent reasoning.”
(Barendsen & Tolboom, 2016). With the introduction of Computational Science
into the CS classroom, the need arises for validated guidelines to enable and
facilitate its teaching and learning. This practical need instigated our research
project and we translated it into scientific research questions in order to contribute
to the research knowledge on Computational Science.

This chapter is organized as follows: Section 7.2 presents our aim and research
questions and provides their answers, and then discusses them and describes their
scientific contribution in the light of existing literature. Section 7.3 reflects on
the method. Section 7.4 reports practical implications and Section 7.5 provides
suggestions for further research.

7.2	 Conclusions and Discussion

So far, research into teaching modeling and simulation24 as generic scientific
competences within a CS course has been an underexposed issue in the computer
science education research (CSER). There was no operational definition of
the learning objectives modeling and situation, little was known about suitable

24  In this thesis, we use terms modeling, modeling & simulation and Computational Science
interchangeably, unless explicitly stated otherwise.

565438 N Grgurina.indd 149565438 N Grgurina.indd 149 14-09-21 17:0414-09-21 17:04

Chapter 7

150

teaching and assessment strategies and students’ understanding; and teachers’
ideas about teaching modeling and simulation have not been charted either.
Therefore, the aim of our research project is to explore the pedagogical aspects
of teaching Computational Science in the Computer Science course in secondary
education.

We looked both at the pedagogical aspects of teaching of Computational
Science (i.e., modeling and simulation) and at teachers’ practical knowledge about
these pedagogical aspects through the lens of Magnusson’s (1999) components of
topic-specific pedagogy — that is, in terms of:

M1	 goals and objectives
M2	� students’ understanding including requirements for learning and

their difficulties
M3	 instructional strategies
M4	 methods of assessment.

We translated this global aim of our research project into these four research
questions:

RQ1	� What computational thinking activities constitute the problem-
solving process associated with Computational Science? This
question aims to find an operational definition of the learning
goals and objectives of Computational Science. (M1)

RQ2	� How can the students’ understanding of modeling activities
be portrayed in terms of their requirements for learning and
difficulties they encounter? (M2)

RQ3	� What are characteristics of a valid and reliable assessment
instrument for Computational Science? (M4)

RQ4	� How can the teachers’ Pedagogical Content Knowledge (PCK)
for teaching Computational Science be portrayed in terms of the
four components M1 to M4?

7.2.1	 Operational Definition of Computational Science (RQ1)
The first empirical study (chapter 3) focused on obtaining an operational

definition of the learning objectives modeling and simulation — Magnusson’s
component M1 — to answer our first research question: What computational
thinking activities constitute the problem-solving process associated with
Computational Science (i.e., modeling and simulation)?

565438 N Grgurina.indd 150565438 N Grgurina.indd 150 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

151

7

We characterized modeling and simulation from two perspectives: first, as
a cyclic process with distinct stages derived from the mathematical modeling
process and simulation modeling, and second, as a means to integrate
computational thinking and science from the perspective of CS students who
develop computational models and use them for scientific enquiry.

We have obtained an operationalization of the learning objectives for modeling
and simulation in terms of an iterative process framework consisting of the
following elements:

•	 stating the purpose of a model
•	 engaging in the research necessary to build the model
•	 performing abstraction to take into account only the relevant aspects

of the phenomenon under scrutiny
•	 formulating the problem in a way that allows the use a computer and

other tools to help solve it
•	 stating the requirements and specification
•	 implementing the model, i.e., programming it
•	 performing verification and validation of the implemented model
•	 using the implemented model to perform the experiment
•	 analyzing the data obtained from the experiment
•	 reflecting on the whole process.

This operational description of the learning objectives of Computational
Science provides a framework for the engagement in scientific practices through
the development and use of computational models. It brings modeling and
simulation within reach of secondary students: it characterizes modeling as
a cyclic process analogous to a mathematical modeling process, yet contrary
to it, the models produced are executable. In this sense it differs from existing
operationalizations of modelling in scientific literature, which focus on the
development of static models. So far, the research on modeling focused mostly
on mathematics and there are common aspects recognized in mathematics
as well. In mathematics, the development and use of models is also considered
to be a cyclic process with distinguished stages: definition, conceptualization,
formalization, execution and conclusion, and additionally, reflection (Overveld
et al., 2015; Perrenet & Zwaneveld, 2012). Formalization and execution stages
are considered to be a part of mathematical world and involve mathematical
formalizations such as formulas and (differential) equations. In simulation

565438 N Grgurina.indd 151565438 N Grgurina.indd 151 14-09-21 17:0414-09-21 17:04

Chapter 7

152

modeling, on the other hand, these two stages are interpreted in computational
terms. Formalization means constructing a computational model in the form of
a computer program. That is in itself a cyclic process which cycles through the
phases of establishing requirements and specification, designing the program,
and its testing and evaluation. This cyclic formalization process is thus embedded
within the encompassing modeling cycle. This aspect, too, signifies that modeling
in Computational Science is essentially different from modeling in mathematics.
The execution aspect entails designing and running experiments, thus using the
computational model to perform simulation (Law, 2015). This framework is a
novelty as it provides a detailed operationalization of the learning objectives for
modeling and simulation within CS education.

The scientific value of our framework lies in the fact that it can serve as
a conceptual model for the investigation of students’ cognitive activities in
empirical studies, i.e., to explore their understanding and difficulties while
engaging in modeling and simulation tasks through the development and use of
computational models. This methodological application is particularly important
since the application of computational thinking in modern science education
is gaining interest. According to Lee et al., (2020), computational thinking “is
seen as having the potential to deepen STEM25 learning by positioning students
as young scientists and innovators through engagement in authentic STEM
practices”. Regarding modeling itself, Gilbert & Justi (2016) state that it plays a
significant role in the development and learning of science (Gilbert & Justi, 2016),
as do Hallström & Schönborn (2019) who believe that it contributes to authentic
STEM education. Similar to our framework, but with less detail, Sengupta et al.
(2013) propose a theoretical framework for integrating computational thinking
with science in primary and secondary education. In that framework, learning-
by-doing activities are also represented as a cyclic process where students iterate
between scientific enquiry (i.e., understanding of the scientific phenomena and
modeling practices), algorithm design (i.e., development of a computational
model) and engineering (i.e., refining models and simulations). Our framework
is therefore particularly useful for research of computational thinking in context
where computational modeling is used to enhance STEM learning. Furthermore,
our framework provides an interpretation of modeling and simulation within CS
which is not geared toward the use a specific software tool. In that sense, it is new
as it shifts focus from the production of computational artifacts to embedding

25  Science, Engineering, Technology and Mathematics

565438 N Grgurina.indd 152565438 N Grgurina.indd 152 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

153

7

computing in other disciplines with the goal of helping to solve problems in
these other disciplines. After we have finished this work, Sengupta et al. (2018)
confirmed our ideas in their recommendations where they warned against a
technocentric focus on production and use of computational artifacts and argued
“that computational thinking must be reconceptualized more appropriately as an
intersubjective experience” — exactly as we did.

7.2.2	 Students’ Understanding and Difficulties (RQ2)
In our first and fourth studies, we focused on students’ understanding and

difficulties while engaging in modeling activities — Magnusson’s component M2
— and sought to answer our second research question: How can the students’
understanding of modeling activities be portrayed in terms of their requirements
for learning and difficulties they encounter? In the first study (chapter 3), we
looked at the specific challenges the students experience when engaging in
modeling activities in all of the modeling process. In the fourth study (chapter 6)
we focused on students’ challenges related to the verification and validation aspect
of the modeling process only.

Our first study resulted in the qualifications of the challenges the students
faced when developing and using computational models. Our in-depth analyses
revealed that students face two types of challenges related to the two cyclic
processes contained in our framework: those related to the entire modeling cycle
and those related to formalization — i.e., the development of a computer program
— which is an element of the modeling cycle. The challenges which we found that
were related to the entire modeling cycle are those involving the context of the
discipline where the problem at hand originates. They are related to expressing the
problem at hand in computational terms, interpreting the computational solution
in terms of the original subject matter, and reflecting upon the whole process. The
difficulties our students faced while constructing their models were also reported
in case of students constructing mathematical models: wrong level of abstraction
and erroneous assumptions (Maaß, 2006). Not being familiar with the affordances
of the tool used to implement the model — in our case, insufficient command
of the programming language involved — is found to have a detrimental effect
on the quality of the model being produced (Bielik et al., 2021; Sins et al., 2005).
Other behaviors we identified are characteristic for the development and use of
computational models: not knowing whether unexpected behavior of a model is
caused by an error or emergent behavior is typical for the development of agent-

565438 N Grgurina.indd 153565438 N Grgurina.indd 153 14-09-21 17:0414-09-21 17:04

Chapter 7

154

based models, as is incremental model development (Wilensky & Rand, 2015).
Finally, the two cycles constituting the modeling process cause confusion in
students when they do not know to which cycle to attribute a particular occurrence.
Our framework provides a refinement of existing frameworks to characterize and
investigate this confusion in students.

The challenges which we found that were related to formalization are typical
for computer science and characteristic for the construction of a computational
model, thus they are concerned with programming, testing, and debugging
a computer program. Our students were not novice programmers and they
reported taking care of the related problems themselves. We discuss this finding
in terms of two aspects: first, in terms of the construction of a computer program,
and second, in terms of correctness of a computer program. Regarding the
construction of computer programs, Qian & Lehman (2017) examined flawed or
incomplete understandings of learners of introductory computer programming
through the framework consisting of three elements. First element is syntactic
knowledge, i.e., knowledge about the language features, basic rules and facts, such
as for example use of semicolons. Second element is conceptual knowledge which
is concerned with the programming constructs and inner workings of a computer.
Third element is strategic knowledge which is concerned with the application “of
syntactic and conceptual knowledge of programming to solve novel problems”.
Taken together, these three elements describe a student’s ability to construct
a working program. Our research adds the perspective of students with more
programming experience. Our students were not novice programmers since they
already had programmed in Python. Even though both constructing models and
programming them in NetLogo were new to them, they reported taking care
of their programming problems themselves. In other words, they all managed
to develop working programs, i.e., to construct working models. This finding
illustrates that they were able to use their programming skills in a new context,
where they successfully constructed models. Regarding the correctness of the
programs, Kolikant (2005) found that students rarely engage in systematic testing
and debugging of their programs and have been found to consider a program to be
correct even when it demonstrates incorrect behavior. In our specific situation, the
formalization step meant that the students had an open programming assignment
where we did not provide input and output values to test their programs against.
This allows a possibility that our students accepted incorrect programs — which
seemingly worked properly — as being correct. We have accepted these programs

565438 N Grgurina.indd 154565438 N Grgurina.indd 154 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

155

7

as correct too, and have not performed additional testing or formal verification
to examine their correctness as doing so was beyond the scope of this research
project.

In our final study (chapter 6), we explored students’ understanding and
difficulties while working on Computational Science assignments using the
teaching materials we developed ourselves. We focused on their understanding
and difficulties concerning verification and validation of the models they develop.
We characterized their understanding in terms of these elements:

•	 Construct the model upon assumptions resulting from research and
abstraction process.

•	 Test the model: generate, observe and interpret outcomes.
•	 Reflection after the model is built: plausibility, accuracy, credibility

and satisfaction.

Looking at the difficulties the students encountered when verifying and
validating their models, we found that:

•	 Not all students explicitly engaged in research necessary to build
their models. In the process of abstraction, some students employed
erroneous perspectives. During the implementation of the model,
the students reported making omissions.

•	 When testing the model, a systematic approach to generating
outcomes was employed only by some of the groups and was lacking
when observing and interpreting the outcomes.

•	 When reflecting upon their models, some students were satisfied
with a clearly unrealistic model, and some appeared not to
understand the essence of modeling altogether.

To discuss our findings, we note that students’ difficulties with validation of
their models have — to our best knowledge — barely been explored in the context
of computer science education. When Louca et al. (2011) asked their students
to construct computational models, they only assessed the surface structure
of the implemented models, and only labeled them as correct or incorrect. In
mathematics education, difficulties with validation of models were explored more
extensively (Eraslan & Kant, 2015), as was satisfaction with unrealistic models
that was reported in students engaging in mathematical modeling too (Edo
et al., 2013; Maaß, 2006). The scientific value of our approach stems from the
distinguishing characteristic of our studies: they took place in a CS class where

565438 N Grgurina.indd 155565438 N Grgurina.indd 155 14-09-21 17:0414-09-21 17:04

Chapter 7

156

technical aspects of developing and using models were of prime concern, while
the use of models for scientific inquiry remained limited to providing a context
where the models were developed. In that sense, our approach differs from
the one described in many existing studies. These studies described students
constructing (computational) models where the disciplinary content of the
application domain was of principal interest. The (computational) aspects of the
model construction played a secondary, supportive role as a means to reach that
goal — cf. Basu et al. (2016), Bielik et al. (2021), Eraslan & Kant (2015), Maaß
(2006) and Sins et al., (2005). Contrary to that approach, we focus specifically
on the embedding of computational modeling into application domain from the
point of view of computer science. The approach of Sins et al., (2005) is illustrative
for this difference. In their study, in the context of a physics course, the students
were given a partial computational model and empirical data for a particular
phenomenon, and were then asked to finish that model. In our studies, on the
contrary, students were given open questions and asked to answer them through
the construction and use of computation models through the steps defined in our
framework. To illustrate this point, we draw on an example from our third study
which focused on the assessment instrument (see chapter 5). Several student
groups were answering the question whether sustainable human life was possible
on Mars. While the models produced differed greatly, however, all of the students’
answers could possibly have been considered to be correct despite their variations.
Indeed, since our approach emphasizes the technical aspects of developing and
using models, our findings are independent of any specific application domain.

7.2.3	 Assessment (RQ3)
In our third study (chapter 5), we focused on assessment — Magnusson’s

component M4 — in order to answer our third research question: What are
characteristics of a valid and reliable assessment instrument for Computational
Science?

In that study, we focused on the assessment instrument which we developed
along with our teaching materials. The instrument has the form of a practical
assignment with the accompanying grading rubrics. The assignment follows
closely our framework for the engagement in scientific practices through the
development and use of computational models. It contains a series of questions
and tasks which guide the students through the whole process: to explain the
purpose of the model (i.e., to state the research question) and to perform any

565438 N Grgurina.indd 156565438 N Grgurina.indd 156 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

157

7

necessary research; to design, implement and validate the model; to perform
experiments by executing the model, to analyze the outcomes and to answer the
research question; and finally, to reflect on the entire process. This results is a
portfolio containing documentation and the implemented computational model.
The grading rubrics classifies the learning outcomes for each part of the portfolio
using the Structure of the Observed Learning Outcome (SOLO) taxonomy which
describes the learning progress through five levels of understanding: prestructural,
unistructural and multistructural — which are considered to be quantitative —
and relational and extended abstract — which indicate a qualitative change (Biggs
& Tang, 2011). Our assessment instrument in the form of a practical assignment
and accompanying rubrics based on the SOLO taxonomy proved to be reliable,
as indicated by a high rate of inter-rater agreement. Its validity is corroborated
by exposing the significant differences in the performance levels of the HAVO26
students compared to the VWO27 students: as expected, the performance levels of
the VWO students were significantly higher for almost all the criteria.

So far, assessing computational thinking has received a lot of interest, as
reported in mapping and review studies by de Araujo et al. (2016), Martins
Pacheco et al. (2019) and Tang et al. (2020). A typical example is provided by
Roman-Gonzalez et al. (2017) who present their Computational Thinking Test.
This multiple-choice test assesses students’ knowledge of computational concepts
and is as such focused on programming, independent of any specific context. A
number of other examples of assessing computational thinking focus specifically
on modeling.

To compare our results to these other studies, we discuss our results across
three dimensions: the context where assessment instrument is used, the quality of
the rubrics used and the aspects of the modeling cycle involved. Inevitably, some
of the discussion will touch upon the nature of the modeling process itself, since
assessment is inseparable from it.

Teaching computational modeling is often situated in a specific context where
attention is given to the learning objectives related both to the subject matter and
to the computational aspects. Consequently, both of these learning objectives are
assessed. For example, Caballero et al. (2012) described students who developed
computational models of the motion of a craft orbiting Earth by completing a
partially completed program. Incorrect programs were analyzed to unveil

26  HAVO: in Dutch: hoger algemeen voorbereidend onderwijs: senior secondary education
27  VWO: in Dutch: voorbereidend wetenschappelijk onderwijs: pre-university education

565438 N Grgurina.indd 157565438 N Grgurina.indd 157 14-09-21 17:0414-09-21 17:04

Chapter 7

158

students’ difficulties related to the algorithmic approach and to count the errors
related to each of the three procedural areas related to common student mistakes.
Similarly, Basu et al. (2018) developed assessment tasks for the integration of CT
in physics and again, the students were asked to complete a partially completed
program. The rubrics used for the assessment assessed two aspects: expressing
physics relations in a computational model and using programming concepts
to model physics phenomena. In both of these examples, physics provides the
modeling context. The aspects under scrutiny were labeled either as correct or
incorrect. As to the modeling cycle, in comparison to our assessment instrument,
only the design and the implementation of the models were of interest, rather
that the whole modeling cycle. Louca et al. (2011) analyzed the computational
models of a number of physics phenomena constructed by their students by using
categories for the representation of objects, entities, behaviors and interaction,
and additionally, for the accuracy of the phenomenon description. Each of these
categories contains a number of subcategories specific for the context. Taken
together, these categories are reminiscent of the description of the attainment levels
specified in our rubrics. In further comparison to our assessment instrument, we
see that in addition to design and the implementation of the models, their validity
is of interest too — albeit to a limited extent, as discussed in the section 7.2.2 on
students understanding and difficulties.

Other researchers have constructed assessment for models in their own
right. For science teaching and learning, Papaevripidou et al. (2014) describe
modeling competence in terms of modeling practices and meta-knowledge. They
identify four modeling practices: construction, use, comparison and revision of
models; they distinguish different levels of increasing sophistication for each of
the modeling practices and they observe that these levels are independent of the
modeling tool. While they are not concerned with computational models, we see
similarities in the modeling practices they mention: construction and use are
represented in our modeling cycle too, and their revision of models is represented
in our framework in the fact that our framework considers modeling to be a cyclic
process. Furthermore, for each of the modeling practices, they distinguish several
levels of sophistication — an approach seemingly similar to our five ordered
categories of SOLO taxonomy. However, they assess each of these practices as a
whole. For example, for the practice of model use, they assess efficient use of the
model without specifying details that characterize efficient use, while we provide
detailed characterization of each of the levels in our assessment instrument.

565438 N Grgurina.indd 158565438 N Grgurina.indd 158 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

159

7

In reflecting on our results, we emphasize the three aspects where our
assessment instrument for Computational Science differs from the existing
assessment instruments. First, it situates computational modeling in the context
of CS education, independent of any domain specific context. Second, it covers
the whole of the modeling cycle described in our framework, but we do remark
that it does not deeply scrutinize the program code, as opposed to many other
assessment instruments related to computational modeling. Third, our instrument
uses a five-level rubrics based on SOLO taxonomy (Biggs & Tang, 2011) to assess
the element of our modeling cycle framework.

We note that our assessment instrument aligns well with the suggestions
regarding the assessment of CT which were put forward by Tang et al. (2020)
after we have finished this research project. We go on to discuss them in detail
and observe that our work adheres to most of these suggestions. We contributed
to creating more assessment for high school (as opposed to elementary and
middle school). Our assessment focuses on the integration of CT and subject
matter by focusing on computational modeling and simulation to be used in a
different discipline in the context of scientific enquiry. We report the validity
and reliability of the assessment. We view CT broader than programming or
computing only. To a high degree, we designed “CT assessments that can be
applicable across platforms and devices”. Namely, even though we have developed
our assessment instrument to be used in the context of scientific enquiry when
constructing and using agent-based models, with slight modifications it could
be used with other computational models as well. Our assessment does adhere
to the rest of this suggestion: “in order to compare students’ CT performance
under varied conditions of intervention”. Finally, when we look at our assessment
as an instrument to be used by teachers in their daily teaching practice, we
note that it does not follow their suggestion “to consider the concurrent use of
qualitative measures collected by interviews, think-alouds, or focus groups to
better understand students’ proficiency of CT”. In our first study (chapter 3),
we scrutinized a number of qualitative measures for visible occurrences of the
elements of our modeling framework. While our findings confirm that interviews
with students (as well as close observations of student groups during their work)
provide rich insights into students’ performance, understanding and difficulties —
and therefore serve well as research instrument — we chose not to include them
into our assessment instrument because they are not feasible in everyday teaching
practice. Additionally, we point out that our assessment instrument also aligns well

565438 N Grgurina.indd 159565438 N Grgurina.indd 159 14-09-21 17:0414-09-21 17:04

Chapter 7

160

with the recommendations for the assessment of modeling competence as such,
put forward by Nicolaou & Constantinou (2014), when they suggest to formulate
rubrics of students attainment level with regards to modeling competences.

The scientific value of our assessment instrument lies in the fact that is useful
beyond the classroom — it can be employed as a research instrument when
examining the students’ learning outcomes with respect to computational thinking.
Furthermore, the attention our assessment instrument puts on the entire modeling
cycle makes it more holistic than most of the other assessment instruments with
narrower focus. Finally, next to other forms of validity, we explored one which is
essential to the Dutch educational context — the discernment ability to expose the
significant differences in the performance levels of the HAVO students compared
to the VWO students.

7.2.4	 Teachers’ PCK (RQ4)
In the second study (chapter 4), we portrayed computer science teachers’

initial pedagogical content knowledge (PCK) on modeling and simulation in
order to answer our fourth research question: How can the teachers’ PCK of
teaching Computational Science be portrayed in terms of the four elements of
PCK? Additionally, we asked, What differential features of PCK can be used to
identify patterns of individual PCK in terms of the four elements of PCK?

First, we characterized the teachers’ PCK and portrayed it in terms of the four
components of PCK.

Concerning teachers’ knowledge about goals of objectives (M1) on teaching
modeling, we found two types of learning objectives. First, there are conceptual
objectives concerning the skills associated with CS subject matter, and second,
there are motivational and practical objectives concerning transversal competences
and understanding the benefits of models.

Concerning the teachers’ knowledge about students’ understanding (M2),
we characterized it in terms of three issues. First, the prerequisite knowledge the
students need to learn modeling and skills needed to make models. Second, the
issues regarded as successful or contributing to success such as the relevance of
the models, the students’ perception, technical aspect and interest. Third, the
issues regarded as difficult or contributing to difficulties, such as variation among
students in the class, students’ difficulties in understanding the nature of models,
or with abstraction or formalization, and students’ approach to task at hand.
Furthermore, we observed that some teachers do not know what to say about the
successful or difficult issues.

565438 N Grgurina.indd 160565438 N Grgurina.indd 160 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

161

7

Concerning the knowledge about instructional strategies (M3), we described
it in terms of five issues: the perceived role as teachers, assignments to be given to
students, student’s characteristic to be taken into account, organizational aspects,
and finally, difficulties and problems. We observed an agreement about subject-
specific strategies — scaffolding learning with a final project which serves both to
give students the opportunity to learn how to develop a model from scratch and
as assessment.

Concerning the knowledge about assessment (M4), we described it in terms
of four issues: the form of the assignment, problems given to students to work
on, organizational issues, and finally, the assessment criteria. We observed an
agreement about a suitable assessment form — a large practical assignment.
Furthermore, we found great variation in the knowledge of dimension to assess,
and in granularity and depth of the description of assessment criteria.

Additionally, we described two characteristics that distinguish among teachers
— their focus on conceptual versus motivational and practical learning goals
and objectives (M1) and their emphasis on product-based versus process-based
assessment (M4) — leading to four distinct groups of teachers. However, none of
these differential features leads to an overall typification of the teachers’ PCK.

The construct of pedagogical content knowledge (PCK) has proven to be a
powerful one to help capture teachers’ views and knowledge on teaching various
topics, for example in science (Henze et al., 2008), mathematics (Baumert et
al., 2010) or design of digital artifacts (Rahimi et al., 2016). It is finding its way
into the CS teaching as well. In a review of research literature, Hubbard (2018)
reports 19 studies concerned with PCK in computing education specifically
concerned with teaching computing as its own subject, and these studies are
mostly concerned with programming, cf. Saeli (2012). A number of other studies
which are concerned with teachers’ PCK of computer science or computational
thinking focus on programming as well (Yadav et al., 2016; Yadav & Berges, 2019)
or specifically on programming in the context of robotics (Çakıroğlu & Kiliç,
2020; Chalmers, 2018). Our study seems to be unique with its focus on the PCK
of modeling and simulation in the context of CS education. Yet, we can compare
the findings about our teachers’ PCK to the results of our studies on students’
understanding and draw parallels with other studies of teachers’ PCK related to
CS or modeling.

Our studies on students’ understanding confirmed that students indeed faced
difficulties related to understanding the nature of models and found abstraction

565438 N Grgurina.indd 161565438 N Grgurina.indd 161 14-09-21 17:0414-09-21 17:04

Chapter 7

162

and formalization challenging, exactly as reported by teachers. Furthermore,
teachers were right about the inefficient students’ strategies. However, where
teachers in our study mentioned no misconceptions, we did find them, for
example, related to the nature of models.

We now go on to reflect on the method used for this study. Considering the
explorative character of our study, we felt that a qualitative research method
was appropriate to capture the whole breadth of teachers’ opinions and ideas.
Therefore, we conducted semi-structured interviews with our teachers as did,
for example, Liberman et al., (2012) and Griffin (2016), rather than, for example,
present teachers with teaching vignettes with close-ended responses and focus
on students’ understanding only (cf. Yadav & Berges (2019)). Our research yields
portraits of CS teachers’ PCK and, unlike Saeli (2012), we refrain from assessing
their PCK.

Rahimi et al. (2016), performed a study with similar methodology when they
explored PCK of Dutch CS teachers regarding the design of digital artifacts.
Their findings describe teachers’ PCK in terms similar to the ones we found.
However, unlike them, we were not able to typify teachers’ PCK through relating
their knowledge of students’ understanding and instructional strategies on one
hand, to their knowledge of goals and objectives and knowledge of assessment
on the other. Henze et al. (2007) explored science teachers PCK on models and
modeling, also in the context of the Dutch secondary education. They, too, were
able to distinguish two types of teacher knowledge. If we speculate about the
reasons why, in our case, we were not able to identify specific types of teacher
knowledge, we should consider the novelty of modeling and simulation in the
context of CS education, and teachers’ lack of experience in teaching it. So, while
Rahimi et al. (2016) saw that certain components of PCK were predictive of other
components, in our case there is a lot of variation and not much consistency
among various components of teachers’ PCK which suggests the reasons why we
could not establish such typification.

7.2.5	 Overall Contribution
Computer science, teaching CS and research into the teaching of CS are rather

young disciplines, especially when compared to, for example, mathematics. As we
indicated in the introduction of this thesis (see chapter 1), computational thinking
— and its component modeling and simulation — can form a bridge between
CS and an application domain. A lot of research in CS education is dedicated to

565438 N Grgurina.indd 162565438 N Grgurina.indd 162 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

163

7

programming education and novice programmers. However, we are not aware of
research about employing programming skills to develop computational models
which are used for scientific enquiry in the context of CS education. It is in this
light that we see the scientific contribution of this project to the development of
the theory of the CS education. Our work provides a novel theoretical framework
for empirical research into computational modeling competences, principles
for their assessment and insights into students’ understanding regarding these
competences. Furthermore, it is the first instance where the related teachers’ PCK
is explored.

7.3	 Reflection on Methodology

In this section, we reflect on the methods applied in our research project.
To explore the pedagogical aspects of teaching Computational Science, we

employed the lens of Magnusson’s (1999) components of topic-specific pedagogy.
This approach allowed us to organize and structure our research project and
investigate pedagogy in a feasible manner. Furthermore, our project provides
evidence that Magnusson’s view of components of topic-specific pedagogy can
successfully be applied in the context of CS education as well.

We carried out this research project with a limited number of participants.
The participating teachers were from the local CS teachers’ network who replied
to our invitation to be interviewed and were in that sense self-selected. However,
we believe that this fact did not influence our findings significantly because
this sample was still reasonably representative for the whole of the CS teacher
population in the Netherlands regarding teachers’ own educational background,
teaching qualifications, and experience with teaching (as described in chapter
2). The same holds true for the students from the two schools participating in
the project. As a consequence of the centralized and regulated way the Dutch
education is set up — especially in the upper grades of HAVO and VWO — the
cognitive abilities of all of the students attending these types of school are expected
to be fairly uniform (see chapter 2 for a description of Dutch educational system).
We believe that working with a small sample and familiarity with the teaching
circumstances provided us with better understanding of what was going on in
the classroom and made it possible to perform in-depth qualitative analysis of the
teachers’ ideas on teaching and of students’ learning.

565438 N Grgurina.indd 163565438 N Grgurina.indd 163 14-09-21 17:0414-09-21 17:04

Chapter 7

164

The studies in this research project were carried out using the pilot version of
teaching materials developed by the author of this thesis as the first step of our
educational design research (Akker et al., 2006). Later, as a spin-off of this project,
new teaching materials were developed by a team of experienced CS teachers
lead by her, and they took into account the findings from this research project, as
described in section 7.4 on practical implications of this project. However, we do
not expect that using the pilot version of the teaching materials caused our results
to be less reliable because the essential elements were present in that pilot version.
Therefore, we have a reason to believe that the results would have been the same if
we had used the new teaching materials instead.

7.4	 Practical Implications

In this section, we reflect on the practical implications of our research project.
We first describe the scientific paradigm shifts which made it possible to bring
Computational Science into a secondary classroom, and then go on to discuss the
practical implications.

The overarching practical contribution of this research project can be seen
clearly by considering the shift of science paradigms (Hey et al., 2009) brought
about by restructurations, i.e., “reformulating knowledge disciplines through
new representational forms” (Wilensky & Papert, 2010). Many great theoretical
scientific achievements — such as classical mechanics or Lotka-Volterra equations
describing the dynamics of biological systems — were made possible through the
developments in mathematics (which were, in turn, often driven by scientists’
needs). The corresponding restructuration meant that the scientific knowledge
could be described in terms of mathematical terms rather than as narratives,
bringing about a science paradigm shift from the description of observations to
the use of mathematical models. The development and use of such mathematical
representations is often a complex process. Additionally, advanced mathematical
knowledge of calculus is necessary, so an active engagement in scientific
activities in this manner is often beyond reach of secondary students. However,
nowadays, the advances in possibilities offered by modern computing make it
possible to describe phenomena in computational terms by simply describing
the characteristics and behavior of the individuals forming the system which is
being modeled. These computational descriptions — i.e., computational models

565438 N Grgurina.indd 164565438 N Grgurina.indd 164 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

165

7

— are executable and in the spirit of yet another science paradigm shift: the
attention is moving from the theoretical approach to the computational approach
which focuses on the simulation of complex phenomena through the use of
computational models that are executable — rather than on modeling them only.
That means that nowadays even novices — such as secondary students — have
tools at their disposal to actively engage in scientific practices. Indeed, Weintrop et
al. (2016) observe that science is increasingly becoming a computational endeavor
and they consider modeling and simulation practices to be one of the main
categories of computational thinking for mathematics and science. Our project
provides evidence that it is possible to teach modeling and simulation effectively
within a secondary CS course and to empower students to embark on a journey of
doing science themselves.

In chapter 2, we described the history and situation of secondary CS education
in the Netherlands. It is in this light that we see the principal practical contribution
of this research project: it informs the teaching of Computational Science. Our
results contributed to the design of professional development activities for in-
service and pre-service teachers, covering both the aspects of modeling and
simulation, as well as the pedagogy suitable to teach it successfully. Furthermore,
as a spin-off of this project, we used our findings to guide the development of
teaching materials and accompanying teachers’ manual which are now a part of
CS textbooks28 available to all secondary students in the Netherlands. This way, we
address a number of critical factors listed in the report about the state of secondary
CS education in the Netherlands (Tolboom et al., 2014) (see section 2.3.2.2): we
created modular teaching material in order to provide for rapid advances of the
discipline, we contribute to the in-service training of the teachers, and with our
assessment instrument, we contribute to the quality of assessment in schools.

In a broader perspective, our findings could influence teaching of other CS
content. They could alert teachers about understanding and difficulties they could
expect from their students, and inspire the development of a holistic assessment
instrument like ours.

When we embarked on this project, we focused on modeling and simulation
within CS education. We hoped it would contribute to building bridges to other
school courses and compel our students and their teachers to reach out from the
confines of their disciplines. We hoped to effectuate interdisciplinary cooperation
which would benefit students’ learning of all the disciplines involved. We are glad

28  https://ieni.github.io/inf2019/themas/r-computational-science

565438 N Grgurina.indd 165565438 N Grgurina.indd 165 14-09-21 17:0414-09-21 17:04

Chapter 7

166

to observe that since then, computational thinking has been spreading steadily,
and that our work is gaining relevancy. If we consider the three steps constituting
the CT problem-solving process — expressing the problem in computational
terms, constructing a computational solution, and interpreting that computational
solution in terms of the original subject matter (Barendsen & Bruggink, 2019) —
we see that computational thinking is increasingly considered to play a central
role in science education (Park & Green, 2019), and computational models in
particular (Pears et al., 2019).

When we look outside the CS education, we observe that effectively using and
understanding computational models does not necessarily require students to
develop them from scratch themselves. Our work is shown to be relevant outside
of the CS education as our findings already inform the design of instructional
strategies for younger students where models are used to enrich the teaching
of other subjects — as for example in the TeaEdu4CT29 project concerned
with teacher education for CT and STEAM30. When computational thinking is
integrated into the context of another discipline, students can use an existing
computational model (for example about the spread of a virus) to run simulations,
analyze outcomes and examine consequences — both scientific and societal.
Additionally, they could be stimulated to discuss the assumptions underlaying the
model and the model’s validity, thus effectively engaging in a number of processes
associated with the modeling cycle and doing science.

This example is indicative of the curriculum changes expected to take place
in the Netherlands, as discussed in chapter 2. Today, the stakeholders recognize
the importance of learning computer science, as demonstrated by the curriculum.
nu31 initiative where teachers and school administrators cooperate to modernize
the curriculum for elementary and lower secondary education. This initiative
intends to introduce a new learning domain Digital Literacy which contains four
elements: ICT skills, Media Wisdom, Computational Thinking and Information
Skills (Thijs et al., 2014). The Computational Thinking element of Digital literacy
covers a number of CS specific topics, including programming. If the proposals put
forward by the curriculum.nu initiative get approved and lead to the introduction
of a new curriculum for elementary and lower secondary education, it would
signify the end of a rather unique situation where the Netherlands found itself
in comparison to many modern nations. As opposed to, for example, England

29  https://cesie.org/en/project/teaedu4ct/
30  STEAM: science, technology, engineering, art and mathematics
31  https://www.curriculum.nu

565438 N Grgurina.indd 166565438 N Grgurina.indd 166 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

167

7

(Barendsen et al., 2015), Denmark (Caspersen & Nowack, 2013) or Lithuania
(Dagienė & Stupuriene, 2016), today in the Netherlands there is no compulsory
CS education at all for students in primary education. In secondary education,
the Dutch students get the opportunity to enjoy CS education only if they attend
specialized vocational schools (in Dutch: VMBO32); otherwise, the students
attending senior secondary education (in Dutch: HAVO) or pre-university
education (in Dutch: VWO) have to wait until the 10th grade to attend the elective
CS course — and only if their school choses to offer this course and is able to find
a CS teacher.

Considering the present situation of the CS education in the Dutch primary
and secondary education — the actual situation at the moment — we can only
conclude that it is precarious. We urge those at the helm — the policy makers —
to take the right decision and bring Digital literacy into all of Dutch primary and
secondary education. That way, all the students involved will finally get a taste of
computer science.

7.5	 Suggestions for Further Research

This research project took place largely before and partially in parallel with
the development of the new 2019 secondary CS curriculum in the Netherlands.
While its results informed the development of the curriculum — in particular the
elective theme Computational Science — the effects and results of the curriculum
implementation are not yet examined. Looking broader, we see an explosion of
efforts to teach computational thinking — a notion for which Computational
Science is a prime exemplar. We therefore present a number of suggestions for
further research.

The study on the teachers’ initial Pedagogical Content Knowledge (PCK)
regarding Computational Science was carried out before the CS curriculum
containing this elective theme came into effect, with a small number of teachers,
and we portrayed their PCK at that moment. We suggest to perform a large in-
depth study of the development of teachers’ PCK regarding Computational
Science as they participate in relevant professional development activities and
teach it, with the aim to explore how their PCK evolves as they gain experience
teaching Computational Science.

32  VMBO: in Dutch: voorbereidend middelbaar beroepsonderwijs: prevocational education

565438 N Grgurina.indd 167565438 N Grgurina.indd 167 14-09-21 17:0414-09-21 17:04

Chapter 7

168

We developed teaching materials to support the research of students’
understanding (M2) and methods of assessment (M4). However, the instructional
strategies (M3) themselves were not explored. We suggest to perform research
about successful instructional strategies for Computational Science. The teaching
materials developed as spin-off of this project and our assessment instrument can
form the basis for this research.

Our assessment instrument based on the SOLO taxonomy is in line with
the suggestions and needs expressed by CS teachers and provides for holistic
assessment of the learning objectives related to Computational Science. We
suggest to research the development of similar assessments instruments focusing
not only on the computational concepts, but also computational practices
and computational perspectives for, on one hand, other learning objectives of
computer sciences, and on the other hand, for learning objectives within other
disciplines where computational thinking is involved.

In this project, we focused on research of teaching Computational Science
from within a CS course. Computational Science aims to provide CS students
with tools, techniques and skills to use modeling and simulation when exploring
phenomena in various scientific disciplines outside of CS. We suggest to extend
this research along three dimensions. First, following our original line of enquiry
further and considering that computational models can produce large quantities
of data, we suggested a line of inquiry in the wake of another science paradigm
shift — from computational approach that models and simulates complex
phenomena to the one that focuses on the exploration of data and unifies theory,
experiment and simulation (Hey et al., 2009). By engaging in the practices of data
science that bring together computational thinking and mathematical thinking,
the students developing models and performing simulations with them would be
given a further opportunity to engage in doing science by means of more thorough
analysis of the data produced by their simulations. Since this type of activity
happened only marginally within this project, we suggest further research into
this specific issue. Second, extending the scope, we propose a new vantage point
— the perspective of computational thinking in context — and suggest to explore
students’ understanding, challenges, and difficulties related to the learning of
the disciplinary content for which they make models and perform simulations
as described in the learning objectives of Computational Science. Third, as an
extension of the previous suggestion, we propose to explore pedagogical aspects of

565438 N Grgurina.indd 168565438 N Grgurina.indd 168 14-09-21 17:0414-09-21 17:04

General Conclusions and Discussion

169

7

teaching digital literacy, and in particular its component computational thinking,
if and when they become a part of the curriculum for the primary and lower
secondary education in the Netherlands.

565438 N Grgurina.indd 169565438 N Grgurina.indd 169 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 170565438 N Grgurina.indd 170 14-09-21 17:0414-09-21 17:04

Chapter 8

Nederlandse samenvatting
Modelleren en simuleren binnen

Informatica in het voortgezet
onderwijs

565438 N Grgurina.indd 171565438 N Grgurina.indd 171 14-09-21 17:0414-09-21 17:04

172

565438 N Grgurina.indd 172565438 N Grgurina.indd 172 14-09-21 17:0414-09-21 17:04

Nederlandse samenvatting

173

8

8.1	 Motivatie en Onderzoeksvragen

Informaticaonderwijs is ontstaan in het kielzog van de opkomst van computers
in de jaren ‘50 van de vorige eeuw. De doelen van het Informaticaonderwijs zijn
meegeëvolueerd met de toepassing van computers: eerst gericht op het opleiden
voor technische banen, en later — met een ruimere beschikbaarheid van computers
in de tweede helft van de 20ste eeuw — voor softwareontwikkeling en academisch
onderzoek. Vandaag de dag, met computers die in allerlei vormen en maten elk
aspect van ons professionele, sociale en privéleven doordringen, wordt Informatica
niet alleen onderwezen in het kader van voorbereiding op de arbeidsmarkt, maar
ook om computational thinking33 (CT) en digitale geletterdheid te ondersteunen,
om gelijke kansen te bevorderen en om burgerschap, wetenschappelijke,
technologische en maatschappelijke innovatie, onderwijsvernieuwingen en
-hervormingen, en tenslotte, plezier, voldoening en persoonlijke bekwaamheid te
stimuleren.

In Nederland is in 1998 Informatica als middelbare schoolvak ingevoerd als
een keuzevak in de bovenbouw van HAVO en VWO. Het examenprogramma
van dit vak werd herzien in 2007, en recentelijk weer vernieuwd. Vanaf het
schooljaar 2019/2020 is dit nieuwe examenprogramma ingevoerd. Eén van de
keuzethema's in dit nieuwe examenprogramma is Computational Science34,
dat uit twee eindtermen bestaat: modelleren en simuleren. Deze eindtermen
worden als volgt omschreven: “Modelleren: De kandidaat kan aspecten van
een andere wetenschappelijke discipline modelleren in computationele termen.
Simuleren: De kandidaat kan modellen en simulaties construeren en gebruiken
voor het onderzoeken van verschijnselen in die andere wetenschap.” Daarnaast
is modelleren als een onderdeel van de verplichte kerndomeinen in het vak
Informatica als een wetenschappelijke vaardigheid opgenomen en beschreven als
volgt: “De kandidaat kan in contexten een relevant probleem analyseren, inperken
tot een hanteerbaar probleem, vertalen naar een model, modeluitkomsten
genereren en interpreteren, en het model toetsen en beoordelen. De kandidaat
maakt daarbij gebruik van consistente redeneringen.” (Barendsen & Tolboom,
2016).

33  In de Nederlandse samenvatting blijft de Engelse begrip computational thinking gehandhaafd
wegens duidelijkheid en consistentie.
34  De begrippen Computational Science, modelleren en simuleren kunnen in deze tekst als
synoniemen gezien worden.

565438 N Grgurina.indd 173565438 N Grgurina.indd 173 14-09-21 17:0414-09-21 17:04

Chapter 8

174

In bredere zin wordt modelleren als een integraal onderdeel gezien van
Computational Thinking (CT), een concept dat Wing in 2006 breed onder de
aandacht bracht. CT omvat een reeks vaardigheden waarmee men problemen
kan oplossen met behulp van concepten en procedures uit de Informatica.
Het gaat dus om het proces van probleem oplossen waarbij eerst het probleem
in computationele elementen wordt vertaald, vervolgens een computationele
oplossing wordt geconstrueerd, (bijvoorbeeld door gebruik van een bestaande
applicatie of door zelf een programma te ontwerpen) en ten slotte de gevonden
oplossing in het oorspronkelijke vakgebied geïnterpreteerd wordt.

Het algemene onderzoeksdoel van deze dissertatie is het in kaart brengen
van zowel de vakdidactische aspecten van Computational Science (modelleren
en simuleren) binnen het examenvak Informatica in het voortgezet onderwijs in
Nederland, als ook de vakdidactische kennis van docenten over het onderwijzen
van dit onderwerp. Daartoe wordt de indeling van Magnusson et al. (1999)
gehanteerd waarbij de vakdidactische aspecten bij een bepaald onderwerp
gekarakteriseerd worden aan de hand van de volgende componenten:

M1	 leerdoelen behorend bij dit onderwerp
M2	 begrip van leerlingen over dit onderwerp
M3	 instructiestrategieën voor dit onderwerp
M4	 toetsingsmethoden voor dit onderwerp
De vakdidactische aspecten van Computational Science en de vakdidactische

kennis van docenten voor het onderwijzen van Computational Science worden
aan de hand van de volgende onderzoeksvragen onderzocht:

1.	 Welke computational thinking-activiteiten vormen het proces van
probleem oplossen behorend bij Computational Science? Deze vraag
is gericht op het definiëren van leerdoelen voor Computational
Science (M1).

2.	 Hoe kan leerlingenbegrip van modelleeractiviteiten35 worden
gekarakteriseerd aan de hand van hun leerbehoeften en de
moeilijkheden die ze ervaren? (M2)

3.	 Wat zijn de kenmerken van een valide en betrouwbaar
toetsinstrument om Computational Science te toetsen? (M4).

4.	 Hoe kan pedagogical content knowledge (PCK) van leraren ten
aanzien van Computational Science worden beschreven aan de
hand van de kenniscomponenten M1 tot en met M4?

35  De begrippen Computational Science, modelleren en simuleren kunnen in deze tekst als
synoniemen gezien worden.

565438 N Grgurina.indd 174565438 N Grgurina.indd 174 14-09-21 17:0414-09-21 17:04

Nederlandse samenvatting

175

8

8.2	 Bevindingen

8.2.1	 Operationele Definitie van Computational Science (vraag 1)
Hoofdstuk 3 beschrijft de eerste studie die ingaat op de eerste onderzoeksvraag:

Welke computational thinking-activiteiten vormen het proces van probleem
oplossen behorend bij Computational Science? Op basis van literatuurstudie
is een eerste antwoord op deze vraag gekregen en die is verder verfijnd door
leerlingen te observeren tijdens hun werk, door ze vragenlijsten te laten invullen
en door individuele leerlingen te interviewen. Dit heeft geresulteerd in het
volgende raamwerk met lijst van activiteiten die het proces van probleem oplossen
behorend bij Computational Science vormen:

•	 Aangeven wat het doel is van het model
•	 Het onderzoek dat nodig is voor het bouwen van het model uitvoeren
•	 Abstraheren om onnodige details weg te laten
•	 Het probleem zodanig formuleren dat computers en ander

gereedschap gebruikt kunnen worden om een computationele
oplossing te vinden

•	 Opstellen van vereisten en specificatie voor die computationele
oplossing

•	 Het implementeren van de computationele oplossing, oftewel:
programmeren

•	 Het geïmplementeerde model verifiëren en valideren
•	 Het geïmplementeerde model gebruiken voor het experimenteren,

oftewel: simulatie uitvoeren
•	 De uitkomsten verkregen door te experimenteren analyseren
•	 Reflecteren op het hele proces.

8.2.2	 Leerlingen: begrip en moeilijkheden (vraag 2)
In de eerste en vierde studie (hoofdstukken 3 en 6) werden het begrip en de

moeilijkheden die leerlingen ervaren tijdens hun werk aan modelleeropdrachten
bestudeerd, om zo de tweede onderzoeksvraag te beantwoorden: Hoe kan
leerlingenbegrip van modelleeractiviteiten worden gekarakteriseerd aan de hand
van hun leerbehoeften en de moeilijkheden die ze ervaren? (M2) Er is vastgesteld
dat veel leerlingen niet konden beslissen welk fenomeen te modelleren en moeite
hadden met het vertalen van hun probleem naar computationele termen geschikt

565438 N Grgurina.indd 175565438 N Grgurina.indd 175 14-09-21 17:0414-09-21 17:04

Chapter 8

176

om te programmeren. De meeste leerlingen is het gelukt om een programma
te ontwerpen, maar vaak niet zoals zij dat wensten. Tijdens het testen wisten ze
vaak niet of onverwacht gedrag van het programma door verkeerde aannames,
programmeerfouten of door het gedrag behorend bij het gemodelleerde fenomeen
werd veroorzaakt. Tijdens het programmeren van hun modellen werkten ze vaak
volgens een incrementele trial-and-error-strategie. Weinig leerlingen voerden
systematische en goed gedocumenteerde experimenten met hun modellen uit.
Vaak werd het experimenteren en analyseren van verkregen uitkomsten vermengd
met het construeren van modellen.

In de laatste studie (hoofdstuk 6) werden leerlingen geobserveerd terwijl
ze leerden modelleren en werkten aan modelleeropdrachten aan de hand van
lesmateriaal dat ik zelf heb geschreven. Focus lag voornamelijk op het begrip
en de moeilijkheden rondom verificatie en validatie van hun modellen en deze
werden beschreven in termen van:

•	 construeren van modellen
•	 testen
•	 reflecteren op geloofwaardigheid, overtuigingskracht,

nauwkeurigheid van modellen en tevredenheid met modellen
Het bleek dat niet alle leerlingen het nodige onderzoek vooraf deden. Sommige

maakten verkeerde aannames; er waren programmeerfouten; niet iedereen voerde
experimenten systematisch uit; en sommige leerlingen waren tevreden met
onrealistische modellen of leken de essentie van het modelleren niet helemaal
begrepen te hebben.

8.2.3	 Pedagogical Content Knowledge van Docenten (vraag 4)
In de tweede studie (hoofdstuk 4) werd de initiële PCK van Informaticadocenten

rondom het modelleren en simuleren in kaart gebracht om een antwoord te geven
op de vierde onderzoeksvraag: Hoe kan pedagogical content knowledge (PCK)
van leraren ten aanzien van Computational Science worden beschreven aan de
hand van de kenniscomponenten M1 tot en met M4? Wat betreft de leerdoelen
van modelleren en simuleren, is het vastgesteld dat de beoogde leerdoelen voor
leerlingen te verdelen zijn in conceptuele leerdoelen enerzijds, en motivatie
gerelateerde en praktische leerdoelen anderzijds. In relatie tot het begrip van
leerlingen zijn er drie aspecten te onderscheiden. Het betrof de benodigde
voorkennis en vaardigheden om modellen te maken, de zaken die succesvol waren
of aan het succes bijdragen zoals de ervaren relevatie van modellen, en ten slotte,

565438 N Grgurina.indd 176565438 N Grgurina.indd 176 14-09-21 17:0414-09-21 17:04

Nederlandse samenvatting

177

8

de zaken die leerlingen als moeilijk ervaren of voor problemen zorgen, zoals de
variatie tussen de leerlingen in een klas of de moeite die leerlingen hebben met
abstractie. Opvallend is dat sommige leraren niets wisten te vertellen over het
begrip bij leerlingen. Wat betreft de instructiestrategieën zijn er vijf thema's: hoe
leraren hun rol ervaren, opdrachten voor leerlingen, kenmerken van leerlingen
om rekening mee te houden, organisatorische aspecten, en ten slotte, problemen
en moeilijkheden. Er was een grote mate van overeenstemming rondom de
gewenste instructiestrategieën: van docentgestuurd naar leerlinggestuurd, met als
afsluiting een grote praktische opdracht die ook voor toetsing wordt gebruikt. Ten
slotte, voor toetsing zijn er vier thema’s: de toetsingsvorm, opdrachten die aan
leerlingen worden gegeven, organisatorische aspecten en beoordelingscriteria.
Er is overeenstemming over de gewenste vorm: een grote praktische opdracht.
Echter, de beoordelingscriteria waren divers (zowel product als proces) en niet
gespecificeerd in detail. Er is ook gekeken of er onderscheidende kenmerken van
PCK van docenten kon identificeren met behulp van de vier componenten van
PCK beschreven door Magnusson et al. (1999), maar dat bleek niet het geval.

8.2.4	 Toetsinstrument voor Computational Science (vraag 3)
De bevindingen van de voorgaande studies hebben bijgedragen aan het

beantwoorden van de derde onderzoeksvraag: Wat zijn de kenmerken van een
valide en betrouwbaar toetsinstrument om Computational Science te toetsen?
(M4). Met de inzichten die over de leerdoelen en geschikte onderwijsstrategieën
uit voorgaande studies waren verkregen, is de eerste versie van lesmateriaal voor
Computational Science ontwikkeld samen met een toetsinstrument in de vorm
van een praktische opdracht met bijbehorende beoordelingsrubrics gebaseerd op
SOLO36 taxonomie. Deze taxonomie beschrijft de leeruitkomsten op vijf niveaus:
prestructural37, unistructural en multistructural — die als kwantitatief worden
beschouwd — en relationeel en extended abstract — die duiden op een kwalitatieve
verandering (Biggs & Tang, 2011). De praktische opdracht sluit nauw aan bij het
raamwerk voor de ontwikkeling en het gebruik van computationele modellen dat
ontwikkeld is als operationele definitie van Computational Science. Het bevat een
reeks vragen en opdrachten die de leerlingen door het hele proces begeleiden. De
leerlingen worden eerst gevraagd om het doel van het model te beschrijven (d.w.z.
de onderzoeksvraag stellen) en eventueel onderzoek uit te voeren. Vervolgens

36  SOLO: Structure of the Observed Learning Outcome
37  Voor duidelijkheid werden hier de originele engelse termen gebruikt.

565438 N Grgurina.indd 177565438 N Grgurina.indd 177 14-09-21 17:0414-09-21 17:04

Chapter 8

178

worden ze gevraagd om het model te ontwerpen, implementeren en valideren
en daarmee te experimenten door het model uit te voeren, en om de uitkomsten
te analyseren en de onderzoeksvraag te beantwoorden. Tenslotte worden ze
gevraagd om te reflecteren op het hele proces. Dit resulteert in een portfolio
met documentatie en het geïmplementeerd model. De rubrics classificeert de
leeruitkomsten voor elk deel van het portfolio met behulp van SOLO-taxonomie.
Het beoordelingsinstrument in de vorm van een praktische opdracht en
bijbehorende rubrics op basis van de SOLO-taxonomie is betrouwbaar gebleken,
zoals blijkt uit een hoog percentage interbeoordelaarsovereenkomsten. De validiteit
ervan wordt bevestigd doordat de significante verschillen in prestatieniveaus van
de HAVO leerlingen ten opzichte van de VWO leerlingen zichtbaar werden: zoals
verwacht waren de prestatieniveaus van de VWO leerlingen significant hoger
voor bijna alle criteria.

8.3	 Wetenschappelijke Bijdrage

Dit onderzoeksproject levert verscheidene wetenschappelijke bijdragen.
De leerdoelen van het keuzethema Computational Science van het nieuwe

examenprogramma voor Informatica zijn vanuit twee perspectieven in een
raamwerk uitgewerkt: als een cyclisch proces gebaseerd op het modelleren binnen
wiskunde en als een manier om CT en wetenschappelijk onderzoek te integreren
vanuit het perspectief van Informaticaleerlingen. Deze methodologische
toepassing is met name belangrijk omdat er groeiende interesse is voor de
toepassing van CT in het moderne wetenschapsonderwijs.

Het begrip van leerlingen en moeilijkheden die ze ervaren tijdens het
maken en gebruiken van computationele modellen zijn onderzocht vanuit het
perspectief van Informatica waarbij een andere discipline de context biedt —
dit in tegenstelling tot veel andere studies waar het leren van vakinhoud van de
desbetreffende discipline centraal staat. Voor zover bekend, is dit de eerste keer
dat het begrip van leerlingen en moeilijkheden die ze ervaren tijdens het maken
en gebruik van computationele modellen voor hun wetenschappelijk onderzoek in
deze context diepgaand zijn onderzocht, met name voor wat betreft het verifiëren
en valideren van de gemaakte computationele modellen.

Het betrouwbaar en valide toetsinstrument is niet alleen handig voor gebruik
in een onderwijssituatie, maar kan ook ingezet worden als onderzoeksinstrument

565438 N Grgurina.indd 178565438 N Grgurina.indd 178 14-09-21 17:0414-09-21 17:04

Nederlandse samenvatting

179

8

voor onderzoek naar de leerresultaten van leerlingen met betrekking tot
computational thinking. In tegenstelling tot veel andere toetsinstrumenten met
een nauwere focus, bekijkt dit instrument op een holistische wijze de gehele
modelleercyclus.

Ten slotte is de PCK van Informaticadocenten betreffende Computational
Science gedetailleerd in kaart gebracht. Hiermee is aangetoond dat het begrip
PCK ook voor het onderzoek naar ideeën en kennis van Informaticadocenten
ingezet kan worden.

De rode draad van de wetenschappelijke bijdrage van dit project kan gezien
worden in het licht van het feit dat computational thinking — en zijn componenten
modelleren en simuleren — een brug kan vormen tussen Informatica en een
toepassingsdomein. Veel onderzoek in het Informaticaonderwijs is gewijd
aan het programmeeronderwijs en beginnende programmeurs, en uit de
literatuurstudie kwam geen onderzoek naar boven op het gebied van het gebruik
van programmeervaardigheden om computationele modellen te ontwikkelen en
die te gebruiken voor wetenschappelijk onderzoek binnen Informaticaonderwijs.
De wetenschappelijke bijdrage van dit project aan de ontwikkeling van de theorie
van het Informaticaonderwijs kan in dit licht gezien worden. Dit werk biedt
een nieuw theoretisch kader voor empirisch onderzoek naar competenties van
leerlingen en docenten op het gebied van het ontwerpen van computationele
modellen, principes voor beoordeling en inzichten in het begrip van leerlingen
met betrekking tot deze competenties. Bovendien is het de eerste studie waarin de
PCK van de Informaticadocenten wordt onderzocht.

8.4	 Praktische implicaties

De overkoepelende praktische bijdrage van dit onderzoeksproject kan
het best geïllustreerd worden aan de hand van vergelijkbare verschuivingen
van wetenschapsparadigma’s (Hey et al., 2009). Veel grote theoretische
wetenschappelijke resultaten — zoals klassieke mechanica of Lotka-Volterra-
vergelijkingen die de dynamiek van biologische systemen beschrijven —
werden mogelijk gemaakt door ontwikkelingen in de wiskunde (die op hun
beurt vaak aangedreven werden door de behoeften van wetenschappers). De
overeenkomstige verschuiving betekende dat de wetenschappelijke kennis in
wiskundige termen kon worden beschreven, in plaats van beschrijvingen van

565438 N Grgurina.indd 179565438 N Grgurina.indd 179 14-09-21 17:0414-09-21 17:04

Chapter 8

180

waarnemingen. Hiermee werd een wetenschappelijke paradigmaverschuiving
teweeggebracht van de tekstuele beschrijving van waarnemingen naar het
gebruik van wiskundige modellen. De ontwikkeling en het gebruik van
dergelijke wiskundige representaties is vaak een complex proces. Bovendien
is geavanceerde wiskundige kennis van differentiaal- en integraalberekening
noodzakelijk; een actieve betrokkenheid bij wetenschappelijke activiteiten op
deze manier ligt daarom vaak buiten het bereik van middelbare scholieren. De
mogelijkheden die moderne computers tegenwoordig bieden maken het echter
mogelijk om allerlei verschijnselen in computationele termen te beschrijven
door simpelweg de kenmerken en het gedrag van de individuele elementen in
het gemodelleerde systeem te beschrijven. Deze computationele beschrijvingen
— d.w.z. computationele modellen — zijn uitvoerbaar en in de geest van weer
een verdere wetenschappelijke paradigmaverschuiving. Hierbij verschuift de
aandacht van de theoretische benadering naar de computationele benadering
die zich op de simulatie van complexe verschijnselen richt door het gebruik van
computationele modellen die uitvoerbaar zijn — in plaats van het maken van
statische modellen. Dat betekent dat zelfs beginners zoals leerlingen hiermee aan
de slag kunnen. Weintrop et al. (2016) merken op dat wetenschap steeds meer
een computationele activiteit wordt. Zij beschouwen modelleren en simuleren als
een van de belangrijkste categorieën van computational thinking voor wiskunde
en wetenschap. Dit project levert het bewijs dat het mogelijk is om modelleren en
simuleren binnen Informatica in het voortgezet onderwijs effectief te onderwijzen
en zo leerlingen de gelegenheid te bieden om zelf met wetenschap bezig te zijn.

In hoofdstuk 2 is de geschiedenis en de situatie van Informatica in het
voortgezet onderwijs in Nederland beschreven. De belangrijkste praktische
bijdrage is daaraan gerelateerd: het draagt bij aan het onderwijs van Computational
Science. De resultaten hebben bijgedragen aan het ontwerp van professionele
ontwikkelingsactiviteiten voor leraren, waarbij zowel de aspecten van modellering
en simulatie als de vakdidactiek daarvan aan bod komen. Bovendien heb ik
als spin-off van dit project de bevindingen gebruikt om het ontwikkelen van
lesmateriaal en een bijbehorende docentenhandleiding te begeleiden. Dit
materiaal is nu in gangbare lesmethodes voor Informatica opgenomen. Daarnaast
heb ik een uitgebreide cursus over Computational Science ontworpen die in
het kader van bijscholing aan docenten Informatica wordt aangeboden. Het
beoordelingsinstrument draagt bij aan de kwaliteit van de beoordeling op scholen.
In een breder perspectief kunnen de bevindingen het onderwijs in andere

565438 N Grgurina.indd 180565438 N Grgurina.indd 180 14-09-21 17:0414-09-21 17:04

Nederlandse samenvatting

181

8

Informatica-onderwerpen beïnvloeden. Ze kunnen leraren informeren over begrip
en moeilijkheden die ze van hun leerlingen kunnen verwachten. Daarnaast kan
het de ontwikkeling van een vergelijkbaar holistisch beoordelingsinstrument bij
andere kerndomeinen en keuzethema’s van het Informaticaonderwijs inspireren.

Toen dit project begon, was het gericht op modelleren en simuleren binnen
het Informaticaonderwijs. De hoop was dat het zou bijdragen aan het bouwen
van bruggen naar andere vakken en dat het leerlingen en hun leraren zou
stimuleren om samenwerking buiten de grenzen van hun disciplines te zoeken
en zo ten goede zou komen aan het leren van alle betrokken disciplines. Nu kan
er met tevredenheid vastgesteld worden dat computational thinking steeds meer
aandacht krijgt, zoals bijvoorbeeld bij de voorstellen voor curriculumvernieuwing
van curriculum.nu, en dat dit werk dus steeds relevanter wordt. Het krijgt steeds
meer een centrale rol in het wetenschapsonderwijs (Park & ​​Green, 2019), met
name in verband met computationele modellen (Pears et al., 2019).

Als men buiten het Informaticaonderwijs kijk, dan is te zien dat het
effectief gebruiken en begrijpen van computermodellen niet per se vereist
dat leerlingen deze zelf ontwikkelen. Daardoor blijkt dit werk ook buiten het
Informaticaonderwijs relevant te zijn. De bevindingen zijn ook van toepassing op
het ontwerp van instructiestrategieën voor jongere leerlingen waarbij modellen
gebruikt worden om het onderwijs van andere vakken te verrijken — zoals
bijvoorbeeld in het TeaEdu4CT-project dat zich bezighoudt met opleiden van
leraren in computational thinking bij STEAM38-vakken. Wanneer computational
thinking in de context van een andere discipline toegepast wordt, kunnen
leerlingen een bestaand computermodel (bijvoorbeeld over de verspreiding van
een virus) gebruiken om simulaties uit te voeren, resultaten te analyseren en zowel
wetenschappelijke als maatschappelijke consequenties te onderzoeken. Bovendien
kunnen ze worden gestimuleerd om de aannames die ten grondslag liggen aan het
model en de validiteit van het model te bespreken, en zo effectief deel te nemen
aan de modelleercyclus en wetenschapspraktijken.

Dit voorbeeld is indicatief voor de curriculumvernieuwing die naar
verwachting in Nederland plaats zal vinden, zoals besproken in hoofdstuk 2.
Tegenwoordig wordt het belang van het leren van Informatica-gerelateerde
vakinhoud erkend, zoals blijkt uit de voorstellen voor het nieuwe curriculum van
het initiatief curriculum.nu. Dit initiatief pleit voor de introductie van een nieuw
leerdomein Digitale Geletterdheid dat vier elementen bevat: ICT-vaardigheden,

38  STEAM: science, technology, engineering, art and mathematics

565438 N Grgurina.indd 181565438 N Grgurina.indd 181 14-09-21 17:0414-09-21 17:04

Chapter 8

182

Mediawijsheid, Computational Thinking en Informatievaardigheden (Thijs et
al., 2014). Het computational thinking element van digitale geletterdheid omvat
een aantal Informaticaspecifieke onderwerpen, waaronder programmeren. Als de
voorstellen van het curriculum.nu initiatief worden geaccepteerd en leiden tot de
introductie van een nieuw curriculum voor het funderend onderwijs, zou dit het
einde betekenen van een vrij unieke situatie waarin Nederland zich bevindt in
vergelijking met veel moderne landen. In tegenstelling tot bijvoorbeeld Engeland
(Barendsen et al., 2015), Denemarken (Caspersen & Nowack, 2013) of Litouwen
(Dagienė & Stupuriene, 2016), kunnen Nederlandse leerlingen alleen Informatica
volgen als ze naar gespecialiseerde ICT-beroepsopleidingen op het VMBO gaan,
of Informatica als keuzevak volgen in de bovenbouw van HAVO en VWO —
mits hun school dat vak aanbiedt en een leraar kan vinden. Gezien de huidige
stand van zaken rond het Informaticaonderwijs in het Nederlandse primair en
voortgezet onderwijs kan men alleen maar vaststellen dat het precair is, zoals
aangegeven in hoofdstuk 2. Het is van groot belang om digitale geletterdheid in
het hele Nederlandse basis- en voortgezet onderwijs in te voeren. Op die manier
krijgen alle leerlingen eindelijk de kans om kennis te maken met Informatica.

8.5	 Suggesties voor vervolgonderzoek

Dit onderzoeksproject vond grotendeels plaats vóór en gedeeltelijk tegelijk
met de ontwikkeling van het nieuwe examenprogramma Informatica dat in
2019 werd ingevoerd. Hoewel de resultaten van dit project aan de ontwikkeling
van het examenprogramma hebben bijgedragen, met name het keuzethema
Computational Science, zijn de effecten en resultaten van de implementatie van
het examenprogramma nog niet onderzocht. Het onderwijs kent momenteel vele
initiatieven om computational thinking te onderwijzen, en daar is Computational
Science een onderdeel van. Daarom wordt hier een aantal suggesties voor verder
onderzoek gedaan.

Het onderzoek naar de initiële Pedagogical Content Knowledge (PCK) van
de docenten met betrekking tot Computational Science werd uitgevoerd met een
klein aantal docenten, wiens PCK op dat moment is in kaart gebracht werd. Voor
vervolgonderzoek wordt voorgesteld om een grote diepgaande studie uit te voeren
naar de ontwikkeling van de PCK van leraren met betrekking tot Computational
Science terwijl ze hierover lesgeven en deelnemen aan relevante professionele

565438 N Grgurina.indd 182565438 N Grgurina.indd 182 14-09-21 17:0414-09-21 17:04

Nederlandse samenvatting

183

8

ontwikkelingsactiviteiten. Doel van een dergelijke studie is te onderzoeken
hoe hun PCK evolueert naarmate ze ervaring opdoen met het lesgeven in
Computational Science.

Er is lesmateriaal ontwikkeld om te helpen bij het onderzoek naar het
begrip van begrip van leerlingen (M2) en beoordelingsmethoden (M4). De
instructiestrategieën (M3) zelf zijn echter niet onderzocht. Vervolgonderzoek zou
zich kunnen richten naar succesvolle instructiestrategieën voor Computational
Science. Het als spin-off van dit project ontwikkeld lesmateriaal en het
beoordelingsinstrument kunnen de basis vormen voor dit onderzoek.

Het beoordelingsinstrument op basis van de SOLO-taxonomie is in
overeenstemming met de suggesties en behoeften van Informaticaleraren en
voorziet in een holistische beoordeling van de leeruitkomsten van Computational
Science. Vervolgonderzoek kan zich richten op de ontwikkeling van vergelijkbare
beoordelingsinstrumenten, niet alleen gericht op de computationele concepten,
maar ook op computationele praktijken en computationele perspectieven voor
enerzijds andere leeruitkomsten van het schoolvak Informatica en anderzijds
voor leeruitkomsten binnen andere disciplines waar computational thinking bij
relevant is.

Dit project was gericht op onderzoek naar het onderwijzen van
Computational Science binnen Informatica. Computational Science heeft tot doel
Informaticaleerlingen gereedschappen, technieken en vaardigheden te bieden om
modelleren en simuleren te gebruiken bij het verkennen van verschijnselen in
verschillende wetenschappelijke disciplines buiten Informatica. Vervolgonderzoek
kan drie lijnen volgen. Ten eerste, door de oorspronkelijke onderzoekslijn verder
te vervolgen. Gezien het feit dat computationele modellen grote hoeveelheden
data kunnen produceren, wordt er een onderzoekslijn voorgesteld in het
kielzog van een andere wetenschappelijke paradigmaverschuiving — van een
computationele benadering die complexe verschijnselen modelleert en simuleert
naar een benadering die zich concentreert op het exploreren van data (Hey
et al., 2009). Door de praktijken van data science die computational thinking
en wiskundig denken samenbrengen, zouden de leerlingen die modellen
ontwikkelen en simulaties uitvoeren de gelegenheid krijgen om de gegevens die
door hun simulaties worden geproduceerd grondig te analyseren. Aangezien
dit soort activiteiten slechts marginaal plaats vond binnen dit project, is verder
onderzoek naar dit specifieke probleem op zijn plaats. Ten tweede, door breder
dan alleen Informaticaonderwijs te kijken, ontstaat er een nieuw uitgangspunt—

565438 N Grgurina.indd 183565438 N Grgurina.indd 183 14-09-21 17:0414-09-21 17:04

Chapter 8

184

het perspectief van computational thinking in context. Vervolgonderzoek kan
zich richten op het begrip, de uitdagingen en de moeilijkheden van leerlingen
met betrekking tot het leren van de vakinhoud waarvoor ze modellen maken en
simulaties uitvoeren als beschreven in de leerdoelen van Computational Science.
Ten derde, in het verlengde van de vorige suggestie, kunnen vakdidactische
aspecten van het onderwijzen van digitale geletterdheid onderzocht worden, en
in het bijzonder de component computational thinking — als het een onderdeel
wordt van het curriculum voor funderend onderwijs in Nederland.

565438 N Grgurina.indd 184565438 N Grgurina.indd 184 14-09-21 17:0414-09-21 17:04

References

565438 N Grgurina.indd 185565438 N Grgurina.indd 185 14-09-21 17:0414-09-21 17:04

186

References

Adriaens, H., Fontein, P., Uijl, M. D., & Vos, K. D. (2016). De toekomstige arbeidsmarkt voor
onderwijspersoneel po, vo en mbo 2015-2025, Update november 2016. CentERdata.

Aiken, J. M., Caballero, M. D., Douglas, S. S., Burk, J. B., Scanlon, E. M., Thoms, B. D., & Schatz, M. F.
(2012). Understanding student computational thinking with computational modeling. arXiv preprint
arXiv:1207.1764.

Akker, J. V. den, Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Educational design research. Taylor
& Francis.

Allan, W., Coulter, B., Denner, J., Erickson, J., Lee, I., Malyn-Smith, J., & Martin, F. (2010). Computational
Thinking for Youth White Paper. Walt Allan. http://itestlrc.edc.org/resources/computational-thinking-
youth-white-paper

Alturki, R. A. (2016). Measuring and Improving Student Performance in an Introductory Programming
Course. Informatics in Education-An International Journal, 15(2), 183–204.

Amouroux, E., Gaudou, B., Desvaux, S., & Drogoul, A. (2010). Odd: A promising but incomplete formalism
for individual-based model specification. Computing and Communication Technologies, Research,
Innovation, and Vision for the Future (RIVF), 2010 IEEE RIVF International Conference on, 1–4.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational
thinking curriculum framework: Implications for teacher knowledge. Journal of Educational
Technology & Society, 19(3).

Bakema, G., Zwart, J. P., & Lek, H. van der. (2002). Fully Communication Oriented Information Modeling,
FCO-IM. Ten Hagen & Stam.

Barendsen, E., & Bruggink, M. (2019). Het volle potentieel van de computer leren benutten: Over informatica
en computational thinking. In Van Twaalf tot Achttien.

Barendsen, E., & Tolboom, J. (2016). Advisory report (intended) curriculum for informatics for upper
secondary education. SLO.

Barendsen, E., & Zwaneveld, B. (2010). Informatica in het Voortgezet Onderwijs Voorstel voor
vakvernieuwing [Notitie voor KNAW].

Barendsen, E., Grgurina, N., & Tolboom, J. (2016). A New Informatics Curriculum for Secondary Education
in The Netherlands. International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives, 105–117.

Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C., Sentance, S., Settle, A., & Stupurienė,
G. (2015). Concepts in K-9 Computer Science Education. Proceedings of the 2015 ITiCSE on Working
Group Reports, 85–116.

Basawapatna, A., Repenning, A., & Lewis, C. H. (2013). The simulation creation toolkit: An initial exploration
into making programming accessible while preserving computational thinking. Proceeding of the 44th
ACM technical symposium on Computer science education, 501–506.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying middle school
students’ challenges in computational thinking-based science learning. Research and Practice in
Technology Enhanced Learning, 11(1), 13. https://doi.org/10.1186/s41039-016-0036-2

Basu, S., Dickes, A., Kinnebrew, J. S., Sengupta, P., & Biswas, G. (2013). CTSiM: A Computational
Thinking Environment for Learning Science through Simulation and Modeling. The 5th International
Conference on Computer Supported Education.

Basu, S., Dukeman, A., Kinnebrew, J., Biswas, G., & Sengupta, P. (2014). Investigating student generated
computational models of science. Proceedings of the 11th International Conference of the Learning
Sciences (ICLS 2014), 1097–1104.

Basu, S., McElhaney, K. W., Grover, S., Harris, C. J., & Biswas, G. (2018). A principled approach to designing
assessments that integrate science and computational thinking. International Society of the Learning
Sciences, Inc.[ISLS].

Bauer, B., Muller, J. P., & Odell, J. (2001). Agent UML: A formalism for specifying multiagent software
systems. International journal of software engineering and knowledge engineering, 11(03), 207–230.

565438 N Grgurina.indd 186565438 N Grgurina.indd 186 14-09-21 17:0414-09-21 17:04

187

R

References

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand,
M., & Tsai, Y. M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and
student progress. American Educational Research Journal, 47(1), 133.

Bennett, J., & Holman, J. (2002). Context-Based Approaches to the Teaching of Chemistry: What are They
and What Are Their Effects? (J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. Van Driel, Red.;
pp. 165–184). Kluwer.

Bergervoet, P., Boon, P., Commandeur, K., Smeets, D., Van, der H., & Vorstenbosch, P. (2001). Informatica
(2. Ed.). Edu’Actief.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157.

Bielik, T., Fonio, E., Feinerman, O., Duncan, R. G., & Levy, S. T. (2021). Working Together: Integrating
Computational Modeling Approaches to Investigate Complex Phenomena. Journal of Science
Education and Technology, 30(1), 40–57.

Biesta, G. J. (2015). Good education in an age of measurement: Ethics, politics, democracy. Routledge.
Biggs, J., & Tang, C. (2011). Teaching for quality learning at university. McGraw-Hill International.
Blikstein, P., & Moghadam, S. H. (2019). Computing Education: Literature Review and Voices from the Field

(S. Fincher & A. V. Robins, Red.; pp. 56–78). Cambridge University Press.
Blikstein, P., & Wilensky, U. (2009). An Atom is Known by the Company it Keeps: Content, Representation

and Pedagogy within the Epistemic Revolution of the Complexity Sciences.
Borshchev, A. (2013). The big book of simulation modeling: Multimethod modeling with AnyLogic 6.

AnyLogic North America.
Bort, H., & Brylow, D. (2013). CS4Impact: Measuring computational thinking concepts present in CS4HS

participant lesson plans. Proceeding of the 44th ACM technical symposium on Computer science
education, 427–432. https://doi.org/10.1145/2445196.2445323

Boulay, B. D. (1986). Some difficulties of learning to program. Journal of Educational Computing Research,
2(1), 57–73.

Brade, D. (2004). A generalized process for the verification and validation of models and simulation results.
A generalized process for the verification and validation of models and simulation results.

Brennan, K., & Resnick, M. (2012). New Frameworks for Studying and Assessing the Development of
Computational Thinking. Proceedings of the 2012 annual meeting of the American Educational
Research Association, Vancouver, Canada.

Brodjanac, P., Bubica, N., Kralj, L., Markucic, Z., Mirkovic, M., Rubie, M., Sudarevic, D., Czwyk, A., Mari,
C., Hrzica, V., & Vuk, B. (2016). Nacionalni kurikulum nastavnoga predmeta informatika. http://www.
kurikulum.hr/wp-content/uploads/2016/03/Informatika.pdf; http://www.kurikulum.hr/wp-content/
uploads/2016/03/Informatika.pdf

Bungartz, H.-J., Zimmer, S., Buchholz, M., Pflüger, D., Le Borne, S., & Le Borne, R. (2014). Modeling and
simulation: An application-oriented introduction/by Hans-Joachim Bungartz, Stefan Zimmer, Martin
Buchholz, Dirk Pflüger; translated by Sabine Le Borne, Richard Le Borne.

Caballero, M. D., Kohlmyer, M. A., & Schatz, M. F. (2012). Implementing and assessing computational
modeling in introductory mechanics. Physical Review Special Topics - Physics Education Research,
8(2), 020106. https://doi.org/10.1103/PhysRevSTPER.8.020106

Çakıroğlu, Ü., & Kiliç, S. (2020). Assessing teachers’ PCK to teach computational thinking via robotic
programming. Interactive Learning Environments, 0(0), 1–18. https://doi.org/10.1080/10494820.202
0.1811734

Carley, K. M. (1996). Validating computational models. Paper available at http://www.casos.cs.cmu.edu/
publications/papers.php.

Carlson, J., & Daehler, K. R. (2019). The refined consensus model of pedagogical content knowledge in
science education (pp. 77–92). Springer.

Carnegie Mellon Center for Computational Thinking. (2010). https://www.cs.cmu.edu/~CompThink/
Carson, I. I., & John, S. (2004). Introduction to modeling and simulation. Proceedings of the 36th conference

on Winter simulation, 9–16.
Caspersen, M. E., & Nowack, P. (2013a). Computational Thinking and Practice—A Generic Approach to

Computing in Danish High Schools.

565438 N Grgurina.indd 187565438 N Grgurina.indd 187 14-09-21 17:0414-09-21 17:04

188

References

Caspersen, M. E., & Nowack, P. (2013b). Model–Based Thinking & Practice. Centre for Science Education,	
Aarhus University.

Castro, F. E. V., & Fisler, K. (2017). Designing a multi-faceted SOLO taxonomy to track program design skills
through an entire course. Proceedings of the 17th Koli Calling Conference on Computing Education
Research, 10–19.

Cateté, V., Lytle, N., Dong, Y., Boulden, D., Akram, B., Houchins, J., Barnes, T., Wiebe, E., Lester, J., & Mott,
B. (2018). Infusing computational thinking into middle grade science classrooms: Lessons learned.
Proceedings of the 13th Workshop in Primary and Secondary Computing Education, 1–6.

Center for Scientific Workshops in All Disciplines—Computing in Secondary Education. (2014). https://
www.lorentzcenter.nl/computing-in-secondary-education.html

Chalmers, C. (2018). Robotics and computational thinking in primary school. International Journal of
Child-Computer Interaction, 17, 93–100. https://doi.org/10.1016/j.ijcci.2018.06.005

Cohen, L., Manion, L., & Morrison, K. R. B. (2007). Research methods in education, Sixth edition. Routledge.
College voor Toetsen en Examens. (1998). Vaststelling examenprogramma’s vwo/havo (Gele katern).

https://www.examenblad.nl/publicatie/19980506/vaststelling-examenprogramma-s-vwo/2009?regim
e=hfregts&horizon=vg41h1h6n8tf

Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., Young, P. R., & Denning, P. J. (1989).
Computing as a Discipline. Communications of the ACM, 32(1), 9–23.

Computational thinking. (2020). [Overzichtspagina]. SLO. https://slo.nl/vakportalen/vakportaal-digitale-
geletterdheid/computational-thinking/

CS For All. (2016). https://www.csforall.org/; https://www.csforall.org/; https://www.csforall.org/
CSTA Computational Thinking Task Force. (2011). Operational Definition of Computational Thinking for

K–12 Education (Vol. 2013).
Curzon, P., Dorling, M., Ng, T., Selby, C., & Woollard, J. (2014). Developing computational thinking in the

classroom: A framework.
Czerkawski, B. (2013). Instructional design for computational thinking. Proceedings of Society for

Information Technology & Teacher Education International Conference, 10–17.
Czerkawski, B., & Xu, L. (2012). Computational Thinking and Educational Technology. World Conference

on Educational Multimedia, Hypermedia and Telecommunications, 2012, 2607–2610.
Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the curriculum. International

conference on informatics in schools: Situation, evolution, and perspectives, 28–39.
Dagienė, V., & Stupuriene, G. (2016). Informatics concepts and computational thinking in K-12 education:

A Lithuanian perspective. Journal of Information Processing, 24(4), 732–739.
Dagienė, V., & Stupuriene, G. (2016a). Bebras-a sustainable community building model for the concept

based learning of informatics and computational thinking. Informatics in Education, 15(1), 25.
Dagienė, V., & Stupuriene, G. (2016b). Informatics concepts and computational thinking in K-12 education:

A Lithuanian perspective. Journal of Information Processing, 24(4), 732–739.
Davies, S. (2008). The effects of emphasizing computational thinking in an introductory programming

course. 2008 38th Annual Frontiers in Education Conference, T2C-3-T2C-8.
De Araujo, A. L. S. O., Andrade, W. L., & Guerrero, D. D. S. (2016). A systematic mapping study on assessing

computational thinking abilities. 2016 IEEE frontiers in education conference (FIE), 1–9.
Denning, P. J. (2009). The profession of IT Beyond computational thinking. Communications of the ACM,

52(6), 28–30.
Dirks, F., & Tolboom, J. (2000). CODI curriculum from the perspective of the teacher’s practice. Tinfon.

Tinfon, 9, 104–107.
Downes, T. (2007). Informatics Education: A Case study of the confusions and complexities of the intended

and enacted curriculum in NSW Secondary Schools.
DUO. (2018). Leerlingen in het voortgezet onderwijs (Vol. 2018). https://duo.nl/open_onderwijsdata/

databestanden/vo/leerlingen/
Dwyer, H., Boe, B., Hill, C., Franklin, D., & Harlow, D. (2013). Computational Thinking for Physics:

Programming Models of Physics Phenomenon in Elementary School.

565438 N Grgurina.indd 188565438 N Grgurina.indd 188 14-09-21 17:0414-09-21 17:04

189

R

References

Edo, S. I., Putri, R. I. I., & Hartono, Y. (2013). Investigating secondary school students’ difficulties in
modeling problems PISA-Model Level 5 and 6. Journal on mathematics Education, 4(1), 41–58.

Eraslan, A., & Kant, S. (2015). Modeling Processes of 4th-Year Middle-School Students and the Difficulties
Encountered. Educational Sciences: Theory & Practice, 15(3), Article 3. https://doi.org/10.12738/
estp.2015.3.2556

Every Student Succeeds Act (ESSA), (2015). https://www.ed.gov/essa?src=rn; https://www.ed.gov/
essa?src=rn; https://www.ed.gov/essa?src=rn

Fletcher, G. H. L., & Lu, J. J. (2009). Education Human computing skills: Rethinking the K-12 experience.
Communications of the ACM, 52(2), 23–25.

Furber, S. (2012). Shut down or restart? The way forward for computing in UK schools. The Royal Society,
London.

Gal-Ezer, J. (1995). Computer science teachers’ certification program. Computers & Education, 25(3), 163–
168.

Gal-Ezer, J., Beeri, C., Harel, D., & Yehudai, A. (1995). A high school program in computer science.
Computer, 28(10), 73–80.

Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick, A., Boyle, R., Mendelson, A.,
Stephenson, C., Ghezzi, C., & others. (2013). Informatics education: Europe cannot afford to miss
the boat. Report of the joint Informatics Europe & ACM Europe Working Group on Informatics
Education.

Gendreau Chakarov, A., Recker, M., Jacobs, J., Van Horne, K., & Sumner, T. (2019). Designing a Middle
School Science Curriculum that Integrates Computational Thinking and Sensor Technology.
Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 818–824.

Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science
Education, 28(9), 957–976.

Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education (Vol. 9). Springer.
Ginjaar-Maas, N. J. (1994). De Tweede Fase vernieuwt: Scharnier tussen basisvorming en hoger onderwijs

(Rep. No. 2). Stuurgroep Profiel Tweede Fase Voortgezet Onderwijs.
Glass, R. L. (2006). Call it problem solving, not computational thinking. Communications of the ACM,

49(9), 13–13.
Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013a). Computational thinking in educational activities: An

evaluation of the educational game light-bot. Proceedings of the 18th ACM conference on Innovation
and technology in computer science education, 10–15. https://doi.org/10.1145/2462476.2466518

Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013b). First Year Student Performance in a Test for
Computational Thinking. Proceedings of the South African Institute for Computer Scientists and
Information Technologists Conference, 271–277. https://doi.org/10.1145/2513456.2513484

Granger, Chris. (2015). Chris Granger—Coding is not the new literacy. https://www.chris-granger.
com/2015/01/26/coding-is-not-the-new-literacy/

Grgurina, N. (2013). Computational Thinking in Dutch Secondary Education. Informatics in Schools: Local
Proceedings of the 6th International Conference ISSEP 2013–Selected Papers, 119.

Grgurina, N., & Tolboom, J. (2008). The First Decade of Informatics in Dutch High Schools. Informatics in
Education, 7(1), 55–74.

Grgurina, N., Barendsen, E., Suhre, C., Veen, K. van, & Zwaneveld, B. (2017). Investigating Informatics
Teachers’ Initial Pedagogical Content Knowledge on Modeling and Simulation. International
Conference on Informatics in Schools: Situation, Evolution, and Perspectives, 65–76.

Grgurina, N., Barendsen, E., Suhre, C., Veen, K. van, & Zwaneveld, B. (2018). Assessment of Modeling
Projects in Informatics Class (V. Dagienė & E. Jasute, Red.; pp. 571–577). Vilnius University.

Grgurina, N., Barendsen, E., Suhre, C., Zwaneveld, B., & Veen, K. van. (2018). Assessment of modeling and
simulation in secondary computing science education. 7.

Grgurina, N., Barendsen, E., Veen, K. van, Suhre, C., & Zwaneveld, B. (2015). Exploring Students’
Computational Thinking Skills in Modeling and Simulation Projects: A Pilot Study. Proceedings of the
Workshop in Primary and Secondary Computing Education, 65–68.

565438 N Grgurina.indd 189565438 N Grgurina.indd 189 14-09-21 17:0414-09-21 17:04

190

References

Grgurina, N., Barendsen, E., Zwaneveld, B., Veen, K. van, & Stoker, I. (2014a). Computational Thinking
Skills in Dutch Secondary Education: Exploring Pedagogical Content Knowledge. Proceedings of the
14th Koli Calling International Conference on Computing Education Research, 173–174.

Grgurina, N., Barendsen, E., Zwaneveld, B., Veen, K. van, & Stoker, I. (2014b). Computational Thinking Skills
in Dutch Secondary Education: Exploring Teacher’s Perspective. Proceedings of the 9th Workshop in
Primary and Secondary Computing Education, 124–125.

Grgurina, N., Barendsen, E., Zwaneveld, B., Veen, K. van, & Suhre, C. (2016). Defining and Observing
Modeling and Simulation in Informatics. International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, 130–141.

Grgurina, N., Tolboom, J., & Barendsen, E. (2018). The Second Decade of Informatics in Dutch Secondary
Education. 271–282.

Grgurina, N., van der Veen, R., & Velthuizen, V. (2019). R. Computational science · Informatica 2019.
Domein R: Computational Science. https://ieni.github.io/inf2019/themas/r-computational-science

Griffin, J., Pirmann, T., & Gray, B. (2016). Two teachers, two perspectives on CS principles. Proceedings of
the 47th ACM technical symposium on computing science education, 461–466.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S.
K., & Huse, G. (2006). A standard protocol for describing individual-based and agent-based models.
Ecological Modelling, 198(1–2), 115–126.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol:
A review and first update. Ecological Modelling, 221(23), 2760–2768.

Grossman, P., Schoenfeld, A., & Lee, C. (2005). Teaching subject matter. Preparing teachers for a changing
world: What teachers should learn and be able to do, 201–231.

Grover, S. (2011). Robotics and Engineering for Middle and High School Students to Develop Computational
Thinking. annual meeting of the American Educational Research Association, New Orleans, LA.

Grover, S., & Pea, R. (2018). Computational Thinking: A competency whose time has come. Computer
Science Education: Perspectives on Teaching and Learning in School, 19–38.

Guerra, V., Kuhnt, B., & Blöchliger, I. (2012). Informatics at school-Worldwide. An international exploratory
study about informatics as a subject at different school levels.

Guzdial, M. (2015). Growing CS Ed through Schools of Ed, and CT is Unlikely: Report from Oldenburg. In
Computing Education Research Blog. https://computinged.wordpress.com/2015/07/13/growing-cs-
ed-through-schools-of-ed-report-from-oldenburg/; https://computinged.wordpress.com/2015/07/13/
growing-cs-ed-through-schools-of-ed-report-from-oldenburg/

Guzdial, M. (2018). Maybe there’s more than one kind of Computational Thinking, but that makes research
difficult. In Computing Education Research Blog. https://computinged.wordpress.com/2018/12/07/
maybe-theres-more-that-one-kind-of-computational-thinking/; https://computinged.wordpress.
com/2018/12/07/maybe-theres-more-that-one-kind-of-computational-thinking/

Guzdial, M. (2019). Computing for Other Disciplines (S. A. Fincher & A. V. Robins, Red.; pp. 584–605).
Cambridge University Press.

Guzdial, M., & Boulay, B. du. (2019). The History of Computing Education Research (S. A. Fincher & A. V.
Robins, Red.; pp. 11–39). Cambridge University Press.

Hacquebard, A. E. N., Hartsuijker, A., Brinkkemper, J. N., van, der H., Hogenbirk, P. G., Ikkersheim,
D. C., Smeets, D. A. J., & Vorstenbosch, P. A. M. (1995). Advies Examenprogramma’s havo/vwo:
Informatica. Stuurgroep Profiel Tweede Fase. https://research.utwente.nl/en/publications/advies-
examenprogrammas-havovwo-informatica(21ed9ef1-da52-47fb-93ac-9aea8881555b).html; https://
research.utwente.nl/en/publications/advies-examenprogrammas-havovwo-informatica(21ed9ef1-
da52-47fb-93ac-9aea8881555b).html

Hacquebard, A. E. N., Zwaneveld, B., Dijk, B. van, Leeuwen, H. van, & Timmers, J. (2005). Keuzevak
Informatica in de Tweede Fase HAVO en VWO, Opstap naar de kennismaatschappij. CODI.Ref Type,
Pamphlet.

Hallström, J., & Schönborn, K. J. (2019). Models and modelling for authentic STEM education: Reinforcing
the argument. International Journal of STEM Education, 6(1), 22.

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A multidisciplinary
approach towards computational thinking for science majors. Proceedings of the 40th ACM technical
symposium on Computer science education, 183–187.

565438 N Grgurina.indd 190565438 N Grgurina.indd 190 14-09-21 17:0414-09-21 17:04

191

R

References

Hartsuijker, A., Westland, F. (2004). Vakdossiers 2003 Informatica. SLO.
Hartsuijker, A., van Dijk, B., Timmers, J., Zwaneveld, B. (2003). Vakdossiers 2002 Informatica. SLO.
Hartsuijker, A., Kuipers, T., Andries, de R., Dirk-Jan, van de P., Grgurina, N., Nowak, K., & Woudt, R.

(2001). Vakdossiers 2001 Informatica. SLO.
Hartsuijker, A., M.A.G, E. van D., Kuipers, T. (2001). Vakdossiers 2000: Informatica.
Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4–7.
Henderson, P. B. (2009). Ubiquitous computational thinking. Computer, 42(10), 100–102.
Henze, I., & Barendsen, E. (2019). Unravelling student teachers’ PCK development and the influence

of personal factors using authentic data sources. In A. Hume, R. Cooper, & A. Borowski (Eds.),
Repositioning Pedagogical Content Knowledge in teachers’ knowledge for teaching science (pp. 201–
221). Springer.

Henze, I., Driel, J. H. van, & Verloop, N. (2007). Science teachers’ knowledge about teaching models and
modelling in the context of a new syllabus on public understanding of science. Research in Science
Education, 37(2), 99–122.

Henze, I., Driel, J. H. van, & Verloop, N. (2008). Development of experienced science teachers’ pedagogical
content knowledge of models of the solar system and the universe. International Journal of Science
Education, 30(10), 1321–1342.

Heuvelink, A., Leijtens, R., & Loots, M. (2008). Module AI. Het is Amsterdam.
Hey, A. J., Tansley, S., & Tolle, K. M. (2009). The fourth paradigm: Data-intensive scientific discovery (Vol.

1). Microsoft research Redmond, WA.
Howland, K., Good, J., & Nicholson, K. (2009). Language-based support for computational thinking. 2009

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 147–150.
Hu, C. (2011). Computational thinking: What it might mean and what we might do about it. Proceedings

of the 16th annual joint conference on Innovation and technology in computer science education,
223–227. https://doi.org/10.1145/1999747.1999811

Hubwieser, P. (2012). Computer Science Education in Secondary Schools–The Introduction of a New
Compulsory Subject. ACM Transactions on Computing Education (TOCE), 12(4), 16.

Hubwieser, P., Magenheim, J., Muhling, A., & Ruf, A. (2013). Towards a conceptualization of pedagogical
content knowledge for computer science. Proceedings of the ninth annual international ACM conference
on International computing education research, 1–8. https://doi.org/10.1145/2493394.2493395

Hulsen, M., Wartenbergh-Cras, F., Smets, E., Uerz, D., van, der N., & Sontag, L. (2005). ICT in Cijfers -ICT-
onderwijsmonitor studiejaar 2004/2005. IVA-ITS.

Jansen, M. (2007). The Education System in the Netherlands 2007. Dutch Eurydice Unit Ministry of
Education, Culture and Science.

Jones, E. (2011). The Trouble with Computational Thinking. https://c.ymcdn.com/sites/www.csteachers.
org/resource/resmgr/JonesCTOnePager.pdf

Justi, R., & Gilbert, J. K. (2002). Science teachers’ knowledge about and attitudes towards the use of models
and modelling in learning science. International Journal of Science Education, 24(12), 1273–1292.

Justi, R., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of science
education, 25(11), 1369–1386.

Kafai, Y. B., & Burke, Q. (2013). The social turn in K-12 programming: Moving from computational thinking
to computational participation. Proceeding of the 44th ACM technical symposium on computer
science education, 603–608.

Kafai, Y. B., Searle, K., Kaplan, E., Fields, D., Lee, E., & Lui, D. (2013). Cupcake cushions, scooby doo
shirts, and soft boomboxes: E-textiles in high school to promote computational concepts, practices,
and perceptions. Proceeding of the 44th ACM technical symposium on Computer science education,
311–316.

Kafura, D., & Tatar, D. (2011). Initial experience with a computational thinking course for computer science
students. Proceedings of the 42nd ACM technical symposium on Computer science education, 251–
256.

Kirschner, P. A., & Merriënboer, J. V. (2008). Ten steps to complex learning a new approach to instruction
and instructional design.

565438 N Grgurina.indd 191565438 N Grgurina.indd 191 14-09-21 17:0414-09-21 17:04

192

References

KNAW. (2012). Digitale geletterdheid in het voortgezet onderwijs. Koninklijke Nederlandse Akademie van
Wetenschappen.

Koh, K. H., Nickerson, H., Basawapatna, A., & Repenning, A. (2014). Early validation of computational
thinking pattern analysis. Proceedings of the 2014 conference on Innovation & technology in computer
science education, 213–218.

Kolikant, Y. B.-D. (2005). Students’ alternative standards for correctness. Proceedings of the first international
workshop on Computing education research, 37–43.

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into practice, 41(4), 212–
218.

Law, A. M. (2009). How to Build Valid and Credible Simulation Models. In M. D. Rossetti, R. R. Hill, B.
Johansson, A. Dunkin, & R. G. Ingalls (Red.), Proceedings of the 2009 Winter Simulation Conference.

Law, A. M. (2015). Simulation Modeling and Analysis Fifth Edition. McGraw-Hill.
Lee, E., Brown, M. N., Luft, J. A., & Roehrig, G. H. (2007). Assessing beginning secondary science teachers’

PCK: Pilot year results. School Science and Mathematics, 107(2), 52–60.
Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary

perspective: Integrating computational thinking in K-12 science, technology, engineering, and
mathematics education. Journal of Science Education and Technology, 29(1), 1–8.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011).
Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37.

Liberman, N., Kolikant, Y. B.-D., & Beeri, C. (2012). ‘Regressed experts’ as a new state in teachers’ professional
development: Lessons from Computer Science teachers’ adjustments to substantial changes in the
curriculum. Computer Science Education, 22(3), 257–283.

Lockwood, J., & Mooney, A. (2017). Computational Thinking in Education: Where does it fit? A systematic
literary review. arXiv preprint arXiv:1703.07659.

Louca, L. T., Zacharia, Z. C., Michael, M., & Constantinou, C. P. (2011). Objects, entities, behaviors, and
interactions: A typology of student-constructed computer-based models of physical phenomena.
Journal of Educational Computing Research, 44(2), 173–201.

Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science:
Developing ways of articulating and documenting professional practice. Journal of Research in Science
Teaching, 41(4), 370–391.

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. Proceedings of the 40th ACM
technical symposium on Computer science education, 260–264.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. http://dx.doi.org.
proxy-ub.rug.nl/10.1016/j.chb.2014.09.012

Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 113–142.
Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content

knowledge for science teaching (J. Gess-Newsome & N. G. Lederman, Red.; pp. 95–132). Kluwer.
Malmi, L., Sheard, J., Bednarik, R., Helminen, J., Korhonen, A., Myller, N., Sorva, J., & Taherkhani, A.

(2010). Characterizing research in computing education: A preliminary analysis of the literature. 3–12.
Malyn-Smith, J., Lee, I. A., Martin, F., Grover, S., Evans, M. A., & Pillai, S. (2018). Developing a framework for

computational thinking from a disciplinary perspective. Conference Proceedings of the International
Conference on Computational Thinking Education, 182–186.

Martin, F. G. (2012). Personal communication. http://www.cs.uml.edu/~fredm/
Martins-Pacheco, L. H., von Wangenheim, C. A. G., & da Cruz Alves, N. (2019). Assessment of

Computational Thinking in K-12 Context: Educational Practices, Limits and Possibilities-A Systematic
Mapping Study. Proceedings of the 11th International Conference on Computer Supported Education
(CSEDU 2019), 1, 292–303.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning Computer Science Concepts with
Scratch. Computer Science Education, 23(3), 239–264.

Meijer, H., Hart, T., & Reinders, H. (2001). Turing. ThiemeMeulenhoff.
MinOC&W: Omscholing informatica Cfi. In UITLEG Gele Katern nr. 7, vol. 14, pp. 22. (1998)

565438 N Grgurina.indd 192565438 N Grgurina.indd 192 14-09-21 17:0414-09-21 17:04

193

R

References

Müller, B., Balbi, S., Buchmann, C. M., Sousa, L. D., Dressler, G., Groeneveld, J., Klassert, C. J., Le, Q. B.,
Millington, J. D., & Nolzen, H. (2014). Standardised and transparent model descriptions for agent-
based models: Current status and prospects. Environmental Modelling & Software, 55, 156–163.

Naylor, T. H., & Finger, J. M. (1967). Verification of computer simulation models. Management science,
14(2), 101.

Nicolaou, C. T., & Constantinou, C. P. (2014). Assessment of the modeling competence: A systematic review
and synthesis of empirical research. Educational Research Review, 13, 52–73.

Odell, J. J., Parunak, H. V. D., & Bauer, B. (2000). Representing agent interaction protocols in UML.
International Workshop on Agent-Oriented Software Engineering, 121–140.

Opdracht vernieuwingscommissie informatica 2014-2015. (2014). Ministry of Education, Netherlands.
Overveld, K. V., Borghuis, T., & Berkum, E. van. (2015). From Problems to Numbers and Back. Eindhoven

University of Technology.
Papaevripidou, M., Nicolaou, C. T., & Constantinou, C. P. (2014). On defining and assessing learners’

modeling competence in science teaching and learning. Annual Meeting of American Educational
Research Association (AERA), Philadelphia, Pennsylvania, USA.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
Park, Y.-S., & Green, J. (2019). Bringing Computational Thinking into Science Education. Journal of the

Korean Earth Science Society, 40(4), 340–352. https://doi.org/10.5467/JKESS.2019.40.4.340
Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New ideas

in psychology, 2(2), 137–168.
Pears, A., Barendsen, E., Dagienė, V., Dolgopolovas, V., & Jasutė, E. (2019). Holistic STEAM education

through computational thinking: A perspective on training future teachers. International Conference
on Informatics in Schools: Situation, Evolution, and Perspectives, 41–52.

Perković, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for computational thinking across the
curriculum. Proceedings of the fifteenth annual conference on Innovation and technology in computer
science education, 123–127.

Perrenet, J., & Zwaneveld, B. (2012). The many faces of the mathematical modeling cycle. Journal of
Mathematical Modelling and Application, 1(6), 3–21.

Pfefferova, M. S. (2015). Computer Simulations and their Influence on Students’ Understanding of
Oscillatory Motion. Informatics in Education, 14(2), 279–289.

Polya, G. (2008). How to solve it: A new aspect of mathematical method. Princeton University Press.
Qian, Y., & Lehman, J. (2017). Students’ Misconceptions and Other Difficulties in Introductory Programming:

A Literature Review. ACM Trans.Comput.Educ., 18(1), 1:24. https://doi.org/10.1145/3077618
Qin, H. (2009). Teaching computational thinking through bioinformatics to biology students. Proceedings

of the 40th ACM technical symposium on Computer science education, 188–191.
Rahimi, E., Barendsen, E., & Henze, I. (2016). Typifying Informatics Teachers’ PCK of Designing Digital

Artefacts in Dutch Upper Secondary Education. International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, 65–77.

Rand, W., & Wilensky, U. (2006). Verification and validation through replication: A case study using Axelrod
and Hammond’s ethnocentrism model. North American Association for Computational Social and
Organization Sciences (NAACSOS), 1–6.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and
discussion. Computer science education, 13(2), 137–172.

Román-González, M., Moreno-León, J., & Robles, G. (2017). Complementary tools for computational
thinking assessment. Proceedings of International Conference on Computational Thinking Education
(CTE 2017), S. C Kong, J Sheldon, and K. Y Li (Eds.). The Education University of Hong Kong, 154–
159.

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified modeling language reference manual, the. Pearson
Higher Education.

Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P., & Saulters, I. I. (2010). Teaching computational
thinking through musical live coding in scratch. Proceedings of the 41st ACM technical symposium
on Computer science education, 351–355.

565438 N Grgurina.indd 193565438 N Grgurina.indd 193 14-09-21 17:0414-09-21 17:04

194

References

Saeli, M. (2012). Teaching Programming for Secondary School: A Pedagogical Content Knowledge Base
Approach [PhD Thesis].

Saeli, Mara, Perrenet, J., Jochems, W. M. G., & Zwaneveld, B. (2012). Programming: Teachers and Pedagogical
Content Knowledge in the Netherlands. Informatics in Education, 11(1), 81–114.

Sanders, L. R., Borko, H., & Lockard, J. D. (1993). Secondary science teachers’ knowledge base when teaching
science courses in and out of their area of certification. Journal of Research in Science Teaching, 30(7),
723–736.

Sargent, R. G. (2013). Verification and validation of simulation models. Journal of simulation, 7(1), 12–24.
Schmid, A. (2005). What is the Truth of Simulation? Journal of Artificial Societies and Social Simulation,

8(4).
Schmidt, V. (2006). Handreiking schoolexamen informatica havo/vwo. SLO, Enschede.
Schmidt, V. (2007). Vakdossier 2007 informatica (dossier of the subject computer science 2007)(Tech. Rep.).

Enschede, The Netherlands: Slo, Stichting Leerplanontwikkeling.
School Education in France—Éduscol. Geraadpleegd 15 juni 2020, van https://eduscol.education.fr/

pid26689/school-education-in-france.html
Selby, C. (2013, januari). Computational thinking: The developing definition. The 18th Annual Conference

on Innovation and Technology in Computer Science Education. http://eprints.soton.ac.uk/346937/
Selby, C. C. (2014). How can the teaching of programming be used to enhance computational thinking

skills? [PhD Thesis]. University of Southampton.
Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational thinking in STEM

education (pp. 49–72). Springer.
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking

with K-12 science education using agent-based computation: A theoretical framework. Education and
Information Technologies, 1–30.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher,
15(2), 4–14.

Sins, P. H. M., Savelsbergh, E. R., & Joolingen, W. R. van. (2005). The Difficult Process of Scientific Modelling:
An analysis of novices’ reasoning during computer‐based modelling. International Journal of Science
Education, 27(14), 1695–1721. https://doi.org/10.1080/09500690500206408

Society, P. board N. & P. board. (2005). Bridges between Nature and Society. http://www.minocw.nl/
documenten/49152.pdf

Sturrock, D. T. (2015). Tutorial: Tips for Successful Practice of Simulation. In L. Yilmaz, W. K. V. Chan,
I. Moon, M. K. Roeder, C. Macal, & D. Rosserri (Red.), Proceedings of the 2015 Winter Simulation
Conference.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic
review of empirical studies. Computers & Education, 148, 103798.

Taub, R., Armoni, M., & Ben-Ari, M. (2013). The Contribution of Computer Science to Learning
Computational Physics (pp. 127–137). Springer.

Taub, R., Armoni, M., & Ben-Ari, M. (2014). Abstraction as a Bridging Concept Between Computer Science
and Physics. Proceedings of the 9th Workshop in Primary and Secondary Computing Education, 16–
19.

Teaching computer science in France: Tomorrow can’t wait. (2013). Académie des Sciences.
Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. Proceedings of the 16th Koli

Calling Conference on Computing Education Research, 24–27.
Tedre, M., Simon, & Malmi, L. (2018). Changing aims of computing education: A historical survey.

Computer Science Education, 28(2), 158–186. https://doi.org/10.1080/08993408.2018.1486624
Tedre, M., Simon, & Malmi, L. (2018). Changing aims of computing education: A historical survey.

Computer Science Education, 28(2), 158–186. https://doi.org/10.1080/08993408.2018.1486624
Thijs, A. M., Fisser, P., & Hoeven, M. V. D. (2014a). 21e eeuwse vaardigheden in het curriculum van het

funderend onderwijs. SLO.
Thijs, A. M., Fisser, P., & Hoeven, M. V. D. (2014b). Digitale geletterdheid en 21e eeuwse vaardigheden in het

funderend onderwijs: Een conceptueel kader (draft). SLO.

565438 N Grgurina.indd 194565438 N Grgurina.indd 194 14-09-21 17:0414-09-21 17:04

195

R

References

Thinking, N. R. C. (US) C. for the W. on C., & Council, N. R. (2010). Report of a workshop on the scope and
nature of computational thinking. Natl Academy Pr.

Tolboom, J. (1999). The first year of the CODI curriculum. Informatie bulletin I&I, 9–11.
Tolboom, J., Kruger, J., & Grgurina, N. (2014). Informatica in de bovenbouw havo/vwo: Naar aantrekkelijk

en actueel onderwijs in informatica. SLO.
Touretzky, D. S., Marghitu, D., Ludi, S., Bernstein, D., & Ni, L. (2013). Accelerating K-12 computational

thinking using scaffolding, staging, and abstraction. Proceeding of the 44th ACM technical symposium
on Computer science education, 609–614.

Tweede Fase Adviespunt. (2006). Veranderingen Tweede Fase en docenten: Volgen of meebeslissen (Vol.
2008).

Vaandrager, F. (2011). A First Introduction to uppaal. Deliverable no.: D5.12 Title of Deliverable: Industrial
Handbook, 18.

Vahrenhold, J., Nardelli, E., Pereira, C., Berry, G., Caspersen, M. E., Gal-Ezer, J., Kölling, M., McGettrick, A.,
& Westermeier, M. (2017). Informatics Education in Europe: Are We All In The Same Boat.

Van der Laan, Krikke, H., Kievit, D., & Bosschaart, E. (2001). Fundament Informatica (2 ed.). Instruct.
Vogel, S., Santo, R., & Ching, D. (2017). Visions of computer science education: Unpacking arguments

for and projected impacts of CS4All initiatives. Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, 609–614.

Walden, J., Doyle, M., Garns, R., & Hart, Z. (2013). An informatics perspective on computational thinking.
Proceedings of the 18th ACM conference on Innovation and technology in computer science education,
4–9. https://doi.org/10.1145/2462476.2483797

Weert, T. V., & Tinsley, D. (1994). Informatics for secondary education: A curriculum for schools. UNESCO.
Weintrop, D., & Wilensky, U. (2013). Robobuilder: A computational thinking game. SIGCSE, 736.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and science classrooms. Journal of Science Education and
Technology, 25(1), 127–147.

Weller, M. P., Do, E. Y. L., & Gross, M. D. (2008). Escape machine: Teaching computational thinking with
a tangible state machine game. Proceedings of the 7th international conference on Interaction design
and children, 282–289.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The Fairy Performance Assessment: Measuring
Computational Thinking in Middle School. Proceedings of the 43rd ACM technical symposium on
Computer Science Education, 215–220. https://doi.org/10.1145/2157136.2157200

Whalley, J., Clear, T., Robbins, P., & Thompson, E. (2011). Salient elements in novice solutions to code
writing problems. Proceedings of the Thirteenth Australasian Computing Education Conference-
Volume 114, 37–46.

Wilensky, U. (1997). NetLogo Wolf Sheep Predation model. http://www.netlogoweb.org
Wilensky, U. (1999). NetLogo. http://www.netlogoweb.org
Wilensky, U. (2014). Computational thinking through modeling and simulation. Whitepaper presented

at the summit on future directions in computer education. Orlando, FL. http://www.stanford.edu/
coopers/2013Summit/WilenskyUriNorthwesternREV.pdf.

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulations of knowledge disciplines through new
representational forms. Constructionism.

Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, social, and
engineered complex systems with NetLogo. MIT Press.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering computational literacy in science classrooms.
Communications of the ACM, 57(8), 24–28.

Wilson, C. (2010). Running the Empty: Failure to Teach K-12 Computer Science in the Digital Age.
Association for Computing Machinery.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wing, J. M. (2008). Computational Thinking and Thinking about Computing. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717.

565438 N Grgurina.indd 195565438 N Grgurina.indd 195 14-09-21 17:0414-09-21 17:04

196

References

Wing, J. M. (2014). Computational thinking benefits society. 40th Anniversary Blog of Social Issues in
Computing, 2014, 26.

Wolf, K., & Stevens, E. (2007). The role of rubrics in advancing and assessing student learning. The Journal
of Effective Teaching, 7(1), 3–14.

Wolz, U., Stone, M., Pulimood, S. M., & Pearson, K. (2010). Computational thinking via interactive
journalism in middle school. Proceedings of the 41st ACM technical symposium on Computer science
education, 239–243.

Yadav, A., & Berges, M. (2019). Computer Science Pedagogical Content Knowledge: Characterizing Teacher
Performance. ACM Transactions on Computing Education (TOCE), 19(3), 29.

Yadav, A., Berges, M., Sands, P., & Good, J. (2016). Measuring computer science pedagogical content
knowledge: An exploratory analysis of teaching vignettes to measure teacher knowledge. Proceedings
of the 11th Workshop in Primary and Secondary Computing Education, 92–95.

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017). Computational thinking in teacher education (pp.
205–220). Springer.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary
and secondary teacher education. ACM Transactions on Computing Education (TOCE), 14(1), 5.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing computational thinking
in education courses. Proceedings of the 42nd ACM technical symposium on Computer science
education, 465–470.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assessment
for computational thinking. Journal of Educational Computing Research, 53(4), 562–590.

Zwaneveld, B., van Dijk, B., Timmers, J., & Heil, I. (2007). Acht jaar CODI: Van omscholen naar opleiden
(Eight Years of CODI: From Professional Retraining to a Regular Teacher Training Program)
(SSRN Scholarly Paper ID 2947252). Social Science Research Network. https://papers.ssrn.com/
abstract=2947252

565438 N Grgurina.indd 196565438 N Grgurina.indd 196 14-09-21 17:0414-09-21 17:04

Appendices

565438 N Grgurina.indd 197565438 N Grgurina.indd 197 14-09-21 17:0414-09-21 17:04

Appendices

198

Appendix A: 2007 Dutch Secondary CS Curriculum	

2007 Dutch Secondary CS curriculum
The exam:
The exam takes the form of an individual school exam.
The curriculum consists of the following themes:
Theme A 	 Computer science in perspective
Theme B 	 Terminology and skills
Theme C 	 Systems and their structures
Theme D 	 Usage in a context
The school exam:
The school exam is associated with Themes A through D; and in cases where

the authorities so decide, it can also include other subject matter that does not
necessarily need to be identical for all students.

The subject matter:
Theme A: Computer science in perspective
Sub-theme A1: Science and Technology
1. 	 The student should be familiar with the history of Computer science

and IT, their current use and the prospects for future development.

Sub-theme A2: Society
2. 	 The student should be familiar with the role computer sciece and

IT play in the developments taking place in society, both in the past
and the present.

Sub-theme A3: Study and Career
3. 	 The student should be familiar with the specific functions and

jobs performed by computer sciece and IT specialists, and with
the role computer sciece and IT play in vocational education and
occupations in general. The student should be able to assess to what
degree his own abilities and interests correspond with these.

565438 N Grgurina.indd 198565438 N Grgurina.indd 198 14-09-21 17:0414-09-21 17:04

Appendices

199

A

Appendix A: 2007 Dutch Secondary CS Curriculum

Sub-theme A4: The Individual
4. 	 The student should master the professional work methods

that computer science and ICT specialists use, especially those
concerning working on a project basis. He should be familiar with
the moral values involved in the use of computer science and IT.

Theme B: Terminology and skills
Sub-theme B1: Data representation in a computer
5. 	 The student should be able to describe and use common digital data

encoding. Sub-theme B2: Hardware
6. 	 The student should be familiar with the operational functions of a

computer, its hardware and common peripheral devices, and should
be able to describe the relationships among these functions.

Sub-theme B3: Software
7. 	 The student should be familiar with simple data types, program

structures and programming techniques.
Sub-theme B4: Organizations
8. 	 The student should have a global picture of how businesses are

structured. He should be familiar with the characteristics of project
organization and should be able to explain why a particular type
of organization is chosen when a company’s information system
undergoes major modifications.

Theme C: Systems and their structures
Sub-theme C1: Communication and Networks
9.	 The student should be familiar with the topological structure and

communication layers of a network, and their characteristics. He
should also be capable of describing a simple communications
protocol, differentiating between its elements and describing them.
Furthermore, he should be aware of the security aspects of the
Internet.

Sub-theme C2: Operating Systems	
10.	The student should be familiar with the basic functions of the most

common operating systems pertaining to the management of CPU
time, memory, data storage media, peripheral devices, and access
rights.

565438 N Grgurina.indd 199565438 N Grgurina.indd 199 14-09-21 17:0414-09-21 17:04

Appendices

200

Sub-theme C3: Systems in Practice
11.	The student should be familiar with the characteristics of, and

distinction among real-time systems, expert systems, simulation
systems and embedded systems.Sub-theme C4: Development of
Information Systems

12.	The student should have a global picture of system development
stages, and their related actions and products.

Sub-theme C5: Information Flow
13.	The student should be capable of describing information flow in a

small (business) organization.
Sub-theme C6: Information Analysis
14.	The student should be able to analyze information and information

requirements and build/adjust the data model accordingly.
Sub-theme C7: Relational Databases
15.	The student should be able to name the elements of a relational

scheme and describe their meaning. He should be able to translate
an information question into a relational database query language
command.

He should be familiar with the characteristics and aspects of data management
systems, and he should be able to name them and use them for specific systems.
(Only pre-university education)

Sub-theme C8: Human-Computer Interaction
16.	The student should be able to identify the human-computer

interaction element in information systems. He should be familiar
with its characteristics and he should be able to recognize and utilize
key criteria in the development of user dialogs.

Sub-theme C9: System Development Lifecycle
17.	In a simple system development lifecycle, the student should be

capable of assessing its progress, testing a prototype, checking
whether the final product meets the client’s specifications, and
assessing whether the system complies with the requirements and
wishes of the end user.

Theme D: Usage in a context
18. The student should be familiar with the methods and procedures

of project management, as well as the project aspects of system
development (Schmidt, 2006).

565438 N Grgurina.indd 200565438 N Grgurina.indd 200 14-09-21 17:0414-09-21 17:04

Appendices

201

A

Appendix B: 2019 Dutch Secondary CS Curriculum

Appendix B: 2019 Dutch Secondary CS Curriculum

2019 Dutch Secondary CS Curriculum
Computer Science Curriculum havo/vwo

The final exam
The final exam consists of the school exam.

The school exam
The school exam covers:
•	 The entire domain A, combined with:
•	 Domains B through F;
•	 (havo:) a selection of one of the domains G through N, and a

selection of one of the domains O through R; either the competent
authority can make this selection, or the selection is left to the
candidate;

•	 (vwo:) a selection of four of the domains G through R, with at least
one from the domains G through N, and one from the domains O
through R; either the competent authority can make this selection,
or the selection is left to the candidate;

•	 other subject matter may be added if the competent authority
chooses to do so; this can vary per candidate.

The Learning Objectives

Core program

Domain A: Skills
General skills
Sub-domain A1: Using information skills
1.	� The candidate is able to search for, assess, select and process relevant

information.
Sub-domain A2: Communicating

565438 N Grgurina.indd 201565438 N Grgurina.indd 201 14-09-21 17:0414-09-21 17:04

Appendices

202

2.	 The candidate is able to communicate adequately, in writing, orally
and digitally, in the public domain about topics related to computer
science.

Sub-domain A3: Reflecting on learning
3.	 The candidate is able to reflect on his/her own interests, motivation

and learning process when acquiring subject knowledge and skills.
Sub-domain A4: Orientation on study and profession
4.	 The candidate is able to indicate how the knowledge of computer

science is applicable in study and profession, and is able, partly on
the basis of this, to voice his/her own interest in related studies and
professions.

Scientific skills
Sub-domain A5: Researching
5.	 The candidate is able
(vwo:) to analyse research questions in contexts, using relevant terminology

and theory, translating these into a subject-specific research, carrying out that
research, and using the research results to draw conclusions. The candidate is able
to use consistent reasoning.

(havo:) to perform instructions for research in contexts, based on research
questions, and to draw conclusions from the research results. The candidate is able
to use consistent reasoning.

Sub-domain A6: Modelling
6.	 The candidate is able to use context to analyse a relevant problem,

limit this to a manageable problem, translate this into a model,
generate and interpret model results, and test and assess the model
The candidate is able to use consistent reasoning.

Sub-domain A7: Appreciating and deciding
7.	 The candidate is able, in contexts, to offer a substantiated decision

about a practical situation or a technical application, and is able
to distinguish between scientific arguments, normative social
considerations and personal views.

Computer science-specific skills
Sub-domain A8: Designing and developing

565438 N Grgurina.indd 202565438 N Grgurina.indd 202 14-09-21 17:0414-09-21 17:04

Appendices

203

A

Appendix B: 2019 Dutch Secondary CS Curriculum

8.	 The candidate is able, in a context, to see options to use digital
artefacts, translate these options into an objective for the design and
development, taking into account technical factors, environmental
factors and human factors, to specify desires and requirements, and
to test the attainability of these elements, to design a digital artefact,
to weigh options for the design of a digital artefact through research
and experiments, to implement a digital artefact, and to evaluate
the quality of digital artefacts, and to combine these skills for the
development of digital artefacts.

Sub-domain A9: Computer science as a perspective
9.	 The candidate is able to identify phenomena in contexts, explain

and interpret these in terms of computer science, recognise and
link computer science concepts, and to estimate and argue the
possibilities and limitations of digital artefacts in subject-related
terms.

Sub-domain A10: Cooperation and interdisciplinarity
10.	The candidate is able to cooperate structurally with a team for the

design and development of digital artefacts, and is able to cooperate
with the people from the application area.

Sub-domain A11: Ethical conduct
11.	The candidate is able to describe the ethical norms and values that

play a role in the use and development of digital artefacts; he/she is
able to explicitly compare his/her own behaviour with the ethical
guidelines and (vwo:) to critically analyse his/her own conduct and
relate this to ethical dilemmas.

Sub-domain A12: Using the computer science tool set
12.	The candidate is able to use the relevant tools for computer science,

taking into account any risks and security; these tools include
(computer) equipment, operating systems, applications, subject
matter terminology, subject conventions and formalisms.

Sub-domain A13: Working in contexts
13.	The candidate is able to use the skills from domain A and the

concepts from domains B through F, and the optional domains G
through R, at least in professional contexts, in social contexts and
(vwo:) in scientific contexts.

565438 N Grgurina.indd 203565438 N Grgurina.indd 203 14-09-21 17:0414-09-21 17:04

Appendices

204

Domain B: Basics
Sub-domain B1: Algorithms
14.	The candidate is able to develop a solution for a problem into

an algorithm, recognising and using standard algorithms, and
investigating the correctness and efficiency of digital artefacts
through the underlying algorithms.

Sub-domain B2: Data structures
15.	The candidate is able to compare the elegance and efficiency of

different abstract data structures.
Sub-domain B3: Machines
16.	The candidate is able to use finite machines for the characterisation

of certain algorithms.
Sub-domain B4: Grammars
17.	The candidate is able to use grammars as tools for the description of

languages.

Domain C: Information
Sub-domain C1: Objectives
18.	The candidate is able to distinguish objectives for information and

data processing, such as searching and processing.
Sub-domain C2: Identifying
19.	The candidate is able to identify information and data in contexts,

taking into account the objective.
Sub-domain C3: Representing
20.	The candidate is able to represent data in a suitable data structure,

keeping the objective in mind; he/she is able to compare the elegance,
efficiency and implementability of several representations.

Sub-domain C4: Standard representations
21.	The candidate is able to use standard representations of numerical

data and media, and is able to relate these to each other.
Sub-domain C5: Structured data
22.	The candidate is able to translate a need for information into a search

request for a collection of structured data.

565438 N Grgurina.indd 204565438 N Grgurina.indd 204 14-09-21 17:0414-09-21 17:04

Appendices

205

A

Appendix B: 2019 Dutch Secondary CS Curriculum

Domain D: Programming
Sub-domain D1: Developing
23.	The candidate is able, for a given objective, to develop programme

components in an imperative programming language, using
programming language constructions that support abstractions, and
structuring programme components in such a manner that they can
be easily understood and evaluated by others.

Sub-domain D2: Inspecting and adapting
24.	The candidate is able to explain the structure and functioning

of certain programme components, and adapt such programme
components based on evaluation or changed requirements.

Domain E: Architecture
Sub-domain E1: Decomposition
25.	The candidate is able to explain the structure and functioning of

digital artefacts through architectural elements, i.e. in terms of the
physical, logical and application layer levels, and in terms of the
components in these layers, with their interaction.

Sub-domain E2: Security
26.	The candidate is able to name some security threats and common

technical measures, and relate these to architectural elements.

Domain F: Interaction
Sub-domain F1: Usability
27.	The candidate is able to evaluate user interfaces of digital artefacts

based on heuristics, and to apply the rules of thumb for good design
for interfaces to the design and development of digital artefacts.

Sub-domain F2: Social aspects
28.	The candidate is able to recognise the impact of digital artefacts on

the social interaction and personal privacy, and is able to place these
in a historical perspective.

Sub-domain F3: Privacy
29.	The candidate is able to reason about the consequences of the

changing possibilities of digital artefacts for personal freedom.

565438 N Grgurina.indd 205565438 N Grgurina.indd 205 14-09-21 17:0414-09-21 17:04

Appendices

206

Sub-domain F4: Security
30.	The candidate is able to name some security threats and common

socio-technical measures, and relate these to social and human
factors.

Optional themes

Domain G: Optional theme Algorithmic, calculability and logic
Sub-domain G1: Algorithm complexity
31.	The candidate is able
(havo:) to compare the complexity of certain algorithms, and to recognise and

name classical difficult problems.
(vwo:) to explain the difference between exponential and polynomial

complexity; to distinguish algorithms based on this difference, and to recognise
and name classical difficult problems.

Sub-domain G2: Calculability
32.	The candidate is able to characterise and relate calculations on

different abstraction levels, and to recognise and name classical
incalculable problems.

Sub-domain G3: Logic
33.	The candidate is able to express characteristics of digital artefacts in

logical formulas.

Domain H: Optional theme Databases
Sub-domain H1: Information modelling
34.	The candidate is able to draw up an information model for a simple

practical situation and is able to define a database based on this
situation.

Sub-domain H2: Database paradigms
35.	Apart from the rational paradigm, the candidate is able to describe

at least one other database paradigm, and is able to weigh the
suitability of the relevant paradigms for a concrete application.

Sub-domain H3: Linked data
36.	The candidate is able to link data from different databases (data

sources) in an application.

565438 N Grgurina.indd 206565438 N Grgurina.indd 206 14-09-21 17:0414-09-21 17:04

Appendices

207

A

Appendix B: 2019 Dutch Secondary CS Curriculum

Domain I: Optional theme Cognitive computing
Sub-domain I1: Intelligent behaviour
37.	The candidate is able to describe the processes that are needed for

intelligent behaviour, and is able to analyse how these processes can
be used in computer science for the development of digital artefacts.

Sub-domain I2: Optional theme cognitive computing
38.	The candidate is able to explain the main characteristics of cognitive

computing systems, and to indicate the difference with traditional
digital artefacts, and is able to indicate whether the solution of a
certain problem is suited for a cognitive computing approach.

Sub-domain I3: Application of cognitive computing
39.	The candidate is able to realise a simple application by applying

one or more methods and technologies from the field of cognitive
computing.

Domain J: Optional theme Programming paradigms
Sub-domain J1: Alternative programming paradigm
40.	The candidate is able to describe the characteristics of at least one

additional programming paradigm, and is able to develop and
evaluate programmes according to that paradigm.

Sub-domain J2: Selecting a programming paradigm
41.	The candidate is able to make a comparative paradigm assessment

for the solution of a certain problem.

Domain K: Optional theme Computer architecture
Sub-domain K1: Boolean algebra
42.	The candidate is able to calculate formulas in Boolean algebra.
Sub-domain K2: Digital circuits
43.	The candidate is able to construct simple digital circuits at bit level.
Sub-domain K3: Machine language
44.	The candidate is able to write a simple programme in machine

language, based on the description of an instruction set architecture.
Sub-domain K4: Variation in computer architecture
45.	The candidate is able to explain variations in computer architecture

in terms of technological developments and application domains.

Domain L: Optional theme Networks

565438 N Grgurina.indd 207565438 N Grgurina.indd 207 14-09-21 17:0414-09-21 17:04

Appendices

208

Sub-domain L1: Network communication
46.	The candidate is able to describe and analyse the way the network

components communicate with each other, and is able to recognise
the scaling impact for communication, offer examples of this and
explain the consequences.

Sub-domain L2: Internet
47.	The candidate is able to explain the basic principles of the Internet as

a network, and is able to indicate the consequences of this network
for applications and users.

Sub-domain L3: Distribution
48.	The candidate is able to describe the different forms of cooperation

and the distribution of functions and data in networks.
Sub-domain L4: Network security
49.	The candidate is able to analyse the risks of violation of distributed

functions and data, and is able to recommend measures that can
prevent this violation.

Domain M: Optional theme Physical computing
Sub-domain M1: Sensors and actuators
50.	The candidate is able to recognise and give a functional description

of the sensors and actuators that are used by a computer system to
perceive and manage the physical environment.

Sub-domain M2: Development of physical computing components
51.	The candidate is able to model physical systems and processes in

order to establish real time steering aspects, and is able to use these
models, sensors and actuators to develop a computer system to
guard and manage physical systems and processes.

Domain N: Optional theme Security
Sub-domain N1: Risk analysis
52.	The candidate is able to analyse risks, threats and vulnerabilities in

an ICT application, and is able to focus the analysis on both technical
and human factors.

Sub-domain N2: Measures
53.	The candidate is able to explain the selection of certain technical and

organisational measures to improve security.

565438 N Grgurina.indd 208565438 N Grgurina.indd 208 14-09-21 17:0414-09-21 17:04

Appendices

209

A

Appendix B: 2019 Dutch Secondary CS Curriculum

Domain O: Optional theme Usability
Sub-domain O1: User interfaces
54.	The candidate is able to describe and explain the functioning of user

interfaces on the basis of cognitive and biological models.
Sub-domain O2: User research
55.	The candidate is able to use user research to evaluate the user

interfaces of digital artefacts.
Sub-domain O3: Design
56.	The candidate is able to design elements of a user interface.

Domain P: Optional theme User Experience
Sub-domain P1: Analysis
57.	The candidate is able to explain the relationship between the

design selections of an interactive digital artefact and the expected
cognitive, behavioural and affective changes or experiences.

Sub-domain P2: Design
58.	The candidate is able to create a graphic design of the user interaction

of a digital artefact, justify the design decisions, and implement the
user interaction for a simple application.

Domain Q: Optional theme Social and individual influence of computer
science

Sub-domain Q1: Social influence
59.	The candidate is able to explain and predict the positive and negative

effects of computer science and the networking society on the lives
of individuals and on society.

Sub-domain Q2: Legal aspects
60.	The candidate is able to analyse the legal aspects of the application of

computer science in society.
Sub-domain Q3: Privacy
61.	The candidate is able to investigate the effects of technical, legal and

social measures for privacy-related issues.
Sub-domain Q4: Culture
62.	The candidate is able to reason about the influence of computer

science on cultural expressions.

565438 N Grgurina.indd 209565438 N Grgurina.indd 209 14-09-21 17:0414-09-21 17:04

Appendices

210

Domain R: Optional theme Computational Science
Sub-domain R1: Modelling
63.	The candidate is able to model aspects of a different scientific

discipline in computational terms.
Sub-domain R2: Simulating
64.	The candidate is able to construct models and simulations, and use

these for the research of phenomena in that other science field.

565438 N Grgurina.indd 210565438 N Grgurina.indd 210 14-09-21 17:0414-09-21 17:04

Appendices

211

A

Abbreviations

Abbreviations

ABM		 Agent Based Modeling
AI			 Artificial intelligence
CODI		 Consortium omscholing docenten informatica
CS			 Compter science
CS4HS	 computer Science for High Schools
CSER		 Computer science education research
CSTA		 Computer Science Teacher Association
CT			 Computational thinking
HAVO	 Hoger algemeen voorbereidend onderwijs
IenI		 Vakvereniging informatica en digitale geletterdheid
IT/ICT	 Information technology/Information and communication technology
KNAW	 Koninklijke Nederlandse academie van wetenschappen
PCK		 Pedagogical content knowledge
SLO		 Stichting leerplanontwikkeling
SOLO		 Structure of observed learning outcome
VMBO	 Voorbereidend middelbaar beroepsonderwijs
VWO		 Voorbereidend wetenschappelijk onderwijs

565438 N Grgurina.indd 211565438 N Grgurina.indd 211 14-09-21 17:0414-09-21 17:04

212

Curriculum Vitae

Nataša (1966) was born in Zagreb, Croatia into a family with a strong academic
attitude. Her mother was an architect, her father was an engineer, and three of
her grandparents were teachers or engineers as well. She attended MIOC: this
acronym is world-known in Zagreb and stands for Matematičko-informatički
obrazovni centar — a magnet high school for math and computer science. Nataša
spent the high school senior year as an exchange student at Swartz Creek High
School in Swartz Creek, Michigan, USA. When the school got their first Apple IIe
computer during her stay there, she helped the CS teacher with writing computer
programs in Pascal.

Back to Croatia, she studied math and CS at Zagreb University. After a number
of turbulent years with accidents, illness in the family, a war and a distant Dutch
boyfriend, she graduated in 1992 and moved to the Netherlands. She first started
working as a freelance interpreter for refugees, and soon thereafter as a math
teacher at the asylum-seekers center in Zuidlaren. There she decided to become a
qualified math teacher and in 1994 graduated from UCLO in Groningen. In those
days with high unemployment rate among teachers, it took her a while to find a
job, but she was fortunate to be employed at OSG Sevenwolden in Heerenveen
that same year.

With the national curriculum revision of 1998, her school decided to
introduce the CS course and Nataša applied for a two-year in-service professional
development course to become a qualified CS teacher. She graduated in 2000 and
started teaching CS. In 2006, she joined the Department for Teacher Education of
the Groningen University as lecturer of CS didactics.

In 2012, Nataša won a grant from the Netherlands Organisation for Scientific
Research (NWO) (in Dutch: promotiebeurs voor leraren) to engage in the research
project resulting in this thesis. During this project, she participated in numerous
national and international research and professional conferences and took part
in the development of the new curriculum for the elective CS course in Dutch
HAVO and VWO. As a spin-off of this project, she has led the development of
teaching materials and professional development courses for teachers.

Since 2019, Nataša had quit her high school teaching position, has been
working as a researcher on the Computational Thinking in Context project at
Radboud University, has joined the Board of Directors of the American Computer
Science Teacher Association as International Representative, and recently she has

Curriculum Vitae

565438 N Grgurina.indd 212565438 N Grgurina.indd 212 14-09-21 17:0414-09-21 17:04

Appendices

213

CV

Curriculum Vitae

joined the National Institute for Curriculum Development (in Dutch: Stichting
leerplanontwikkeling) as curriculum developer for digital literacy in secondary
education.

Nataša is a single mom of two wonderful teenagers.

Links:
https://www.rug.nl/staff/n.grgurina/
https://www.linkedin.com/in/natasagrgurina/

565438 N Grgurina.indd 213565438 N Grgurina.indd 213 14-09-21 17:0414-09-21 17:04

https://www.rug.nl/staff/n.grgurina/
https://www.linkedin.com/in/natasagrgurina/

Appendices

214

Research Output

Scientific publications
Grgurina, N., & Tolboom, J. (2008). The first decade of informatics in Dutch

high schools. Informatics in Education, 7(1), 55-74.
Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., & Suhre, C. (2016).

Defining and observing modeling and simulation in informatics. In Proceedings
of the International Conference on Informatics in Schools: Situation, Evolution,
and Perspectives (pp. 130-141). Springer, Cham.

Grgurina, N., Barendsen, E., Suhre, C., van Veen, K., & Zwaneveld, B. (2017).
Investigating informatics teachers’ initial pedagogical content knowledge on
modeling and simulation. In Proceedings of the International Conference on
Informatics in Schools: Situation, Evolution, and Perspectives (pp. 65-76).
Springer, Cham.

Grgurina, N., Barendsen, E., Suhre, C., Zwaneveld, B., & Van Veen, K.
(2018). Assessment of modeling and simulation in secondary computing science
education. In Proceedings of the 13th Workshop in Primary and Secondary
Computing Education (pp. 1-10).

Grgurina, N., Tolboom, J., & Barendsen, E. (2018). The second decade of
informatics in Dutch secondary education. In Proceedings of the International
Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp.
271-282). Springer, Cham.

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., &
Settle, A. (2014, June). Computational thinking in K-9 education. In Proceedings
of the working group reports of the 2014 on innovation & technology in computer
science education conference (pp. 1-29).

Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C.,
... & Stupurienė, G. (2015). Concepts in K-9 computer science education. In
Proceedings of the 2015 ITiCSE on working group reports (pp. 85-116).

Barendsen, E., Grgurina, N., & Tolboom, J. (2016). A new informatics
curriculum for secondary education in the Netherlands. In Proceedings of the
International conference on informatics in schools: Situation, evolution, and
perspectives (pp. 105-117). Springer, Cham.

Research Output

565438 N Grgurina.indd 214565438 N Grgurina.indd 214 14-09-21 17:0414-09-21 17:04

Appendices

215

R

Research Output

Posters and Presentations
Grgurina, N. (2013). Computational thinking in Dutch secondary education.

Paper presented at the Informatics in Schools: Local Proceedings of the 6th
International Conference ISSEP 2013–Selected Papers, 119.

Grgurina, N., Barendsen, E., Zwaneveld, B., van de Grift, W., & Stoker, I. (2013).
Computational thinking skills in Dutch secondary education. Paper presented at
the 8th Workshop in Primary and Secondary Computing Education, 31-32.

Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., & Stoker, I. (2014).
Computational thinking in het voortgezet onderwijs: Docentkennis onderzocht.
Paper presented at the ORD, Groningen.

Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., & Stoker, I. (2014).
Computational thinking skills in Dutch secondary education: exploring teacher's
perspective. In Proceedings of the 9th workshop in primary and secondary
computing education (pp. 124-125).

Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., & Stoker, I.
(2014). Computational thinking skills in Dutch secondary education: Exploring
pedagogical content knowledge. In Proceedings of the 14th Koli Calling
International Conference on Computing Education Research, 173-174.

Grgurina, N., Barendsen, E., Zwaneveld, B., & van Veen, K. (2014).
Computational thinking in Dutch secondary education: Teachers' perspective.
In M. Thomas, & M. Weigend (Eds.), Informatik und Natur, 6. Münsteraner
Workshop zur Schulinformatik (pp. 27-29). Münster: Westfälischen Wilhelms-
Universität Münster.

Grgurina, N., & Barendsen, E. (2014). Informatics education at the crossroads:
Round table on the Dutch case. Paper presented at the Gülbahar, Y.; Karatas, E.;
Adnan, M. (Ed.), ISSEP 2014: 7th International Conference on Informatics in
Schools: Situation, Evolution and Perspectives, 22-25 September 2014 Istanbul,
Turkey, 137-138.

Grgurina, N., Barendsen, E., van Veen, K., Suhre, C., & Zwaneveld, B. (2015).
Exploring students' computational thinking skills in modeling and simulation
projects: A pilot study. In Proceedings of the Workshop in Primary and Secondary
Computing Education, 65-68.

Grgurina, N., Zwaneveld, B., & Barendsen, E. (2016). Computational thinking
in Dutch secondary education: Modeling and simulation. Paper presented at
the Informatik Fur Kinder; 7. Munsteraner Workshop Zur Schulinformatik, 81-
84.

565438 N Grgurina.indd 215565438 N Grgurina.indd 215 14-09-21 17:0414-09-21 17:04

Appendices

216

Research Output

Grgurina, N., Barendsen, E., Suhre, C., van Veen, K., & Zwaneveld, B.
(2018). Assessment of modeling projects in informatics class. Paper presented
at the Constructionism 2018: Constructionism, Computational Thinking and
Educational Innovation, 570-576.

Professional publications
Tolboom, J., Kruger, J., & Grgurina, N. (2014). Informatica in de bovenbouw

havo/vwo: Naar aantrekkelijk en actueel onderwijs in informatica. Enschede: SLO.
Grgurina, N., van der Veen, R., Velthuizen, V. (2020) Agent-based modeling.

Domein R: Computational Science. Amersfoort: SLO. https://ieni.github.io/
inf2019/themas/r-computational-science

565438 N Grgurina.indd 216565438 N Grgurina.indd 216 14-09-21 17:0414-09-21 17:04

https://ieni.github.io/inf2019/themas/r-computational-science
https://ieni.github.io/inf2019/themas/r-computational-science

Appendices

217

A

Acknowledgment

Acknowledgment

Completing a PhD research project like this one is probably the biggest
accomplishment of my professional life. While I traveled the entire route myself,
there were a lot of people who made this journey possible through their selfless
and continuous help and encouragement. I am grateful to all of you. In particular,
I want to thank….

First of all, my past and present thesis advisors: Wim — for putting me on the
track of this research journey, Bert — for pointing me in the right direction at a
crucial junction and continuously keeping an eye on my travels, and Klaas — for
making sure the route I took was suitable for all my passengers to follow along.
And, most of all, I want to thank Erik for his help and advice along every step of
this journey. For all our dates in London, Berlin and Helsinki — to name just a
few — and all the museums and restaurants and other places we visited together.
Erik, thank you for being a true friend.

I am grateful to Valentina who has been keeping an eye on my progress and
regularly opened my eyes to new opportunities. To countless researchers I met
along the way who helped me shape my thoughts and ideas. And in particular, to
Jos with whom I regularly have interesting discussions and who always manages
to point me to all these interesting jobs and gigs and research projects I have been
doing since we met during CODI.

I want to thank all the students, teachers and school administrators who were
involved in my research — I could not have done it without your cooperation
and commitment. At my old high school, OSG Sevenwolden, I want to thank
Gerry for approving my partial leave to engage in this research project, Peter for
inspiring me on how to combine teaching high school with research; and all my
other colleagues, for showing interest and patiently listening to the accounts of my
research progress. Most of all, I want to thank Marijke — first my colleague, and
always my friend — for standing by me in my darkest hour and helping me to stay
afloat.

My colleagues at the Teacher Education department made my journey so much
easier — thanks to all of you who discussed research with me, and discussed kids,
and houses in Groningen, and gardens, and all other things life brings upon us.
To the bèta’s for being such support and inspiration: Enno, Alex, Deniz, Lidewij,
Gerrit and Martha. Big thanks to my roommate Marjon for making countless cups
of tea and always lending an ear. And of course, to Cor, for his endless patience

565438 N Grgurina.indd 217565438 N Grgurina.indd 217 14-09-21 17:0414-09-21 17:04

Appendices

218

Acknowledgment

when discussing details of my research and for helping me to strike just the right
tone when writing papers.

There are many people in my life who helped me to succeed with this research
project by helping me survive and thrive. I want to thank my neighbors and friends
in Lemmer who stood by my side when my husband Hessel suddenly passed away,
and Petra and Kristina who helped to keep our household on track in the years
thereafter. Rein and Maja, thanks for all the cheese and wine, practical help at
crucial moments in my life, and for just being there for me. Kina and Nina, thanks
for all the wine, advice on teenage sons and fine times we are having together.
Sanja, it’s always fine to talk to you and feel the resonance of our ideas — whether
it’s about the kids, parents, bosses or jobs. Then there is an app group with people
with whom I attended elementary school, which feels like a warm blanket:
Osnovnjak. Well, Osnovnjak, keep going! I need you! (And, Corinna, please thank
Stephen for helping me with the title!) Finally, Hans, I kind of inherited you from
Hessel after his death and we have been helping each other to survive ever since
— thank you for all your advice, practical help and lazy times by your fireplace.

To my parents Vladimir and Svjetlana I am eternally grateful for the drive
to achieve excellence they instilled in me, and all the love and support they had
given me for whatever endeavors I had undertaken to do. I’m sure they would
have been proud of me for this achievement — as would Hessel, who always
believed in me and supported my career choices. Tanja, my little sister, thanks
for your patience with me and my kids, and for your yummy cooking. Now that
this research project is over, I hope I’ll have more time to spend with you in your
studio. Finally, Alex and Lucas, my wonderful sons, thank you for putting up with
all the turmoil brought about by my work on this project.

565438 N Grgurina.indd 218565438 N Grgurina.indd 218 14-09-21 17:0414-09-21 17:04

565438 N Grgurina.indd 219565438 N Grgurina.indd 219 14-09-21 17:0414-09-21 17:04

NatNatNNatatttaaaaaa a Ga Gaaa a GGrrrrgugugggguurrrriiiiiinnnnaaaa

Modeling and Simulation in SecondaryModeling and Simulation in Secondary MMooddeelliinngg aanndd SSiimmuullatattiioonn iinn SSeeccoonnddaaryryyy
Computer Science EducationComputer Science EducationCCoommppuutteer r SScciieenncce e EEdduuccatioatioatattiioonn

Getting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuGetting the PictuPPPPPPPeeeeeeegggggggeeeeeeeGGeettttiinngg tthhe e PPiictcttuurrrrrrrrrreeeeeeeeeeeeeeeeeeeeeeeee

G
etting the Picture

M
odeling and Sim

ulation in
Secondary Com

puter Science Education
Nataša G

rgurina

565438 N Grgurina Cover en kaartje.indd 1565438 N Grgurina Cover en kaartje.indd 1 14-09-21 11:0314-09-21 11:03

	Hoofdstuk_Introduction
	_Ref68339594
	__UnoMark__16028_2090171778
	__UnoMark__16029_2090171778
	__UnoMark__16030_2090171778
	__UnoMark__16031_2090171778
	__UnoMark__16033_2090171778
	__UnoMark__16034_2090171778
	__UnoMark__16035_2090171778
	__UnoMark__16036_2090171778
	__UnoMark__16037_2090171778
	__UnoMark__16038_2090171778
	__UnoMark__16039_2090171778
	__UnoMark__16040_2090171778
	__UnoMark__16041_2090171778
	__UnoMark__16042_2090171778
	__UnoMark__16043_2090171778
	__UnoMark__16044_2090171778
	__UnoMark__16045_2090171778
	__UnoMark__16046_2090171778
	__UnoMark__16047_2090171778
	__UnoMark__16048_2090171778
	__UnoMark__16049_2090171778
	__UnoMark__16050_2090171778
	__UnoMark__16051_2090171778
	__UnoMark__16052_2090171778
	__UnoMark__16053_2090171778
	__UnoMark__16054_2090171778
	__UnoMark__16055_2090171778
	__UnoMark__16056_2090171778
	__UnoMark__16057_2090171778
	__UnoMark__16058_2090171778
	__UnoMark__16059_2090171778
	__UnoMark__16060_2090171778
	__UnoMark__16061_2090171778
	__UnoMark__16062_2090171778
	__UnoMark__16063_2090171778
	__UnoMark__16064_2090171778
	__UnoMark__16065_2090171778
	__UnoMark__16066_2090171778
	__UnoMark__16067_2090171778
	__UnoMark__16068_2090171778
	__UnoMark__16069_2090171778
	__UnoMark__16070_2090171778
	__UnoMark__16071_2090171778
	__UnoMark__16072_2090171778
	__UnoMark__16073_2090171778
	__UnoMark__16074_2090171778
	__UnoMark__16075_2090171778
	__UnoMark__16076_2090171778
	__UnoMark__16077_2090171778
	__UnoMark__16078_2090171778
	__UnoMark__16079_2090171778
	__UnoMark__16080_2090171778
	__UnoMark__16081_2090171778
	__UnoMark__16082_2090171778
	__UnoMark__16083_2090171778
	__UnoMark__16084_2090171778
	__UnoMark__16085_2090171778
	__UnoMark__16086_2090171778
	__UnoMark__16087_2090171778
	__UnoMark__16088_2090171778
	__UnoMark__16089_2090171778
	_Ref64718568
	_Ref67825745
	_Ref67734196
	_Ref67738008
	_Ref64718608
	Overarching_contribution
	That_means
	_Ref67734084
	Before_new_curriculum
	PCK
	Assessment
	CT_in_Context
	__UnoMark__21426_2090171778
	OLE_LINK1
	__UnoMark__16093_2090171778
	List of figures
	List of tables
	Chapter 1

	Introduction
	Chapter 2

	Twenty Years of Computer Science in Dutch Secondary Education
	Chapter 3

	Defining and Observing Modeling and Simulation in Computer Science
	Chapter 4

	Investigating Computer Science Teachers’ Initial Pedagogical Content Knowledge on Modeling and Simulation
	Chapter 5

	Assessment of Modeling and Simulation in Secondary Computing Science Education
	Chapter 6

	Modeling and Simulation: Students’ Understanding and Difficulties Related to Verification and Validation
	Chapter 7

	General Conclusions and Discussion
	Chapter 8

	Nederlandse samenvatting
Modelleren en simuleren binnen Informatica in het voortgezet onderwijs
	References
	Appendix A: 2007 Dutch Secondary CS Curriculum	
	Appendix B: 2019 Dutch Secondary CS Curriculum
	Abbreviations
	Curriculum Vitae
	Research Output
	Acknowledgment

	Figure 1: structure of this research project.
	Figure 2: The Dutch educational system. The shaded blocks represent those grades in which the students can choose CS
	Figure 3: UML class diagram for vehicle
	Figure 4: state diagram for vehicle
	Figure 5: Cases and scores of the HAVO groups
	Figure 6: Cases and scores of the VWO groups
	Figure 7: Validating a model
	Figure 8: Constructing a model
	Figure 9: Testing a model
	Figure 10: Testing a model — various techniques
	Figure 11: Validating a model with others
	Figure 12: Reflecting on a model
	Figure 13: Coding categories
	Table 1: CODI program
	Table 2: CS teachers’ survey results on the question of a national exam
	Table 3: Frequencies of simulation modeling elements per data source per team or student. For example, Team 3 consists of students S3a and S3b.
	Table 4: Teachers’ PCK on modeling cycle
	Table 5: Distinct groups of teachers
	Table 6: Mean scores and significance levels of differences in the performance of the HAVO groups compared to the VWO groups.
	Blank Page
	Blank Page

