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1
Cancer

Cancer is a highly prevalent disease and  a major global cause of morbidity and 
mortality (1). While major advancements in screening, diagnosis, and treatments 
have been made, it is still the leading cause of death in the Netherlands, with nearly 
a third of all deaths being cancer-related (2). It is caused by genetic changes such 
as DNA mutations in the cell DNA—either inherited or acquired during life—that 
typically result in unbridled cell proliferation (3,4). Cancer cells are complex, highly 
adaptive and have many cellular characteristics (so called hallmarks) that result 
in their uncontrolled proliferation (4). Th ese hallmarks have been investigated 
thoroughly and have become the main targets for systemic treatments, but also 
are the main cause of emerging resistance to these targeted drugs (5). Th e primary 
distinctions that separate cancer cells from normal cells are their ability to invade 
normal tissue and to metastasize throughout the body. Metastasis occurs via blood 
vessels to bone or distant organs, via the lymphatic system to local or distant lymph 
nodes, or per continuitatum. For cancer that has not metastasized beyond local lymph 
nodes, treatment is usually with curative intent and generally consists of surgery 
or radiotherapy, with or without systemic treatment. In case distant metastases are 
found, either at presentation or during follow-up, the disease is most oft en deemed 
incurable (with some exeptions, such as testicular cancer or oligometastatic disease). 
For incurable disease, palliative treatment can be used, the aim of which is to extend 
life expectancy and improve or maintain quality of life.

In oncology, biomarkers are essential parts of clinical practice and research. 
A biomarker can be defi ned as ‘a characteristic that is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention’ (6). Biomarkers can be used for 
diagnostic purposes, risk assessment, or to determine or predict response to cancer 
treatment (7-9). Hereby, they allow for rational and personalized use of treatments 
in individual patients based on their ‘biomarker-phenotype’. Roughly, biomarkers 
can be divided into those that are measured in ‘biospecimens’ (e.g. tissue, blood, 
or urine), or measured using quantitative imaging techniques (7,8). An example 
of a blood-based biomarker is the prostate specifi c antigen (PSA), which can be 
used clinically for diagnosis, prediction, and in follow-up aft er and during prostate 
cancer treatment (10). A general drawback of (current) blood-based biomarkers is 
that they do not provide information on inter- or intralesional characteristics and, if 
at all, only provide indirect information of the total disease burden. 
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Imaging biomarkers have the advantage that they allow for measurements 
of individual lesions as well as the disease burden as a whole, which additionally 
allows for characterization of phenotypical heterogeneity. Commonly used 
imaging modalities are computed tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET) (11,12). CT and MRI typically 
have high resolutions and provide detailed images of anatomical structures (11). 
However, anatomical data does not directly provide information on the tumour 
biology and/or functional processes. Also, changes in tumour size detected 
during treatment may occur only at a late stage, might be difficult to measure, or 
might partly represent non-viable tissue (13,14). PET, on the other hand, allows 
for non-invasive and objective in-vivo measurements of a multitude of cancer 
characteristics such as metabolism, functional processes, or drug targeting (12,15-
17).

Prostate cancer
Prostate cancer (PCa) is the most prevalent cancer type in men in the Western 
world, with an incidence of 12,600 new cases in the Netherlands (2018) (18). It is 
a heterogeneous cancer type, both biologically and clinically (19). Occurrence and 
progression of this disease is strongly driven by the androgen receptor (AR) (20). 
Clinically, it can be divided into the (early) hormone-sensitive stage and the (late 
and lethal) castration-resistant phase. In the hormone-sensitive stage, standard 
androgen deprivation by chemical or surgical castration suffices to achieve disease 
control. In case of disease progression despite castration levels of testosterone, 
the disease is deemed to be castration-resistant. In both hormone-sensitive and 
castrate-resistant disease, targeting the AR axis is the mainstay of treatment (21-
25). As more AR-targeted drugs are becoming available, and with the advent of 
metastasis-directed approaches (26), novel biomarkers for personalized treatment 
selection are highly needed. For this purpose, modern imaging modalities such 
as PET are very promising. Specifically, PET scans using tracers targeting the 
prostate-specific membrane antigen (PSMA) have recently revolutionized the 
place of functional imaging in recurrent PCa care (27). 

Lung cancer
Lung cancer, specifically non-small cell lung cancer (NSCLC), frequently occurs 
in both men and women. Its incidence is rising (mainly in women), from 6800 
new diagnoses in 2000 to 9300 in 2015 in the Netherlands (28). At diagnosis, half 
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1
of patients have distant metastases rendering curation impossible (29). In case of 
limited disease, surgery or radiotherapy (whether or not combined with adjuvant 
systemic treatment) are treatments of choice (30). For metastasized patients, 
many eff ective systemic treatments, including chemotherapy, targeted treatments, 
and immunotherapy, are available (31-33). Rational use of these treatments 
strongly require novel biomarkers for accurate patient selection and monitoring 
of treatment response (34). 

Positron emission tomography

PET is a medical imaging modality exploiting the physical properties of 
radioactive decay of unstable positron-emitting isotopes (e.g. 18F, 68Ga, 15O, or 11C) 
(35). Initially, PET was developed as a non-invasive method to measure spatial 
(3D) or spatiotemporal (4D) functional or physiological processes in-vivo, with 
glucose-analogue [18F]FDG as one of the fi rst tracers used for measuring regional 
metabolism in healthy brain or cardiac structures (36). Aft er the introduction of 
PET systems allowing for whole body imaging, the focus of PET development 
in oncology shift ed towards high image quality for visual analysis rather than 
quantitative accuracy, e.g. exploiting the high sensitivity of PET to detect 
malignant tumours (36). However, the quantitative nature of PET uniquely allows 
for non-invasive objective in-vivo measurements of tumour biomarkers.

18F

β+

e-γ (511 KeV) γ (511 KeV)

~180° 

detector detector

count

~1 mm

Figure 1.1: Schematic overview of the principle of PET.
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Principle and technology
After intravenous administration of a labelled positron-emitting tracer, the tracer 
will be distributed throughout normal and (if present) malignant tissue and 
excreted following its specific pharmacokinetic properties. The positrons emitted 
by this tracer will travel a short distance (~1-3mm) through tumour tissue before 
thermalizing through interactions with electrons (Figure 1.1). The thermalization 
event results in a positronium, which annihilates yielding two 511 KeV photons 
that are emitted in (approximately) opposite directions (180°) (35). These photons 
are then detected by the PET scanner, eventually leading to the acquired PET 
image.

A PET scanner consists of multiple closely aligned rings of detectors 
(scintillator crystals) which allow for detection of coinciding photons (‘counts’) 
along a line of response (LOR) (35). By measuring counts at multiple angles across 
detector rings, this enables 3-dimensional measurement of radioactivity. The 
raw PET data result in a sinogram, which can subsequently be reconstructed as a 
3-dimensional PET image.

Typically, a large fraction of emitted photons are scattered in tissue before 
reaching a detector. This may result in registration of counts at an erroneous 
LOR. Also, when two annihilation events occur approximately simultaneously, a 
random coincidence may be detected when one photon of each annihilation is 
detected at approximately the same time. Scatter and random coincidences in PET 
data acquisition result in substantially increased background activity and image 
noise (35). Another factor hampering detection of true counts is attenuation 
of the emitted photons due to absorption in tissue (35). This will result in most 
radioactivity being detected at body surfaces, since there attenuation is lowest. 
As CT basically yields attenuation maps of low energy photons, the rescaled 
Hounsfield units from low-dose CT can be used to correct the PET image for 
attenuation effects. Moreover, the CT can be used clinically as an anatomical 
correlate for the measured regional activity concentrations on PET. Currently 
used PET image reconstruction algorithms incorporate corrections for scatter, 
random coincidences, and attenuation, discussion of which is beyond the scope 
of this thesis.

Lastly, current state-of-the-art PET scanners can take into account the 
radial distance between the source of the detected photons of an event and each 
scintillator by measuring the difference in timing between detection of each 
coinciding photon. This is referred to as time-of-flight (TOF), which improves 
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1
contrast-to-noise ratios as the true location of the positron-emitting tracer along 
the LOR can be estimated more precisely (37). 

Radiotracers
In PET, many of the hallmarks of cancer have been exploited for tumour imaging 
using a multitude of radioactively labelled tracers. An ideal radiotracer used for 
tumour PET imaging is metabolically stable, has high tumour-specifi c uptake and 
has low background activity.

[18F]FDG
Cancer cells have an aberrant metabolism compared to non-malignant cells called 
the ‘Warburg eff ect’ (38). More specifi cally, malignant cells not only exhibit higher 
metabolic rates through uncontrolled growth and proliferation, but also mainly 
use aerobic glycolysis instead of oxidative phosphorylation as the primary source 
of energy. Glycolysis is ineffi  cient since it generates less ATP per glucose molecule 
than oxidative phosphorylation, yielding increased glucose consumption in 
cancerous cells compared to normal cells. [18F]FDG is a glucose-analogue able to 
capture this eff ect for tumour imaging, and has been used in virtually all cancer 
types (39). A drawback of [18F]FDG is that infl ammatory processes also exhibit 
increased uptake due to activation and proliferation of immune cells, limiting its 
specifi city (40).

[18F]FLT
18F-fl uorothymidine ([18F]FLT) is a radiolabeled nucleoside that targets the 
elevated DNA synthesis in cancer cells caused by their high proliferation rates 
(41). An advantage of [18F]FLT is that it is presumed not to accumulate in 
infl ammatory processes. Clinical studies have shown that [18F]FLT PET is a 
predictor of progression-free and disease-free survival in multiple cancer types 
such as lymphoma and NSCLC, and that it might be suitable for assessing response 
to chemo- and/or radiotherapy (42).

[18F]FCH
Cancer cells are known to exhibit altered choline transport, upregulation of 
choline kinase, and increased proliferation (43). Th is has been targeted with 
11C- and 18F-labelled choline analogues, such as [18F]-fl uoromethylcholine ([18F]
FCH) (44). Th ese tracers have mainly been used for detection of prostate cancer 
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metastases at biochemical recurrence, but may also be useful in assessing response 
to chemotherapy (45). A limitation of [18F]FCH is that it is less suitable for 
detection of prostate cancer metastases at low PSA levels (46).

[18F]FDHT
Prostate cancer progression is driven by the androgen receptor (AR) through 
several mechanisms, designating the AR as an attractive target for molecular 
imaging (20). Hence, [18F]-fluorodihydrotestosterone ([18F]FDHT) was developed 
as a radiotracer allowing for visualization and quantification of tumour AR 
expression and its heterogeneity in-vivo. [18F]FDHT was successfully used in 
early phase clinical trials to demonstrate AR-specific drug binding (47,48). Also, 
interlesional [18F]FDHT heterogeneity seems to be predictive for survival after 
AR-targeted treatment (15).

[18F]DCFPyL
PSMA is a type II transmembrane glycoprotein that is overexpressed in prostate 
cancer cells in all stages of the disease. Using [68Ga] or [18F]-labelled PSMA-
ligands, such as  [18F]DCFPyL, this characteristic has been exploited with high 
success for prostate cancer PET imaging (49). Mainly in the setting of biochemical 
recurrence, many reports have shown that PSMA-ligand PET has superior lesion 
detection rates than conventional modalities, with a resulting high impact on 
clinical management (27). Nonetheless, its place in primary staging of the disease 
has yet to be established. As performance of visual image assessment seems to be 
lacking, quantitative approaches of image analysis could be of high benefit in this 
setting (50,51).

Quantification on PET
The gold standard for quantification of radiotracer uptake in tumours is full 
pharmacokinetic analysis (52). Such analysis requires dynamic PET acquisitions 
over a certain time frame, with blood sampling from an arterial line or venous 
samples to derive a tracer input function (17,44,53,54). Full quantitative analysis 
on PET yields kinetic rate constants that can be used to calculate macroparameters, 
such as the volume of distribution (VT), binding potential (BP), or Ki, which are 
assumed to represent the biological behavior of radiotracers (52). Unfortunately, 
dynamic PET acquisitions are not feasible in clinical practice due to the limited 
field of view (FOV), the long duration of imaging, and the need for blood 
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1
sampling. Also, many tracers require complex and labor-intensive analyses of 
blood samples to correct for metabolites and derive parent fractions (44,53). Total 
body PET scanners that may facilitate whole-body dynamic imaging have been 
developed, but dynamic imaging may be clinically unwanted due to the extended 
acquisition times and need for blood sampling (55). 

Routine clinical static PET scans have the advantage that they allow 
for whole body image acquisition. However, temporal information on tracer 
kinetics is lost, limiting quantifi cation to single reads of spatial radioactivity. 
Tumour quantifi cation on static PET typically yields mean, maximum, or peak 
‘standardized uptake values’ (SUV) (56). In SUV calculation, tumour uptake is 
normalized to patient distribution volume (e.g. bodyweight or lean body mass) 
and the net injected dosage. Hereby, SUVs allow for comparison of tumour uptake 
between patients. Due to their simplicity SUVs are used worldwide, but they are 
known to be aff ected by many factors (56). Th erefore, the European Association 
of Nuclear Medicine (EANM) has aimed to standardize imaging protocols across 
centers to enable reliable multicenter PET studies (12). 

Apart from basic (fi rst-order) statistics, such as SUV or the metabolically 
active tumour volume (MATV), static PET images also allow for higher-order 
features to be extracted. Th is entails high throughput ‘data mining’ from tumours 
on imaging, yielding extensive image-based tumour phenotyping named radiomics 
(57). Th ese radiomic features may characterize the tumour micro-environment 
and intratumoural heterogeneity, which may refl ect tumour aggressiveness or 
metastatic potential (58,59). Radiomics is a rapidly evolving fi eld, and many PET 
studies have shown promising results for clinical use in oncology (60). Due to 
the high dimensionality of the radiomics data and potential complex non-linear 
relations with tumour or patient characteristics, analyses based on artifi cial 
intelligence algorithms are needed to make optimal use of the extracted data (61).

PET quantifi cation: accuracy and precision
Accuracy indicates to what extent a certain measured value will diff er from 
the true value (Figure 1.2). Th is implicates that, in order to assess accuracy, a 
ground truth needs to be known. Naturally, this is not the case in tumour PET-
CT imaging. Th erefore, alternative approaches where a ground truth is available 
need to be used to assess PET accuracy, such as phantoms or PET simulations. In 
using phantoms, an actual PET scan is made of an object fi lled with radioactive 
solutions in spherical shapes (‘tumours’). In simulations, depending on the specifi c 
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implementation, a PET image of a ‘cancer’ patient with a tumour of a specific size, 
shape, and avidity is simulated, yielding a clinically realistic experimental setting 
(62).

SUV

measured value 

true value

0.0 2.5 5.0 7.5

bias

precision

Figure 1.2: Conceptual illustration of accuracy and precision using the SUV measurement as example. The 
measurement bias is used to assess accuracy. The spread in measurement values represent the measurements’ 
precision. 

Precision is a measure of random variability in measurements that are repeated 
under the same or similar circumstances (Figure 1.2). Precision of tumour 
quantification on PET-CT can be evaluated in clinical research by performing 
test-retest studies (also referred to as repeatability studies). To this end, cancer 
patients not currently receiving systemic anti-cancer treatment are scanned twice 
on PET-CT with a short interval between these scans. The variability in tumour 
measurements between these two scans is deemed to be random, e.g. due to both 
biological variability, technical variability, and Poisson image noise. If quantitative 
measures of tracer uptake on PET are to be used as biomarkers, high precision 
is crucial. Similarly, exact knowledge of its precision is crucial to allow for PET 
response monitoring studies, as only a difference in tracer uptake that exceeds 
the day-to-day variability can be regarded as an actual treatment response or 
progression of disease.
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Challenges of small tumour quantifi cation on PET 

PET is characterized by a limited spatial resolution, especially in comparison 
with anatomical imaging modalities such as CT or MRI. Th e limited resolution 
results in ‘blurry’ images, which hampers the detection limit of PET for small 
lesions, and is known to negatively aff ect quantifi cation of tracer uptake in small 
or heterogeneous structures. 

Th e result of the limited spatial resolution is referred to as the ‘partial-
volume eff ect’ (PVE) (63). Th is term is somewhat misleading, as it does not refer 
to a partial detection of the tumour volume on PET. In fact, it refers to the volume-
dependency of the eff ect, mainly pertaining to small lesions sized <2-3 times the 
spatial resolution. Th e consequence of the PVE is an apparent spill-out of the 
regional radioactivity concentrations. A clear illustration of the PVE is given in 
Figure 1.3, which shows that smaller lesions appear to have much lower uptake on 
PET than larger lesions due to a spill-out of activity, even though the true uptake 
is identical between these lesions.

SU
V 

10

0

5

position (cm)
25.05.0 10.0 15.0 20.0

measured 
true

0.0

Figure 1.3: Illustration of the partial-volume eff ect. Diff erently sized spheres were fi lled with identical 
activity concentrations. Spill-out of observed activity at lesion edges into background and volume-dependent 
underestimations of activity are noted.

Th e PVE is caused by a Gaussian-shaped uncertainty in localization of the 
positron-emitting isotope due to several physical properties of PET, which are all 
portrayed in Figure 1.1: i) positron-range, ii) non-collinearity, and iii) detector 
size (63). Th e positron-range depends on the isotope-specifi c positron energy, 
meaning a higher energy level will result in a larger travelled distance before 
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annihilation. Non-collinearity results from the momentum of the annihilating 
particles that gives some variability in the angle between two emitted photons.

Another factor resulting in underestimations of tumour uptake (mainly 
at lesions edges) is the so-called ‘tissue-fraction effect’ (63). This is due to the 
relatively large voxel sizes in PET (varying 2 to 4mm), where voxels can contain 
both malignant and normal background tissue. Decreasing voxel sizes may 
mitigate this effect, but propagates image noise if tracer dosages and/or acquisition 
times are not adjusted accordingly.

Clinical consequences
The PVE can have several clinical consequences for use of both visual image 
analysis and quantitative reads (63,64).

Visual analysis
Activity spill-out can result in small tumours remaining below detection 

limits. As this yields false-negative interpretations, it may negatively affect 
diagnosis and staging. Also, small lesions could be falsely interpreted as being 
benign, e.g. a small lymph node metastasis might appear as a reactive lymph 
node due to the spill-out of activity. Several studies have shown that the number 
of lesions detected on PET increases when the PVE is taken into consideration 
within PET image reconstruction (65-68). 

Quantitative analysis
PVE could negatively impact the use of quantitative PET analyses for diagnosis, staging, 
determining prognosis, and predicting or monitoring treatment response (64). 

Based on the hypothesis that malignancies exhibit higher uptake on PET 
than benign lesions, quantification of tracer uptake can be used to discern benign 
versus malignant tumours. To this end, often a certain parameter threshold is 
defined, e.g. SUV=2.5 for solitary pulmonary nodules, to characterize lesions as 
being either benign or malignant (69). As small malignant lesions are more prone 
to remain below these thresholds due to the PVE, it may yield false negative reads 
that hamper diagnosis and (nodal) staging.

Secondly, in many cancer types a relationship between patient prognosis and 
tumour tracer uptake on PET has been observed (mainly for [18F]FDG), probably 
since tumour grade and aggressiveness are proportional to glycolytic activity 
and/or proliferation rate (70-73). Similarly, tumour tracer uptake on PET can be 
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1
predictive for treatment outcomes. Th e PVE could result in small tumours with 
a poor prognosis to have low SUVs, hence hampering accurate prognostication. 
An illustrative study was performed by Vesselle et al. Th ese authors observed 
that SUV of the primary tumour in NSCLC correlated with tumour stage and 
was prognostic for patient outcome, but this association disappeared aft er PVC 
was applied. Th is exemplifi es that PVE implicitly correlates tumour size and tracer 
uptake, and therefore any observed prognostic or predictive value of tumour 
tracer uptake can be confounded by lesion size (74).

Th ird, PET can be used to assess treatment response by repeated imaging 
before and aft er (or during) treatment (13,17,75). Here, changes in tumour volume 
or size could result in changes in measured tracer uptake due to the PVE instead 
of a true treatment eff ect on the cancer cells. Simply stated, tumour shrinkage 
might result in a false detection of partial metabolic response on PET, and tumour 
growth might result in false detection of progressive metabolic disease on PET 
(76). 

Finally, due to spill-over between voxels, the PVE might have a large 
impact on the characterization of intratumoural heterogeneity using radiomics. 
To date, few studies have taken into account the potential impact of the PVE 
and/or tissue fraction eff ect on the clinical performance of classifi cation or 
regression models using radiomics (77). Applying PVC in radiomics studies may 
improve measurements of textural tumour features that depict the relationship 
between voxel values within tumours, and its impact on radiomics-based clinical 
predictions should be analyzed.

Partial-volume correction
Since decades, many studies have sought to fi nd methods able to correct for the 
PVE (63,64,78,79). Th ese partial-volume correction (PVC) methods can roughly 
be divided into i) reconstruction-based or post-reconstruction methods, and 
into ii) region-based or voxel-based (parametric) methods. Also, the diff erent 
PVC methods diff er in their inherent assumptions regarding tumour shape, size, 
homogeneity of activity distributions, knowledge on exact spatial resolution, 
and defi nition of tumour boundaries. Evaluation of the accuracy of PVC 
methods is challenging, since a ground truth cannot be derived from clinical 
images. Th erefore, such studies commonly rely on phantom scans to determine 
an algorithm’s accuracy under rather ideal circumstances. Clinically realistic 
simulations might be more suitable for this purpose.
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Most PVC methods developed to date are post-reconstruction methods, 
which can be applied to PET images that are acquired clinically. The region-based 
methods require exact definitions of anatomical or PET-based regions, which 
often requires co-registered high-definition images (80). In oncological PET, this 
is problematic since low-dose CT does not allow for exact tumour delineation. 
The region-based PVC methods are mainly used in functional neuroimaging, 
where grey and white matter regions are more easily segmented (80,81). For 
tumour imaging, most studies have used a simple recovery coefficient correction 
using phantom data (82-84). More advanced or parametric PVC methods might 
be more suitable for oncological PET since these do not rely on segmentation of 
lesion boundaries. However, it is yet unclear how the net accuracy is affected by 
tumour delineation accuracy (85,86). 

In recent years, use of reconstruction-based methods has become more 
common, especially since vendors started to provide such algorithms with novel 
PET systems (87-89). These reconstructions have the advantage of higher detection 
rates through improved spatial resolution, but could have lower quantitative 
accuracy due to increased image noise characteristics and Gibbs ringing artefacts 
(90,91). As these image reconstructions with corrections for PVE are being 
implemented worldwide, the impact of PVC needs to be taken into account in 
quantitative PET studies. This might be of particular importance for test-retest 
and response monitoring studies, as the lower precision caused by PVC methods 
might affect the minimal detectable change in tumour uptake.
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1
Aim and outline of the thesis

Th e clinical use of quantitative assessment of PET images in oncology is maturing 
and merging into clinical practice. Th erefore, it is crucial to know if and how small 
tumours can be accurately and reliably assessed using quantitative PET analysis. 
Moreover, the clinical value of these analyses needs to be defi ned.  In the present 
thesis we aim to perform technical validation of small tumour quantitative PET 
imaging and investigate its clinical application. In Part 1 (chapter 2-4) of this 
thesis we focus on methodological aspects of quantitative PET imaging of small 
tumours, specifi cally investigating the performance of PVC. In Part 2 (chapter 
5-8) we explore the clinical benefi t of quantitative assessment of small tumours on 
PET and the impact of applying PVC.

In Chapter 2 we investigate the accuracy and precision of several PVC 
methods, in combination with several diff erent methods for tumour delineation 
on PET in [18F]FDG and [18F]FCH PET-CT. In Chapter 3 we assess how 
parametric PVC aff ects pharmacokinetic modelling on dynamic [18F]FLT PET-CT 
and validation of simplifi ed parameters in NSCLC patients undergoing systemic 
treatment. Chapter 4 focusses on the infl uence and interplay of image noise and 
PVC on the repeatability of quantitative tumour assessment on [18F]FDHT PET-
CT in metastatic PCa patients. In Chapter 5 we assess the repeatability of [18F]
DCFPyL PET-CT in metastatic PCa patients and evaluate the impact of PVC. In 
Chapter 6 we perform machine learning-based analysis of [18F]DCFPyL PET-CT 
radiomics for risk-stratifi cation of  primary PCa patients, and assess the impact of 
PVC and tumour delineation methods.

In Chapter 7 we systematically review and perform meta-analysis on 
the clinical application of PVC in PET studies in oncology. In Chapter 8 we 
evaluate whether PVC can improve prediction of outcome aft er stereotactic body 
radiotherapy (SBRT) for oligometastatic prostate cancer using [18F]FCH PET-CT. 
In Chapter 9 we discuss methodological aspects of quantifi cation of [18F]DCFPyL 
and [18F]FDHT in prostate cancer, and provide clinical illustration of its use in 
response assessment. In Chapter 10 we benchmark the predictive value of the 
[18F]DCFPyL radiomics analysis from Chapter 6 against methods used in clinical 
practice. Lastly, a summarizing discussion of fi ndings is presented in Chapter 11.
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Abstract

Accurate quantification of tracer uptake in small tumours using PET is hampered 
by the partial-volume effect as well as by the method of volume-of-interest (VOI) 
delineation. This study aimed to investigate the effect of partial-volume correction 
(PVC) combined with several VOI methods on the accuracy and precision of 
quantitative PET. 
Methods: Four image-based PVC methods and resolution modeling (applied 
as PVC) were used in combination with several common VOI methods. 
Performance was evaluated using simulations, phantom experiments, and clinical 
repeatability studies. Simulations were based on a whole-body 18F-FDG PET 
scan in which differently sized spheres were placed in lung and mediastinum. A 
National Electrical Manufacturers Association NU2 quality phantom was used for 
the experiments. Repeatability data consisted of an 18F-FDG PET/CT study on 11 
patients with advanced non–small cell lung cancer and an 18F-fluoromethylcholine 
PET/CT study on 12 patients with metastatic prostate cancer. 
Results: Phantom data demonstrated that most PVC methods were strongly 
affected by the applied resolution kernel, with accuracy differing by about 20%–
50% between full-width-at-half-maximum settings of 5.0 and 7.5 mm. For all 
PVC methods, large differences in accuracy were seen among all VOI methods. 
Additionally, the image-based PVC methods were observed to have variable 
sensitivity to the accuracy of the VOI methods. For most PVC methods, accuracy 
was strongly affected by more than a 2.5-mm misalignment of true (simulated) 
VOI. When the optimal VOI method for each PVC method was used, high 
accuracy could be achieved. For example, resolution modeling for mediastinal 
lesions and iterative deconvolution for lung lesions were 99% ± 1.5% and 99% 
± 0.9% accurate, respectively, for spheres 15–40 mm in diameter. Precision 
worsened slightly for resolution modeling and to a larger extent for some image-
based PVC methods. Uncertainties in delineation propagated into uncertainties 
in PVC performance, as confirmed by the clinical data. 
Conclusion: The accuracy and precision of the tested PVC methods depended 
strongly on VOI method, resolution settings, contrast, and spatial alignment of the 
VOI. PVC has the potential to substantially improve the accuracy of tracer uptake 
assessment, provided that robust and accurate VOI methods become available. 
Commonly used delineation methods may not be adequate for this purpose.
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Introduction

Quantitative PET provides clinical oncology with a powerful tool for diagnosis, 
staging, restaging, and response monitoring (1,2). To allow for appropriate 
quantifi cation of radioactive tracer uptake, PET data need to be corrected for 
several physical eff ects, including decay, scatter, random coincidences, and 
attenuation. An eff ect not regularly corrected for, but having a major impact on 
PET accuracy in small tumours, is the partial-volume eff ect (PVE) (3).

PVE originates from the fi nite spatial resolution of the PET scanner, 
described by the point spread function (PSF), and the tissue fraction eff ect (4). 
In hot lesions, PVE causes a net spill-out of activity into the background, leading 
to considerable underestimation of the measured activity concentration (3-
6). Although clinical application of partial-volume correction (PVC) has led to 
contradictory results to date (7), both accurate and precise PVC methods may 
have a signifi cant clinical impact and substantially change quantitative reads (8).

Many PVC methods have been developed (4,7,9), such as the recovery 
coeffi  cient method (5,6,10), the geometric transfer matrix (11), the Müller-Gärtner 
method (12), and iterative deconvolution (13,14). However, each method has its 
limitations, and new methodology is still being developed. Some are adaptations 
of the recovery coeffi  cient method (15,16), but others are more refi ned, such as 
resolution modeling (17,18), adaptations of iterative deconvolution (19-21), 
adaptations of the geometric transfer matrix (22,23), and background-adapted 
PVC algorithms (24).

Besides being aff ected by PVE, PET accuracy is strongly aff ected by the 
applied volume-of-interest (VOI) method, noise level, and tumour-to-background 
ratio (25). In addition, several PVC methods use predefi ned VOI boundaries to 
correct for PVE. Hoetjes et al. argued that the performance of PVC methods may 
benefi t from exact (e.g., CT-based) VOI defi nition (3). We therefore hypothesized 
that PVC performance, and hence PET accuracy, is strongly aff ected by VOI 
defi nition methodology.

Because PVC performance is a function of not only the PVC method and 
settings but also the VOI method and settings, their interplay may aff ect the 
accuracy and precision of PVE-corrected quantitative PET metrics. In the present 
study, we investigated the eff ect of several combinations of PVC methods and VOI 
methods on the accuracy and precision of PET using phantoms and simulations. 
We also investigated the impact of PVC on the repeatability of 18F-FDG and 
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18F-fluoromethylcholine PET in patients with advanced non–small cell lung 
cancer and metastatic prostate cancer, respectively.

Materials and Methods

We used phantom experiments, simulations, and clinical data to evaluate PVC 
performance as a function of PVC method, VOI method, spatial kernel settings, 
noise-level, and alignment of VOI. The analyses are summarized in Supplemental 
Table 1, available at http://jnm.snmjournals.org.

PVC Methods
Four image-based PVC methods were applied: iterative deconvolution Lucy–
Richardson PVC (3,14), background-adapted PVC (24) using local and global 
background regions, and mask-based spillover PVC (3,4). We optimized the 
spatial kernel settings using phantom data, setting the Gaussian kernel at 5.0–7.5 
mm (0.5-mm intervals).

Reconstruction-Based PVC
We applied the resolution modeling (17) approach (PSF reconstruction) as part 
of the reconstruction process provided by the vendor (Philips Healthcare). The 
default settings were used with noise regularization (1 PSF iteration, 6-mm 
regularization), implemented within binary, large-object ordered-subset time-of-
flight iterative reconstruction.

VOI Methods
The following threshold-based VOI methods (in-house–developed software (26)
(26)) were applied to all data: 42% and 50% of the maximal voxel value, 42% and 
50% of the maximal voxel value adapted for local background uptake, 50% and 
70% of the peak value (i.e., average value of a 12-mm sphere positioned to yield 
the highest value) adapted for local background uptake, and iteratively defined 
background-adapted relative threshold level using the system PSF (27). In 
simulations, we also used the true sphere volume as VOI.
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Phantom Experiments
We used a National Electrical Manufacturers Association NU2 quality phantom 
to calibrate the spatial resolution kernel for image-based PVC methods. Th e 
phantom contained 6 spheres with diameters ranging from 10 to 37 mm. Spheres 
and background were fi lled with 18F-FDG solutions of 12.38 and 1.46 kBq/mL, 
respectively. A 30-min scan was obtained on an Ingenuity TF PET/CT scanner 
(Philips Healthcare). Reconstruction was performed using ordered-subset time-
of-fl ight iterative reconstruction with and without resolution modeling.

Simulations (25)
A mathematic phantom was derived from an 18F-FDG whole-body scan. Next, 10- 
to 40-mm-diameter spheres (5-mm intervals) were placed within mediastinum 
and lung. Th e voxel values within the spheres were set to 10 kBq/mL, providing 
local tumour-to-background ratios of about 6.7 and 3.3 for lung and mediastinum, 
respectively.

Using forward projection, we generated noise-free sinograms. In addition, 
we added noise to the sinograms using Poisson statistics simulating 3 noise levels, 
corresponding to data collected for 4, 3, and 2 min per bed position, as is typical 
for clinical practice. Noise-free images and images corresponding to data collected 
for 4, 3, and 2 min had liver uptake coeffi  cients of variation of 6.2%, 13.2%, 13.6%, 
and 18.2%, respectively (as determined by a 3-cm spheric VOI placed in the right 
liver lobe). For each combination of sphere size and noise level, 10 sinograms were 
generated (except for noise-free sinograms).

Images were reconstructed using ordered-subset expectation maximization, 
with and without resolution modeling, and were post-smoothed with a 5-mm 
Gaussian fi lter. Th e number of iterations (6) and subsets (16) was set such as to 
ensure a minimal level of convergence and to avoid limited contrast recovery. In 
this way, PVE was aff ected mainly by the spatial resolution and voxel size.

Clinical Data
Clinical repeatability data consisted of an 18F-FDG PET/CT study (28) on 11 
patients with advanced non–small cell lung cancer and an 18F-fl uoromethylcholine 
PET/CT study (29) on 12 patients with metastatic prostate cancer. At the time the 
patients underwent PET, they received no treatment. Both studies were approved 
by the Medical Ethical Committee of the VU Medical Centre, and the patients 
gave informed consent to participate.
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The patients were scanned using a Gemini TF-64 PET/CT scanner 
(Philips Healthcare). They fasted for 6 and 4 h before undergoing 18F-FDG 
and 18F-fluoromethylcholine PET, respectively. PET/CT scans were acquired 
at 60 and 40 min after injection of 185 MBq of 18F-FDG and 200 MBq of 
18F-fluoromethylcholine, respectively. Images were reconstructed using ordered-
subset time-of-flight iterative reconstruction with 3 iterations and 33 subsets, 
with and without resolution modeling. All data were corrected for decay, scatter, 
random coincidences, and attenuation.

PVC Performance Metrics
For the phantom experiment and simulations, accuracy was calculated using the 
recovery coefficient, defined as follows:

				    Eq. 1

where ACmeasured is measured mean activity concentration (Bq/mL) and ACtrue 
is true (simulated) activity concentration (Bq/mL). Bias was calculated as follows:

						      Eq. 2

For volumetric accuracy, recovery coefficient and bias were calculated in the same 
manner (volumes [mL] instead of activity concentrations).
Activity concentration ratios were defined as follows:

									        Eq. 3

where ACpvc is mean activity concentration with PVC and ACuncorrected is 
mean activity concentration without PVC.

SUVmean, normalized to body weight, was calculated for clinical data. 
Total lesion glycolysis (TLG) was calculated as SUVmean × metabolically active 
lesion volume (mL). All metrics were derived with and without PVC.

Statistical Analysis
The normality of SUVs and TLGs was assessed with the Shapiro–Wilks test. 
The intraclass correlation coefficient (ICC; 2-way mixed model with an absolute 
agreement definition) was calculated for each combination of VOI and PVC 
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method. For nonnormal distributions, log-transformed SUVmean and TLG were 
used to calculate ICC. Analyses were performed using SPSS Statistics, version 22.0 
(IBM).

Results

Phantom Experiments
Image-based PVC methods required that the applied spatial kernel be optimized 
for each VOI method. For all VOI methods, Lucy-Richardson PVC and spillover 
PVC demonstrated diff erences in recovery coeffi  cients ranging from 0.2 to 0.5 
between full width at half maximum (FWHM) settings of 5.0–7.5 mm. Th e 
accuracy of global-background–adapted PVC was not aff ected by FWHM setting 
and for local-background–adapted PVC the recovery coeffi  cients demonstrated 
diff erences of only 0.03 to 0.3 between FWHM settings of 5.0–5.5, 6.0, and 6.5–7.5 
mm. Large diff erences in accuracy among the various VOI methods were seen for 
all image-based PVC methods, especially for the 13- and 17-mm spheres (typically 
yielding overcorrection). Even for the optimal FWHMs, the PVC methods still 
failed for the 10-mm sphere. 

Volumetric accuracy was better in non-PSF reconstruction for the 17- 
to 37-mm spheres, excepting the 37-mm sphere delineated with 42% maximal 
(Figs. 2.1A and 2.1B). Notably, the 10- and 13-mm spheres were delineated more 
accurately using 42% maximal, 50% maximal, and relative threshold level in PSF 
reconstruction. Th e smallest diff erences in volumetric accuracy were seen for 
background-adapted VOIs. PET-based VOIs generated on PSF reconstructed 
images were smaller than those generated on non–PSF reconstructed images 
(Fig. 2.1C). No diff erence in volume was found for the 10-mm sphere delineated 
with background-adapted 42% maximal or background-adapted 50% maximal, 
whereas delineation with background-adapted 50% peak and background-
adapted 70% peak provided negligibly larger volumes (0.064 mL larger).
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Figure 2.1: Volume recovery coefficients for non–PSF PVC images (A) and PSF PVC images (B) per VOI 
method and sphere size, and differences in PET-based volumes between non–PSF PVC images and PSF 
PVC images (C). Negative volume differences indicate smaller volumes for PSF reconstructed images than 
for non–PSF reconstructed images. Key indicates sphere diameters. Ten-millimeter sphere delineated with 
42% maximal had recovery coefficient of 3.9 in non–PSF reconstructed images. 42MAX = 42% of maximal 
voxel value; 50MAX = 50% of maximal voxel value; A42MAX = 42% of maximal voxel value adapted for 
local background uptake; A50MAX = 50% of maximal voxel value adapted for local background uptake; 
A50PEAK = 50% of peak voxel value adapted for local background uptake; A70PEAK = 70% of peak voxel 
value adapted for local background uptake; RTL = relative threshold level.

Simulations
Large differences in PVC performance were seen among all VOI methods 
(Supplemental Figs. 1 and 2). The optimal combinations of PVC method 
and VOI method are shown in Figure 2.2 and Table 2.1. Generally, recovery 
coefficients were lower in lung than in mediastinum. For spheres 15 mm or 
larger, PSF reconstruction with adapted 70% peak yielded the highest accuracy 
in mediastinum (99% ± 1.5%), whereas Lucy–Richardson PVC with adapted 42% 
maximal yielded the highest accuracy in lung (99% ± 0.9%). Global- and local-
background–adapted PVCs considerably overcorrected true activity concentration 
when using background-adapted 42% maximal, background-adapted 50% 
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maximal, background-adapted 50% peak, or background-adapted 70% peak. Both 
local-background–adapted PVC and spillover PVC performed excellently (100% 
accuracy overall) when using true (simulated) VOIs and were within 10% accurate 
when using relative-threshold-level VOIs (≥15 mm). Figure 2.3 demonstrates the 
percentage bias in sphere volumes in lung. We found a strong relationship between 
underestimation of true volume and overcorrection of activity concentration 
recovery coeffi  cients for global- and local-background–adapted PVCs (recovery 
coeffi  cients up to 3 and 2.25, respectively). Spillover PVC was moderately aff ected 
(recovery coeffi  cients ≤ 1.33), and the recovery coeffi  cients for Lucy–Richardson 
PVC and PSF reconstruction did not signifi cantly correlate with a negative bias in 
volume (recovery coeffi  cients, 0.6–1.05). Th ere was a moderate inverse correlation 
between recovery coeffi  cients and a positive bias in volume for all methods other 
than PSF reconstruction. Similar correlations were observed for mediastinal 
spheres, but bias in volume, and thus in activity concentration, was larger.

Figure 2.2: Activity concentration recovery coeffi  cients as function of sphere diameter for all PVC methods, 
and uncorrected data, with their optimal PET-based VOI method (Table 1) for spheres in mediastinum (A) 
and lung (B). Missing values are due to delineation failure. HH-GLBL = global-background–adapted PVC; 
IDC-LR = iterative deconvolution Lucy–Richardson PVC; HH-LCL = local-background–adapted PVC.
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Table 2.1: Optimal PET-based VOI method for each PVC method, in lung and mediastinum.

Uncorrected IDC-LR HH-GLBL HH-LCL Spill-over PSF
VOI method:
(Mediastinum)

A70PEAK
(97±4.1)

A50MAX
(102±2.7)

50MAX
(96±2.4)

RTL
(109±2.6)

RTL
(104±2.0)

A70PEAK
(99±1.5)

VOI method:
(Lung)

A70PEAK
(90±9.8)

A42MAX
(99±0.9)

42MAX
(109±15.8)

50MAX
(103±4.7)

A42MAX
(105±3.3)

A70PEAK
(94±6.0)

Figure 2.3: Activity concentration recovery coefficients as function of volumetric bias. Shown are results for 
all VOI methods for spheres in lung (noise-free images). HH-LCL = local-background–adapted PVC; IDC-
LR = iterative deconvolution Lucy–Richardson PVC; HH-GLBL = global-background–adapted PVC.

Figure 2.4 illustrates activity concentration recovery coefficients as a 
function of misalignment of true VOI. Global-background–adapted PVC 
demonstrated only a slight decrease in recovery coefficient for a misalignment 
of 10 mm or more and was more than 94% accurate in lung but overcorrected 
by up to 20% in mediastinum. Local-background–adapted PVC was 98%–100% 
accurate when misalignment was less than 5 mm in lung and mediastinum. 
Spillover PVC performed slightly worse than local-background–adapted PVC. 
The performance of Lucy–Richardson PVC and PSF reconstruction was poorest 
when true VOI was used, but their sensitivity to misalignment was similar to 
that of local-background–adapted PVC and spillover PVC. Similar trends were 
obtained for all sphere sizes, but sensitivity to misalignment increased with 
decreasing sphere size.
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Figure 2.4: Activity concentration recovery coeffi  cients as function of misalignment of true VOI. Shown are results 
from 15-mm (A) and 25-mm (B) spheres in lung (noise-free images). HH-LCL = local-background–adapted PVC; 
IDC-LR = iterative deconvolution Lucy–Richardson PVC; HH-GLBL = global-background–adapted PVC.

Th ere was a positive association between noise level and recovery coeffi  cient, 
with recovery coeffi  cients becoming larger as VOI thresholds increased. Th e 
activity concentration ratios of mediastinal spheres increased with noise level for 
spillover PVC, global-background–adapted PVC, and local-background–adapted 
PVC when background-adapted VOIs were used, whereas in lung these ratios 
were equal for all noise levels (Fig. 2.5; similar but inverse trends were observed 
for volumes). In contrast, the results for noise-free images were similar to those 
for the highest noise level. With true (simulated) VOI, recovery coeffi  cients were 
similar at all noise levels, both in mediastinum and in lung.

Figure 2.5: Activity concentration ratios as function of simulated acquisition time (thus, noise level). Shown 
are results from background-adapted 50% peak for 20-mm sphere (corresponding to median volumes of 
18F-FDG and 18F-fl uoromethylcholine PET cohorts delineated with background-adapted 50% peak) in 
mediastinum (A) and lung (B), respectively. AC = activity concentration; IDC-LR = iterative deconvolution 
Lucy–Richardson PVC; HH-GLBL = global-background–adapted PVC; HH-LCL = local-background–
adapted PVC.
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The impact of PVC on precision for spheres in lung is illustrated in 
Figure 2.6. In general, PVC increased SDs—an effect that was most pronounced 
for global- and local-background–adapted PVCs. Precision depended on the 
applied combination of VOI method and PVC method. When the true volume 
was used, the SDs were smallest, suggesting that uncertainties in PET-based VOI 
performance propagate into uncertainties in PVC performance. PET-based VOIs 
generally resulted in larger SDs in mediastinum than in lung. 

Figure 2.6: SDs of recovery coefficients for all combinations of PVC method. Shown are results for 20-mm 
spheres in lung (corresponding to median volumes of 18F-FDG and 18F-fluoromethylcholine PET cohorts 
delineated with background-adapted 50% peak). y-axis is scaled for visual interpretation; SD of global-
background–adapted PVC using background-adapted 70% peak was 0.049. IDC-LR = iterative 
deconvolution Lucy–Richardson PVC; HH-GLBL = global-background–adapted PVC; HH-LCL = local-
background–adapted PVC; 42MAX = 42% of maximal voxel value; 50MAX = 50% of maximal voxel value; 
A42MAX = 42% of maximal voxel value adapted for local background uptake; A50MAX = 50% of maximal 
voxel value adapted for local background uptake; A50PEAK = 50% of peak voxel value adapted for local 
background uptake; A70PEAK = 70% of peak voxel value adapted for local background uptake; RTL = 
relative threshold level.

Clinical Data
Table 2.2 describes the clinical cohorts. The feasibility (i.e., percentage of lesions 
successfully delineated) of the VOI methods was better in PSF reconstructed images 
than non–PSF reconstructed images (Supplemental Tables 2.2 and 2.3). Global-
background–adapted PVC failed (providing negative activity concentrations) 
in 2.4% and 2.8% of lesions in the 18F-FDG and 18F-fluoromethylcholine PET 
cohorts, respectively.
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Table 2.2: Patient characteristics. Median volumes determined with A50PEAK, the most accurate VOI 
method as determined in phantom experiment, on baseline.

18F-FDG-PET (28) 18F-FCH-PET (29)
Type NSCLC mPC

(n=4 castration-resistant)
No. of patients 11 12
No. of lesions 70 67
Age (mean±SD, years) 60±7 64±8
Gender 7 male, 4 female 12 male
Lesion localization 16 intrapulmonary,

54 extrapulmonary
44 bone metastases
23 lymph node metastases

Median volume 
(mL)

Non-PSF 3.94 (IQR 10.85) 5.76 (IQR 8.64)
PSF 3.90 (IQR 20.10) 5.28 (IQR 7.92)

Figure 2.7: ICCs of SUVmean (A) and TLG (B) for all combinations of PVC method. Shown are results for 
18F-FDG PET cohort. Error bars represent 95% confi dence intervals. Similar results were obtained for 
18F-fl uoromethylcholine PET cohort (Supplemental Fig. 3). IDC-LR = iterative deconvolution Lucy–
Richardson PVC; HH-GLBL = global-background–adapted PVC; HH-LCL = local-background–adapted 
PVC; 42MAX = 42% of maximal voxel value; 50MAX = 50% of maximal voxel value; A42MAX = 42% of 
maximal voxel value adapted for local background uptake; A50MAX = 50% of maximal voxel value adapted 
for local background uptake; A50PEAK = 50% of peak voxel value adapted for local background uptake; 
A70PEAK = 70% of peak voxel value adapted for local background uptake; RTL = relative threshold level.
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ICCs were calculated to quantify, and facilitate comparison between, 
the repeatability of SUVmean and TLG (Fig. 2.7). Repeatability was best for 
uncorrected SUVmean (ICC, ~0.97–0.98), with comparable SUVmean ICCs 
for Lucy–Richardson PVC, spillover PVC, and PSF reconstruction. The ICCs 
for local-background–adapted PVC were slightly lower, depending on the VOI 
method. For all VOI methods, global-background–adapted PVC demonstrated 
the worst SUVmean repeatability (ICC, ~0.77–0.83). The SUVmean ICCs were 
comparable between VOI methods, except for global- and local-background–
adapted PVCs. All PVE-corrected TLGs had ICCs almost equal to uncorrected 
TLG, except for PSF reconstruction. Similar trends in ICCs were seen among the 
volumes delineated with the various VOI methods (Supplemental Table 4) and 
their respective TLGs. Overall, ICCs were lower for the 18F-fluoromethylcholine 
PET cohort than for the 18F-FDG PET cohort.

Discussion

PVE introduced substantial error to the quantification of tracer uptake in 
mediastinal lesions smaller than 25 mm in diameter and lung lesions smaller than 
30 mm. The current guidelines for response evaluation with PET do not include 
PVC (2,30,31). PERCIST (2) advises assessment of only tumours larger than 2 
cm at baseline, to avoid overestimation of metabolic response with shrinkage 
during therapy, whereas the European Organization for Research and Treatment 
of Cancer (31) merely recommends documentation of tumour size in relation 
to scanner resolution. However, it is unclear how lesion selection strategies in 
metastasized disease affect the clinical performance of imaging biomarkers of 
response, especially in the case of targeted therapy with potentially heterogeneous 
inter- or intralesional target expression. Of note, the median volumes of lesions 
in the 18F-FDG and 18F-fluoromethylcholine cohorts corresponded to 20- to 22-
mm equal-volume spheres—well within the range of lesions affected by PVE. 
PVE may also compromise diagnosis or prognosis when SUV-based thresholds 
are used in small tumours (7), even when guidelines for scanner calibration, 
image acquisition, and reconstruction are implemented (32). Taken together, 
these factors lead us to estimate that appropriate PVC may prove to be of greater 
clinical importance than considered so far. Our results demonstrated that PVC 
methods have the potential to be accurate and precise. However, the performance 
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of PVC depends heavily on the applied VOI method and factors infl uencing VOI 
method performance, such as lesion size, tumour-to-background ratio, noise, and 
spatial alignment. We recommend that the focus of future research into PVC be 
to develop robust and standardized PVC–VOI combinations and to assess their 
clinical impact using valid clinical reference standards.

Phantom and Simulation Studies
Adjustment of FWHM for the image-based PVC methods had a major eff ect 
on the performance of most methods. Lucy–Richardson PVC and spillover 
PVC substantially diff ered in accuracy between diff erent FWHM settings, with 
the recovery coeffi  cient increasing with the FWHM setting. Th e reason for this 
diff erence was most likely the fact that both methods directly use the applied 
FWHM for PVC, warranting accurate calibration. Th e performance of global-
background–adapted PVC was equal for all FWHM settings, whereas local-
background–adapted PVC diff ered for only some of the settings. For that PVC 
method, it is advisable that the FWHM not be underestimated, ensuring that the 
entire spill-out of signal is contained within the spill-out region, in accordance 
with the results of Hofh einz et al. (24).

VOIs were generated on both PSF reconstructed images and non–PSF 
reconstructed images. Th erefore, diff erences in volume and volumetric accuracy 
between the two were assessed. In general, PSF reconstruction resulted in 
smaller VOIs, most likely because of improved tumour-to-background ratios and 
enhanced edges. However, volumetric accuracy was worse, apart from some VOIs 
generated on the smallest spheres.

In simulations, the performance of PVC diff ered between VOI methods. 
Recovery coeffi  cients tended to be lower for spheres in lung than in mediastinum, 
which in the case of the simulated uniform spheres can be explained by a 
larger PVE in lung due to a higher tumour-to-background ratio. Without PVC, 
activity concentrations obtained with adapted 70% peak proved most accurate. 
Th is VOI method results in very small volumes, including only the core of 
spheres and thereby bypassing the PVE, which occurs mainly at lesion edges. 
PSF reconstruction increased accuracy by 2%–16%, with the increase being 
most pronounced for the smallest spheres. Even though accuracy was only 
moderately improved in lung, VOI methods tended to be more feasible on PSF 
reconstructed images (Supplemental Tables 2 and 3). Whereas Teo et al. found 
iterative deconvolution to perform optimally in a phantom study when an 80% 

Matthijs Cysouw.indd   45Matthijs Cysouw.indd   45 26-08-20   09:0326-08-20   09:03



Chapter 2

46

maximal VOI was applied (13), our simulation study suggested that Lucy–
Richardson PVC performs excellently using background-adapted VOIs with a 
fixed threshold. Global- and local-background–adapted PVCs were sensitive to 
underestimation of volume, probably because of inclusion of the sphere activity 
concentration within the spill-out region, thus substantially overestimating the 
true activity concentration (Fig. 3). Overall, local-background–adapted PVC 
performed better than global-background–adapted PVC, most likely because the 
former can account for heterogeneity of activity within the background. Spillover 
PVC had excellent performance using relative threshold level and adapted 42% 
maximal, with accuracies of 104% ± 2.0% and 105% ± 3.3% for spheres 15 mm 
or larger in mediastinum and lung, respectively. Notably, when the true VOI was 
used, spillover PVC, local-background–adapted PVC, and global-background–
adapted PVC performed excellently (accuracy, ~100%). This is understandable 
since theoretically, with homogeneous uptake, accuracy should be 100% when 
these methods are applied using perfect tumour boundaries and true FWHM. 
In addition, the true VOI demonstrated the highest precision. However, in the 
clinical setting, perfect alignment between CT and PET images is not realistic 
because of patient movement and breathing, and the CT-based anatomic volume 
may include nonviable tumour tissue. Thus, application of CT-based VOIs when 
using local-background–adapted PVC or spillover PVC may result in less accurate 
results because of sensitivity to misalignment of the VOI (Fig. 2.4) and inclusion 
of nonviable tumour tissue. Global-background–adapted PVC was unaffected 
by misalignment for spheres 20 mm or larger, most likely because of the large 
background region. However, some dependency on tumour-to-background ratio 
was seen using the true VOI (20% overcorrection in mediastinum).

PVC methods directly using VOI boundaries (i.e., spillover PVC, global-
background–adapted PVC, and local-background–adapted PVC) differed 
considerably between noise levels for mediastinal spheres when background-
adapted VOIs were applied. In contrast, similar performance was observed for 
all PVC methods at each noise level in lung, where high contrast resulted in very 
similar VOI delineations between noise levels. Thus, at low contrast, background-
adapted VOIs become unreliable, propagating into an unreliable performance for 
PVC methods sensitive to volumetric accuracy.

PVC negatively affected precision to only a small extent (Fig. 2.6), except 
for global- and local-background–adapted PVCs, for which SDs increased 
considerably. Overall, background-adapted 50% peak seemed most precise when 
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image-based PVC was applied, most likely because peak values are less sensitive to 
noise than maximal values.

Clinical Studies
A previous study showed PVC to have no signifi cant eff ect on tracer uptake 
repeatability, but only one PET-based VOI method (adapted 50% maximal) was 
used in that study (3). In the present study, the repeatability of SUVmean using the 
various VOI delineation methods was consistent—with comparable ICCs—aft er 
all types of PVC except for local-background–adapted and global-background–
adapted PVC. Th ose two demonstrated large diff erences in ICC among various 
VOI methods and broader confi dence intervals overall, illustrating worsened 
precision in accordance with the precisions observed in the simulations.

Erlandsson et al. proposed using PVE-corrected TLG in clinical settings, 
since uncorrected SUV might retain important volumetric information that is 
lost when SUV is corrected (7). Our results demonstrated that corrected TLG and 
uncorrected TLG had similar repeatability characteristics (Fig. 2.6). ICCs were 
similar among all PVC methods except for PSF reconstruction. Th e diff erence in 
the latter was most likely caused by the similarity between trends in the ICCs of 
TLG between VOI methods and trends in the ICCs of VOI volumes (Supplemental 
Table 4), emphasizing the importance of volumetric information to precision in 
PVC. For global- and local-background–adapted PVCs applied with their optimal 
VOI methods, PVE-corrected TLG might be suitable for acquiring data with 
optimal accuracy and precision.

Limitations
In phantoms and simulations, lesions are spheric and have homogeneous 
uptake. In reality, however, tumours rarely have spheric dimensions, let alone 
homogeneous uptake. Yet, we observed PVC-performance trends similar to 
those for clinical data, and the simulations allowed us to gain insight into the 
performance of PVC methods with the advantage of known (simulated) truth. 
In addition, the quantitative accuracy of PET can be negatively aff ected not only 
by PVE but by motion blurring due to breathing and peristaltic movement. To 
mitigate the eff ects of breathing, for example, respiration-gated PET/CT studies 
may be performed (33). Respiration-gated PET/CT is, however, not yet routinely 
applied in all centers.
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Conclusion

We investigated the performance of PVC as a function of VOI delineation, 
resolution settings, tumour-to-background ratio, and noise. We conclude that 
the investigated PVC methods may greatly improve the quantitative accuracy 
of oncologic PET studies while maintaining good precision. However, the 
performance of PVC depends heavily on the VOI method and differs considerably 
between lung and mediastinum. For most image-based PVC methods, it is critical 
that there be no more than a 2.5-mm error in the spatial alignment of the VOI 
and tumour. Some methods that directly use predefined VOIs to correct PVE are 
less dependent on correct alignment but more sensitive to volumetric accuracy. 
Furthermore, uncertainties in PET-based VOIs propagate into uncertainties 
in PVC performance. PVC can substantially improve the accuracy with which 
tumours 15–25 mm in diameter are quantified in oncologic PET studies. 
However, without highly accurate and precise VOI methods, PVC may actually 
worsen accuracy and precision. Even with contemporary scanners and modern 
reconstruction methods, quantification of tracer uptake in tumours smaller than 
15 mm in diameter is still not recommended.
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Supplemental Figure 2.1: Recovery coeffi  cients as a function of sphere diameter: uncorrected (A), IDC-
LR (B), HH-GLBL (C), HH-LCL (D), spill-over (E), and PSF-reconstruction (F) of spheres in mediastinum, 
on noise-less images. Please note: RCs of A70PEAK exceed the y-axis maximum, up to 11.8 and 8.2 in 
graphs C and D, respectively. Missing values are due to failure of VOI delineation.
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Supplemental Figure 2.2: Recovery coefficients as a function of sphere diameter: uncorrected (A), IDC-
LR (B), HH-GLBL (C), HH-LCL (D), spill-over (E), and PSF reconstruction (F) of spheres in lung, on noise-
less images. Missing values are due to failure of VOI delineation.
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Supplemental Figure 2.3: ICCs of SUVmean (A) and TLG (B) of all combinations of VOI and PVC 
method. Shown are the results of the 18F-FCH-PET cohort. Error-bars represent 95% confi dence intervals.

Supplemental Table 2.1: Summary of performed analyses and the respective datasets used.

Analysis Sub-analysis Data
Resolution kernel calibration - Phantom experiment
Volumetric accuracy
non-PSF- vs. PSF-reconstruction

- Phantom experiment

Accuracy of PVC methods Eff ect of:
− VOI method
− Volumetric accuracy
− True VOI misalignment
− Noise-level

Simulations

Precision of PVC and VOI methods - Simulation experiment and 
clinical data

Matthijs Cysouw.indd   53Matthijs Cysouw.indd   53 26-08-20   09:0326-08-20   09:03



Chapter 2

54

Su
pp

le
m

en
ta

l T
ab

le
 2

.2
: V

O
I m

et
ho

d 
fe

as
ib

ili
ty

 (%
 o

f 7
0 

le
sio

ns
 su

cc
es

sf
ul

ly
 d

el
in

ea
te

d)
 a

nd
 m

ed
ia

n 
SU

Vm
ea

n 
an

d 
TL

G
 fo

r a
ll 

co
m

bi
na

tio
ns

 o
f V

O
I a

nd
 P

V
C

 m
et

ho
d 

of
 th

e 
18

F-
FD

G
-P

ET
 co

ho
rt

. *
nu

m
be

rs
 in

 p
ar

en
th

es
es

 re
pr

es
en

t I
Q

R.

Sc
an

 1
Sc

an
 2

VO
I

PV
C

fe
as

ib
ili

ty
 (%

 o
f 7

0)
M

ed
ia

n 
SU

Vm
ea

n*
M

ed
ia

n 
TL

G
*

fe
as

ib
ili

ty
 (%

 o
f 7

0)
M

ed
ia

n 
SU

Vm
ea

n*
M

ed
ia

n 
TL

G
*

42
M

A
X

U
nc

or
re

ct
ed

81
.4

6.
2 

(3
.5

)
41

.8
 (2

11
.2

)
81

.4
5.

9 
(3

.9
)

42
.1

 (2
34

.2
)

ID
C

-L
R

8.
2 

(6
.2

)
57

.6
 (2

45
.8

)
7.

7 
(5

.9
)

54
.6

 (2
64

.9
)

H
H

-G
LB

L
9.

1 
(8

)
65

.3
 (3

04
.5

)
9.

4 
(7

.2
)

73
.6

 (3
10

.6
)

H
H

-L
C

L
8.

8 
(6

)
63

.8
 (2

64
)

8.
5 

(6
.6

)
61

.6
 (2

77
.6

)
Sp

ill
-o

ve
r

9.
2 

(7
)

67
.1

 (2
69

.2
)

9.
3 

(7
.2

)
64

.8
 (2

82
.8

)
PS

F
92

.9
7.

4 
(3

.9
)

36
.4

 (2
25

.1
)

88
.6

7.
3 

(4
.6

)
37

.9
 (2

15
)

50
M

A
X

U
nc

or
re

ct
ed

94
.3

6.
8 

(3
.5

)
28

.4
 (1

65
.8

)
84

.3
6.

3 
(4

.4
)

27
.8

 (1
56

.4
)

ID
C

-L
R

9.
5 

(7
)

44
 (1

94
.7

)
8.

7 
(6

.7
)

38
.6

 (1
93

.6
)

H
H

-G
LB

L
11

.2
 (9

.6
)

60
.5

 (2
42

.6
)

12
.2

 (1
1.

4)
60

.8
 (2

54
.7

)
H

H
-L

C
L

10
.5

 (7
.8

)
50

.5
 (2

24
.8

)
10

.5
 (8

.2
)

47
 (2

17
.2

)
Sp

ill
-o

ve
r

10
.1

 (7
.1

)
46

.9
 (2

10
.8

)
9.

9 
(7

.5
)

42
.1

 (2
14

.7
)

PS
F

97
.1

8.
1 

(4
.6

)
21

.4
 (1

45
.6

)
91

.4
7.

9 
(5

.4
)

18
.6

 (1
12

.7
)

A
42

M
A

X
U

nc
or

re
ct

ed
94

.3
6.

7 
(3

.5
)

18
.9

 (1
31

.2
)

91
.4

6.
4 

(4
.1

)
18

.9
 (7

7.
5)

ID
C

-L
R

9.
9 

(6
.4

)
30

.4
 (1

61
.8

)
9.

1 
(5

.4
)

29
.5

 (9
3.

7)
H

H
-G

LB
L

13
.4

 (8
.1

)
54

.5
 (2

06
.5

)
13

.1
 (6

.7
)

43
.4

 (1
85

.8
)

H
H

-L
C

L
11

 (6
.9

)
35

.9
 (1

81
.9

)
11

.3
 (6

.2
)

34
 (1

18
.1

)
Sp

ill
-o

ve
r

10
.1

 (6
.3

)
29

.9
 (1

75
.1

)
9.

5 
(5

.6
)

29
.1

 (9
9.

6)
PS

F
97

.1
8.

1 
(4

.3
)

17
.7

 (1
09

)
95

.7
7.

8 
(5

)
19

.5
 (5

4.
3)

A
50

M
A

X
U

nc
or

re
ct

ed
97

.1
7.

4 
(3

.8
)

13
.4

 (5
9.

8)
91

.4
7 

(4
.4

)
13

.9
 (3

7.
8)

ID
C

-L
R

10
.3

 (6
.1

)
19

.9
 (7

1)
9.

4 
(5

.3
)

19
 (4

3.
7)

H
H

-G
LB

L
17

.6
 (1

0.
7)

41
 (1

64
.5

)
19

.5
 (1

2.
7)

40
.5

 (1
24

.5
)

H
H

-L
C

L
14

 (8
.9

)
30

.1
 (1

00
.6

)
15

.2
 (8

.1
)

30
.2

 (7
1.

9)
Sp

ill
-o

ve
r

10
.1

 (5
.7

)
19

.3
 (7

5.
1)

10
.3

 (5
.7

)
19

.7
 (4

7.
9)

PS
F

10
0.

0
9 

(4
.7

)
12

.4
 (3

4.
2)

94
.3

8.
8 

(5
.3

)
13

.7
 (3

1.
6)

Matthijs Cysouw.indd   54Matthijs Cysouw.indd   54 26-08-20   09:0326-08-20   09:03



Accuracy and Precision of PVC

55

2

A
50

PE
A

K
U

nc
or

re
ct

ed
90

.0
6.

3 
(3

.8
)

24
.8

 (1
31

.3
)

88
.6

6 
(4

.1
)

24
.8

 (1
16

.7
)

ID
C

-L
R

9 
(5

.3
)

36
.8

 (1
62

)
8.

1 
(5

)
37

.4
 (1

29
.5

)
H

H
-G

LB
L

11
.1

 (6
.4

)
50

.1
 (2

02
.6

)
11

.1
 (6

.5
)

50
.5

 (2
01

.4
)

H
H

-L
C

L
9.

4 
(6

.6
)

43
.1

 (1
88

.3
)

9.
3 

(6
)

38
.9

 (1
73

.8
)

Sp
ill

-o
ve

r
8.

9 
(5

.6
)

38
.7

 (1
81

.8
)

8.
8 

(5
.5

)
38

.9
 (1

61
.6

)
PS

F
97

.1
7.

3 
(4

.1
)

28
.3

 (1
66

.1
)

95
.7

7.
1 

(4
.7

)
27

.3
 (1

20
)

A
70

PE
A

K
U

nc
or

re
ct

ed
97

.1
7.

3 
(4

.2
)

14
.8

 (3
4.

9)
91

.4
7.

1 
(4

.6
)

13
.2

 (2
5.

4)
ID

C
-L

R
9.

9 
(5

.8
)

21
.5

 (4
2.

4)
9.

5 
(5

.4
)

17
.8

 (2
9.

3)
H

H
-G

LB
L

20
.5

 (1
2.

9)
37

.5
 (1

13
.6

)
21

.3
 (1

3.
2)

40
.6

 (8
4.

8)
H

H
-L

C
L

14
.6

 (8
.8

)
30

.8
 (7

8.
7)

14
.7

 (8
.7

)
26

.8
 (5

1)
Sp

ill
-o

ve
r

10
 (5

.6
)

21
.3

 (4
8.

8)
9.

8 
(5

.8
)

18
.1

 (3
3.

6)
PS

F
10

0.
0

8.
2 

(5
.2

)
17

.2
 (3

8.
7)

95
.7

8.
2 

(5
.6

)
13

.1
 (2

5.
4)

RT
L

U
nc

or
re

ct
ed

88
.6

6 
(3

.6
)

36
.1

 (1
80

.8
)

90
.0

5.
7 

(4
.2

)
35

.4
 (1

89
.2

)
ID

C
-L

R
8.

4 
(6

)
53

 (2
06

.3
)

7.
8 

(5
.3

)
50

.8
 (2

06
.8

)
H

H
-G

LB
L

8.
9 

(6
.3

)
63

.7
 (2

48
)

8.
8 

(6
.9

)
64

.7
 (2

65
.9

)
H

H
-L

C
L

8.
9 

(6
.3

)
61

.5
 (2

43
.7

)
8.

1 
(7

.2
)

61
.2

 (2
40

.2
)

Sp
ill

-o
ve

r
9.

6 
(6

.4
)

60
.8

 (2
34

.1
)

8.
6 

(6
.2

)
60

.3
 (2

50
.8

)
PS

F
97

.1
7.

7 
(4

.1
)

31
.2

 (1
60

.7
)

94
.3

7.
4 

(4
.7

)
25

.3
 (1

42
.4

)

Matthijs Cysouw.indd   55Matthijs Cysouw.indd   55 26-08-20   09:0326-08-20   09:03



Chapter 2

56

Su
pp

le
m

en
ta

l T
ab

le
 2

.3
: V

O
I m

et
ho

d 
fe

as
ib

ili
ty

 (%
 o

f 6
7 

le
sio

ns
 su

cc
es

sf
ul

ly
 d

el
in

ea
te

d 
 a

nd
 m

ed
ia

n 
SU

Vm
ea

n 
an

d 
TL

G
 fo

r a
ll 

co
m

bi
na

tio
ns

 o
f V

O
I a

nd
 P

V
C

 m
et

ho
d 

of
 th

e 
18

F-
FC

H
-P

ET
 co

ho
rt

. *
nu

m
be

rs
 in

 p
ar

en
th

es
es

 re
pr

es
en

t I
Q

R. Sc
an

 1
Sc

an
 2

V
O

I
PV

C
fe

as
ib

ili
ty

 (%
 o

f 6
7)

M
ed

ia
n 

SU
Vm

ea
n*

M
ed

ia
n 

TL
G

*
fe

as
ib

ili
ty

 (%
 o

f 6
7)

M
ed

ia
n 

SU
Vm

ea
n*

M
ed

ia
n 

TL
G

*

42
M

A
X

U
nc

or
re

ct
ed

74
.6

6.
4 

(3
.4

)
52

.6
 (9

2.
7)

79
.1

6.
6 

(3
.9

)
54

.2
 (9

0)
ID

C
-L

R
8.

5 
(4

.8
)

70
.9

 (1
09

.5
)

9.
2 

(5
.5

)
73

.2
 (1

08
.7

)
H

H
-G

LB
L

10
.4

 (4
.6

)
71

.6
 (1

27
.5

)
11

.2
 (5

.9
)

92
.5

 (1
50

.9
)

H
H

-L
C

L
9 

(5
.4

)
76

.8
 (1

24
.9

)
9.

7 
(5

.6
)

86
.7

 (1
31

.5
)

Sp
ill

-o
ve

r
9.

3 
(5

.1
)

78
 (1

20
.8

)
9.

8 
(6

)
83

.2
 (1

26
.8

)
PS

F
84

.3
7.

7 
(4

.6
)

55
.7

 (8
7.

7)
80

.6
7.

4 
(4

.5
)

50
.1

 (7
0.

7)
50

M
A

X
U

nc
or

re
ct

ed
92

.5
6.

4 
(4

)
43

.6
 (7

3.
6)

89
.6

6.
4 

(3
.7

)
45

.2
 (5

6.
6)

ID
C

-L
R

9.
1 

(5
.9

)
62

.5
 (9

5.
8)

9.
3 

(6
)

60
.1

 (7
1.

7)
H

H
-G

LB
L

13
.8

 (8
.3

)
77

.3
 (1

35
.3

)
14

.2
 (1

0.
3)

82
 (1

34
.1

)
H

H
-L

C
L

10
.7

 (7
)

73
.6

 (1
13

.8
)

11
.1

 (8
.3

)
77

.1
 (9

5.
3)

Sp
ill

-o
ve

r
9.

8 
(6

)
66

.3
 (1

06
.7

)
9.

8 
(7

)
65

.4
 (8

2.
4)

PS
F

94
.3

7.
7 

(4
.6

)
40

 (6
6.

6)
92

.5
7.

6 
(5

.9
)

39
.6

 (5
1.

1)
A

42
M

A
X

U
nc

or
re

ct
ed

95
.5

6.
5 

(4
)

25
.8

 (5
1.

4)
95

.5
6.

3 
(4

.2
)

27
.5

 (5
1.

4)
ID

C
-L

R
9.

3 
(5

.5
)

33
.6

 (6
6)

9.
2 

(6
.2

)
35

.4
 (6

6.
9)

H
H

-G
LB

L
13

.5
 (7

.1
)

60
.7

 (1
04

.6
)

14
.3

 (9
.4

)
67

.4
 (1

07
)

H
H

-L
C

L
11

.2
 (6

.8
)

43
 (8

3.
5)

11
.2

 (7
.2

)
47

.9
 (8

1.
2)

Sp
ill

-o
ve

r
9.

3 
(5

.9
)

35
.6

 (7
0.

6)
9.

2 
(6

)
38

.2
 (6

8.
3)

PS
F

95
.7

7.
9 

(4
.8

)
27

.1
 (5

9.
9)

95
.5

7.
6 

(5
.5

)
28

.2
 (4

8.
5)

A
50

M
A

X
U

nc
or

re
ct

ed
95

.5
7.

2 
(4

.4
)

17
.7

 (3
5.

5)
97

.0
6.

8 
(4

.6
)

19
.3

 (3
1.

3)
ID

C
-L

R
9.

2 
(5

.5
)

21
.4

 (4
2.

8)
9.

3 
(6

.4
)

25
.5

 (3
9.

5)
H

H
-G

LB
L

18
.6

 (1
0.

4)
49

.6
 (7

4.
7)

20
.6

 (1
1.

1)
45

.5
 (7

1.
2)

H
H

-L
C

L
14

.2
 (7

.2
)

32
.2

 (6
3.

4)
14

.4
 (8

.4
)

37
.2

 (6
2.

9)
Sp

ill
-o

ve
r

9.
3 

(5
.4

)
22

.5
 (4

6.
5)

9.
3 

(6
.4

)
25

.4
 (4

0.
9)

PS
F

95
.7

8.
9 

(5
.1

)
19

 (3
0.

4)
97

.0
8.

2 
(6

)
19

.5
 (3

3.
1)

Matthijs Cysouw.indd   56Matthijs Cysouw.indd   56 26-08-20   09:0326-08-20   09:03



Accuracy and Precision of PVC

57

2

A
50

PE
A

K
U

nc
or

re
ct

ed
94

.0
6 

(3
.8

)
35

.4
 (6

1.
4)

94
.0

5.
9 

(3
.8

)
35

.5
 (5

8.
7)

ID
C

-L
R

8.
4 

(5
.1

)
47

.9
 (8

3.
6)

8.
3 

(5
.3

)
48

 (7
6.

7)
H

H
-G

LB
L

11
.3

 (6
.3

)
68

 (1
16

.5
)

12
.7

 (6
)

73
.3

 (1
10

.2
)

H
H

-L
C

L
9.

7 
(5

.4
)

59
.7

 (9
2.

9)
9.

6 
(6

.3
)

60
.1

 (8
5.

2)
Sp

ill
-o

ve
r

8.
8 

(5
.3

)
52

.3
 (8

5.
1)

8.
8 

(5
.5

)
52

.2
 (8

0.
7)

PS
F

95
.7

7.
2 

(4
.7

)
41

.6
 (6

9.
9)

95
.5

7.
1 

(4
.6

)
33

 (6
0)

A
70

PE
A

K
U

nc
or

re
ct

ed
97

.0
7.

4 
(4

.2
)

15
.1

 (2
6)

98
.5

7.
3 

(4
.7

)
14

.4
 (2

6.
5)

ID
C

-L
R

9.
6 

(5
.1

)
20

 (3
3.

8)
9.

3 
(5

.7
)

19
.8

 (3
5.

8)
H

H
-G

LB
L

21
.9

 (1
0.

9)
47

 (7
5)

24
.5

 (1
1.

1)
41

.2
 (6

2.
9)

H
H

-L
C

L
14

.9
 (8

.6
)

33
.4

 (5
1.

6)
14

.7
 (9

.4
)

32
.3

 (5
8.

9)
Sp

ill
-o

ve
r

10
.3

 (5
.8

)
20

.9
 (3

4.
6)

9.
5 

(6
.6

)
19

.9
 (3

7.
4)

PS
F

97
.1

8.
9 

(5
.1

)
5.

4 
(3

0.
8)

98
.5

8.
5 

(5
.4

)
17

.4
 (2

8.
5)

RT
L

U
nc

or
re

ct
ed

91
.0

6.
1 

(3
.5

)
43

.6
 (6

7.
4)

94
.0

6 
(3

.6
)

44
.8

 (6
4.

2)
ID

C
-L

R
8.

4 
(5

)
58

.1
 (8

4.
7)

8.
3 

(5
.4

)
60

.9
 (8

1.
1)

H
H

-G
LB

L
11

.1
 (7

.4
)

74
.4

 (1
23

.3
)

12
 (7

.8
)

79
.1

 (1
10

.4
)

H
H

-L
C

L
11

.3
 (6

.4
)

72
.7

 (1
27

.9
)

11
 (7

.5
)

79
.6

 (1
10

.4
)

Sp
ill

-o
ve

r
9.

4 
(5

.1
)

68
.3

 (9
4)

9.
5 

(5
.9

)
70

.4
 (9

3.
2)

PS
F

94
.3

7.
3 

(4
.5

)
46

.3
 (7

3.
9)

95
.5

7.
1 

(5
)

45
.3

 (6
2.

6)

Su
pp

le
m

en
ta

l T
ab

le
 2

.4
: I

C
C

s o
f V

O
I v

ol
um

es
 g

en
er

at
ed

 o
n 

no
n-

PS
F-

 a
nd

 P
SF

-r
ec

on
st

ru
ct

ed
 im

ag
es

 in
 th

e 
18

F-
FD

G
-P

ET
 co

ho
rt

. 9
5%

-C
I i

n 
pa

re
nt

he
se

s.

42
M

A
X

50
M

A
X

A
42

M
A

X
A

50
M

A
X

A
50

PE
A

K
A

70
PE

A
K

RT
L

N
on

-P
SF

0.
98

(0
.9

7-
0.

99
)

0.
96

(0
.9

3-
0.

97
)

0.
92

(0
.8

7-
0.

95
)

0.
96

(0
.9

4-
0.

98
)

0.
94

(0
.9

0-
0.

96
)

0.
95

(0
.9

2-
0.

97
)

0.
96

(0
.9

4-
0.

98
)

PS
F

0.
97

(0
.9

4-
0.

98
)

0.
95

(0
.9

2-
0.

97
)

0.
95

(0
.9

1-
0.

97
)

0.
97

(0
.9

5-
0.

98
)

0.
88

(0
.8

1-
0.

93
)

0.
89

(0
.8

2-
0.

93
)

0.
93

(0
.8

8-
0.

95
)

Matthijs Cysouw.indd   57Matthijs Cysouw.indd   57 26-08-20   09:0326-08-20   09:03



Matthijs Cysouw.indd   58Matthijs Cysouw.indd   58 26-08-20   09:0326-08-20   09:03



Chapter 3
Partial-Volume Correction in 

Dynamic PET-CT: Eff ect on Tumor 
Kinetic Parameter Estimation and 

Validation of Simplifi ed Metrics

M.C.F. Cysouw, S.V.S. Golla, V. Frings, E.F. Smit, O.S. Hoekstra, G.M. Kramer, 
R. Boellaard, and on behalf of the QuIC-ConCePT Consortium

EJNMMI Res. 2019 Feb 4;9(1):12.
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Abstract

Background: Partial-volume effects generally result in an underestimation of 
tumour tracer uptake on PET-CT for small lesions, necessitating partial-volume 
correction (PVC) for accurate quantification. However, investigation of PVC in 
dynamic oncological PET studies to date is scarce. The aim of this study was to 
investigate PVC’s impact on tumour kinetic parameter estimation from dynamic 
PET-CT acquisitions and subsequent validation of simplified semi-quantitative 
metrics. Ten patients with EGFR-mutated non-small cell lung cancer underwent 
dynamic 18F-fluorothymidine PET-CT before, 7 days after, and 28 days after 
commencing treatment with a tyrosine kinase inhibitor. Parametric PVC was 
applied using iterative deconvolution without and with highly constrained 
backprojection (HYPR) denoising, respectively. Using an image-derived input 
function with venous parent plasma calibration, we estimated full kinetic 
parameters VT, K1, and k3/k4 (BPND) using a reversible two-tissue compartment 
model, and simplified metrics (SUV and tumour-to-blood ratio) at 50–60 min 
post-injection.
Results: PVC had a non-linear effect on measured activity concentrations per 
timeframe. PVC significantly changed each kinetic parameter, with a median 
increase in VT of 11.8% (up to 25.1%) and 10.8% (up to 21.7%) without and with 
HYPR, respectively. Relative changes in kinetic parameter estimates vs. simplified 
metrics after applying PVC were poorly correlated (correlations 0.36–0.62; 
p < 0.01). PVC increased correlations between simplified metrics and VT from 0.82 
and 0.81 (p < 0.01) to 0.90 and 0.88 (p < 0.01) for SUV and TBR, respectively, albeit 
non-significantly. PVC also increased correlations between treatment-induced 
changes in simplified metrics vs. VT at 7 (SUV) and 28 (SUV and TBR) days after 
treatment start non-significantly. Delineation on partial-volume corrected PET 
images resulted in a median decrease in metabolic tumour volume of 14.3% (IQR 
− 22.1 to − 7.5%), and increased the effect of PVC on kinetic parameter estimates.
Conclusion: PVC has a significant impact on tumour kinetic parameter 
estimation from dynamic PET-CT data, which differs from its effect on simplified 
metrics. However, it affected validation of these simplified metrics both as single 
measurements and as biomarkers of treatment response only to a small extent. 
Future dynamic PET studies should preferably incorporate PVC.
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3

Background

In clinical oncology positron-emission tomography (PET) is a valuable tool 
allowing guidance of treatment on a per-patient basis (1). Clinical decision-
making using PET-CT is commonly limited to visual analysis, where local disease 
and the presence of nodal or distant metastases is evaluated (2,3). However, since 
PET is an inherently quantitative technique, it may also be used for quantitative 
assessment of tumour metabolic, proliferative, or drug targeting characteristics 
(1,4,5).

For quantitative PET-CT to be of practical clinical utility, metrics need 
to be easily extracted from static whole-body PET-CT images as performed in 
routine clinical practice. To this end, standardized uptake values (SUV) are 
typically used as simplifi ed semi-quantitative measures of tracer uptake (6). 
However, pharmacokinetic modeling using dynamic PET-CT acquisitions with 
arterial or venous blood sampling is an essential fi rst step to technically validate 
the clinical use of these simplifi ed metrics as biomarkers of, e.g., response to 
treatment (4,5,7,8).

As is well known, quantifi cation of tracer distribution on PET-CT scans is 
hampered by several sources of error. Amongst these are attenuation, Compton 
scatter, random coincidences, and decay, all accounted for by contemporary 
image reconstruction algorithms. However, due to the inherently limited spatial 
resolution of PET-CT, acquired images still suff er from partial-volume eff ects 
(9). Partial-volume eff ects lead to spill-in and spill-out of measured activity 
distributions, generally resulting in net underestimations of tracer uptake, the 
extent of which depend on tumour size, shape, and contrast (9). Hence, partial-
volume correction (PVC) is needed for accurate quantifi cation, especially for 
small and/or heterogeneous lesions (9-12).

In oncological studies, PVC has been predominantly applied to static 
PET-CT images (in contrast with brain (13-22) or cardiac (23,24) PET imaging). 
However, in dynamic acquisitions the activity spill-over in and from tumours 
due to partial-volume eff ects may vary over time. Th e impact of PVC on tumour 
kinetic parameter estimates could therefore diff er from its impact on simplifi ed 
measures of uptake. Consequently, it may not only aff ect absolute quantitative 
reads, but also validation of simplifi ed parameters for clinical implementation.

Th e present study aims to evaluate the impact of frame-wise parametric 
PVC in dynamic PET-CT studies on tumour kinetic micro- and macroparameter 
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estimations, and evaluate the correlation between its effect on kinetic parameters 
and simplified metrics. Secondly, PVC’s effect on technical validation of simplified 
18F-fluorothymidine (18F-FLT) PET-CT metrics as biomarkers of response to 
treatment of non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors 
(TKI) will be investigated.

Methods and Materials

Patients
The present study is a retrospective analysis of a prospective cohort study (5). 
Patients with metastatic epidermal growth factor receptor (EGFR) mutated 
NSCLC scheduled for treatment with an EGFR-TKI were included. All patients 
were scanned with 18F-FLT PET-CT on three occasions: at baseline, 7 days after, 
and 28 days after commencing treatment with a TKI (gefitinib or erlotinib), 
respectively. The Amsterdam UMC (location VUmc) institutional review board 
approved this study (Dutch Trial Register, NTR3557) and all included patients 
provided informed consent for study participation.

PET-CT image acquisition and reconstruction
The EARL-compliant imaging protocol was described previously (5). All scans 
were acquired on a Philips Gemini TF-64 PET-CT scanner (Philips Healthcare). 
Patients were instructed not to eat 4 hours prior to each scan. A thoracic field of 
view was placed such that it contained the primary tumour, using a transmission 
scan for positioning. A 60min dynamic PET acquisition started directly after 
injection of 370MBq 18F-FLT in 5mL saline (flushed with 20mL saline). Afterwards, 
a low-dose CT was acquired for attenuation correction (120kV, 50mAs). The PET 
emission scan was binned into 36 frames with varying durations (1x10, 8x5, 4x10, 
3x20, 5x30, 5x60, 4x150, 4x300 and 2x600 seconds). Images were reconstructed 
with a time-of-flight 3D row action maximum likelihood algorithm (3 iterations, 
33 subsets), as provided by the vendor, with corrections for Compton scatter, 
random coincidences, attenuation, and decay. PET image dimensions were 
144x144x45 voxels with voxel dimensions of 4x4x4 mm. Venous blood samples 
were drawn at 5, 10, 20, 30, 40, and 60min post-injection of 18F-FLT. From each 
sample, the whole blood and plasma activity concentrations and parent fractions 
were measured. 
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Image processing
For PVC we applied a post-reconstruction iterative deconvolution algorithm 
(Lucy-Richardson [LR]) (25). Th is parametric (voxel-wise) method aims to deblur 
images by iteratively correcting the activity spill-over, only assuming approximate 
knowledge of the PET-CT scanner’s spatial resolution. We set the full-width at 
half-maximum (FWHM) of a spatially invariant Gaussian point spread function 
at 7.5mm, as previously calibrated in phantom experiment for the used scanner 
(11), with 10 iterations allowing for suffi  cient convergence. PVC was applied to 
each image frame. As iterative deconvolution is known result in lower signal-
to-noise ratios (SNR), in order to evaluate eff ect of image noise we additionally 
applied a highly constrained backprojection (HYPR) algorithm shown to improve 
SNR for dynamic PET studies (26,27). Iterative deconvolution was applied without 
and with HYPR denoising (denotated as LR and LR+HYPR, respectively). HYPR 
settings were optimized, comparing a single composite image (HYPRsingle) and 
several moving frame composite images (HYPRmoving), using a Gaussian 7.5mm 
FWHM low-pass fi lter (F). Th e HYPR implementation can be described as follows 
(21,26):

       Eq.1

       Eq.2

        Eq.3

where IH  is the HYPR image; Ic is the composite image, which is a duration 
weighted summed average of either all frames in the dynamic image (HYPRsingle) 
or a set of frames around the to be denoised frame (HYPRmoving), with ∆ti as the 
individual frame duration; Io is the original dynamic frame being denoised; and Iw
is the weighting image computed as the ratio between the spatially fi ltered original 
frame and spatially fi ltered composite image.

Kinetic modeling and semi-quantitative analysis
Lesions were delineated using in-house developed soft ware (VU University 
Medical Center) on a volume-of-interest (VOI) basis (28). Tumour delineation 
was performed on a summation of the last 3 PET frames of the original (non-
PVC) image. In short, a rough manual delineation was performed, warranting 
all peak 18F-FLT-avid tumour activity was contained in the VOI and no non-
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tumour structures with high uptake were included. Second, this VOI was shrunk 
to an isocontour based on 50% of the peak value (mean activity in a 12mm 
sphere positioned to provide the highest uptake value), with correction for local 
background activity. VOIs were then projected onto each frame of both the 
original and partial-volume corrected PET images to acquire time activity curves 
from both the datasets (without and with PVC). To explore the effect of PVC on 
tumour delineation, tumours were also delineated on the LR+HYPR images using 
the same approach. Metabolically active tumour volume (MATV) was defined as 
the sum of voxel volumes within a VOI. 

A 2x2 voxel (8x8 mm) region was placed centrally in ascending aorta on 
5 adjacent slices to acquire an image-derived input function (IDIF), aiming to 
avoid partial-volume effects. Parent plasma input functions were generated 
by calibrating IDIFs using the activity concentrations measured in the venous 
blood samples, and correcting for metabolites and plasma-to-blood ratio. Full 
quantitative parameters derived from kinetic modeling and simplified measures 
were extracted using in-house developed software in MATLAB. We used a 
reversible two-tissue model with blood volume parameter, which has been 
identified as the optimal compartment model for 18F-FLT by Frings et al. (5). 
Pharmacokinetic parameters rate of influx of the tracer from blood to tissue (K1), 
volume of distribution (VT), and binding potential (BPND) of each lesion were 
derived using non-linear regression, where:	

								        										          Eq.4

								        											            Eq.5
VT served as the preferred reference parameter for validation of simplified metrics 
for 18F-FLT (5). The simplified metrics, mean SUV and tumour-to-blood ratio 
(TBR; parent plasma), were derived at a 50-60min post-injection scan interval, 
where: 

					     					     Eq.6 

					     			   Eq.7
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Statistical analysis
Data were described as mean with standard deviation (SD), median with 
interquartile range (IQR), minimum and maximum. Correlations between 
pairwise data were investigated using Spearman correlation. To assess technical 
validation of simplifi ed metrics, we assessed correlations between both single 
measurements of kinetic parameter estimations and simplifi ed metrics as well 
as correlations between relative changes in these parameters during treatment. 
Diff erences were tested using the Wilcoxon signed rank test (two related) or the 
Friedman test (multiple related), with signifi cance level p<0.05. SPSS Statistics v22 
(IBM) was used for statistical analyses.

Results

Patients
Ten patients with EGFR-mutated NSCLC were included, consisting of 4 men and 
6 women with a mean age of 64±8 years. Treatment consisted of gefi tinib and 
erlotinib in 7 and 3 patients, respectively. In one patient, the baseline scan was 
not evaluable due to scanner failure (scan at 7 and 28 days could still be used for 
lesion-based analyses). Another patient had no visible lesions at PET-CT. Twenty-
four suspected lesions were detected on 18F-FLT PET-CT (5).

HYPR optimization
A single composite (HYPRsingle) provided most SNR improvement (Supplemental 
Figure 1, available at https://ejnmmires.springeropen.com). However, it eliminated 
the temporal dynamics of PVC (Figure 1). A HYPRmoving setting with a composite 
image consisting of ±3 frames relative to the denoised frame provided an adequate 
trade-off  between SNR improvement and partial-volume correction and was 
hence used in further analyses.

Image-derived input functions
We verifi ed the assumption that partial-volume eff ects do not aff ect ascending 
aorta-derived IDIFs (based on the 2x2 voxel VOI approach used that minimized 
or avoided partial volume eff ects). First, PVC introduced only small relative 
diff erences in IDIF area-under-the-curve (AUC; Table 3.1), which were mitigated 
by HYPRmoving and reduced to 0% by HYPRsingle (the latter providing most noise 
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mitigation). As a consequence, IDIF AUCs of uncorrected and PVC images 
were highly correlated (Supplemental Table 1). Similar results were observed for 
parent plasma calibrated input curves. Also, kinetic parameter estimates derived 
from uncorrected images using uncorrected vs. PVC input functions were very 
similar (Supplemental Table 2); small but significant differences in VT and K1 were 
observed for LR and LR+HYPRmoving IDIFs, but not when HYPRsingle was applied. 
Therefore, we continued our analyses using the parent plasma calibrated input 
functions derived from uncorrected PET images.

Figure 3.1: Time-activity curves of relative change in activity concentrations (AC) after PVC using several 
HYPR settings. Frames of 0-4 minutes (A) and 4-60 minutes (B) post-injection. Results of a typical 
mediastinal lymph node metastasis are shown. Note the temporality of PVE with a spill in at early 
timeframes. Corresponding original PET images (C) with the lesion volume-of-interest in red demonstrate 
blood pool activity near the VOI and increasing tumor-to-background contrast over time.
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Table 3.1: Median relative diff erences (% with IQR) in IDIF AUC of PVC-images compared to uncorrected 
images.

Entire curve Peak only (2.5 min)
Image-derived PP calibrated Image-derived PP calibrated

LR -0.8 (-1.2 to 0.6) -0.7 (-1.3 to -0.2)* -2.0 (-3.4 to -0.9)* -1.8 (-3.7 to -0.9)*

LR+HYPRmoving -0.7 (-1.2 to 0.6) -0.6 (-1.1 to -0.1)* -2.2 (-3.2 to -0.5)* -2.0 (-3.3 to -1.1)*

LR+HYPRsingle -0.8 (-1.2 to 0.6) 0.0 (0.0 to 0.0) -0.9 (-1.2 to 0.7) 0.0 (-0.1 to 0.1)

*p<0.05. PP= parent plasma

Table 3.2: Relative changes (%) in kinetic parameter estimates and simplifi ed metrics aft er PVC.

Mean Median SD IQR Min Max p-value
LR

VT 11.8 13.2 7.1 6.0-16.4 -15.2 25.1 <0.001
K1 6.6 6.8 7.5 2.6-11.1 -16.7 32.3 <0.001
BP 6.1 6.0 8.8 2.1-10.7 -21.9 34.6 <0.001
SUV 13.1 13.2 6.1 7.3-17.1 3.3 28.4 <0.001
TBR 13.1 13.2 6.1 7.3-17.1 3.3 28.3 <0.001

LR+HYPR
VT 10.8 11.7 6.1 6.1-15.5 -13.6 21.7 <0.001
K1 5.7 4.3 6.9 2.3-10.0 -14.9 25.1 <0.001
BP 3.7 4.4 6.4 0.1-7.1 -20.6 19.8 <0.001
SUV 12.6 12.9 5.8 7.0-16.7 2.1 24.7 <0.001
TBR 12.8 12.9 6.0 7.0-17.0 3.1 27.3 <0.001

Table 3.3: Correlation (Spearman, with 95% confi dence intervals) between PVC-induced relative changes 
in kinetic parameter estimates and simplifi ed metrics.

VT K1 BP

LR

SUV 0.58* (0.38-0.73) 0.61* (0.42-0.75) 0.51* (0.30-0.68)

TBR 0.58* (0.38-0.73) 0.61* (0.42-0.75) 0.51* (0.30-0.68)

LR+HYPR

SUV 0.62* (0.43-0.75) 0.47* (0.24-0.65) 0.36* (0.11-0.56)

TBR 0.62* (0.43-0.75) 0.48* (0.26-0.66) 0.36* (0.12-0.57)

*p<0.01

Kinetic parameter estimates and simplifi ed metrics
Relative diff erences between uncorrected and PVC data for K1, VT, BPND, SUV, 
and TBR are presented in Table 3.2. Both LR and LR+HYPRmoving signifi cantly 
(p<0.001) increased each parameter. Overall, LR provided larger changes in 
parameters than LR+HYPRmoving for both kinetic parameters and simplifi ed 
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metrics. Regarding kinetic parameters, largest changes were seen for VT, which 
was increased by median 13.2% up to 25.1% using LR. Changes in K1 and BPND 

were very similar (median 6.8% and 6.0%, respectively, using LR). Changes in 
SUV and TBR after PVC were almost identical, as expected, and were comparable 
to changes in VT. LR and LR+HYPRmoving decreased VT, K1 and BPND in some 
lesions, but only provided increases for SUV and TBR. Changes in VT, K1 and 
BPND after PVC had low but significant correlations with changes in SUV and TBR 
after PVC (Table 3.3); highest correlations were seen between relative changes in 
VT and changes in SUV and TBR (up to 0.62).

We plotted relative changes in VT, K1, BPND, and SUV after PVC as a 
function of lesion (original) MATV to provide insight into effect of lesion size 
on PVC performance (Figure 3.2). For LR, the correlations between MATV and 
relative change in VT, K1, BPND, SUV, and TBR were -0.39, -0.47, -0.36, -0.80, and 
-0.80, respectively (p<0.01). For LR+HYPR, these correlations were -0.43, -0.34, 
-0.24, -0.81, -0.80, respectively (p<0.01, except for BPND; p=0.07). 	 Compared 
to tumour delineation on uncorrected images, delineation on partial-volume 
corrected images (LR+HYPRmoving) provided a median relative decrease in MATV 
of 14.3%, (IQR -22.1 to -7.5, minimum -69.2, maximum 5.3; Figure 3.3). Also, 
the effect of PVC on kinetic parameters and simplified metrics was higher when 
using VOIs generated on PVC images compared to when using original VOIs 
(Supplemental Table 3). Here, largest increases after PVC were seen for VT, SUV, 
and TBR with median increases of 13.9% (IQR 7.6-18.7; max 37.8%), 15.8% (IQR 
8.4-20.4; max 31.5), and 15.8% (IQR 8.4-20.7; max 34%), respectively. 

Technical validation of simplified metrics
PVC increased the correlations between SUV and VT and K1, but not for BPND 
(Table 3.4). PVC increased the correlations between TBR and VT, K1, and BPND 
(Table 3.4). Largest increases in these correlations were seen between VT and SUV 
(0.82 to 0.90; Figure 3.4). However, confidence intervals of these correlations 
overlapped and therefore were not statistically significant.

During treatment, VT, BPND, SUV, and TBR significantly decreased, while 
K1 did not change (as was also observed in Frings et al. (5)), regardless of PVC 
(p-values in Supplemental Table 4). At 7 and 28 days after starting treatment, 
original MATV demonstrated a median decrease of 16.1% (IQR -38.9 to -0.6), 
and 17.6% (IQR -58.3 to 4.3). We correlated treatment-induced relative changes 
in kinetic parameters to treatment-induced relative changes in simplified metrics 
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Figure 3.2: Relative change (%) in quantitative parameters aft er PVC (LR) as a function of lesion MATV 
(mL) for VT (A), K1 (B), BP (C), and SUV (D). TBR is not displayed since it was virtually identical to SUV.

Table 3.4: Correlation (Spearman, with 95% confi dence intervals) between kinetic parameter estimates and 
simplifi ed metrics, with and without PVC.

VT K1 BP

Uncorrected

SUV 0.82* (0.72-0.89) 0.43* (0.19-0.62) 0.89* (0.82-0.93)

TBR 0.81* (0.69-0.88) 0.47* (0.24-0.65) 0.82* (0.72-0.89)

LR

SUV 0.90* (0.83-0.94) 0.45* (0.22-0.63) 0.89* (0.82-0.93)

TBR 0.88* (0.81-0.93) 0.48* (0.26-0.65) 0.84* (0.74-0.90)

LR+HYPR

SUV 0.90* (0.83-0.94) 0.48* (0.26-0.65) 0.89* (0.81-0.93)

TBR 0.88* (0.81-0.93) 0.51* (0.30-0.68) 0.83* (0.73-0.90)

*p<0.01
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during treatment with TKIs for the uncorrected data as well as those with PVC 
(Figure 3.5). At both 7 and 28 days after treatment start, changes in VT  and BPND 
were significantly correlated (0.79-0.98 and 0.44-0.91, respectively) with changes 
in SUV and TBR (with the exception of correlation between changes in BPND vs. 
TBR on LR images at 7 days; 0.45, p>0.05), regardless of PVC. PVC (both LR and 
LR+HYPR) did not improve correlations between treatment induced changes in 
BP and changes in SUV or TBR. PVC increased the correlation between treatment-
induced changes in SUV and VT at 7 days and 28 days (increases in correlation 
ranging 0.05-0.09, with overlapping confidence intervals). Also, PVC increased 
the correlation between treatment-induced changes in TBR with changes in VT at 
28 days, but not at 7 days, after treatment start by 0.06 for both LR and LR+HYPR, 
with overlapping confidence intervals.

0 20 40 60 80 100 120
-40

-30

-20

-10

0

10

MATV (mL)

%
di

ffe
re

nc
e

in
M

AT
V

Figure 3.3: Relative difference (%) in lesion MATV (mL) between uncorrected and PVC images (LR+HYPR) 
as function of MATV on uncorrected images. Y-axis was scaled to -40%; for one lesion of 5.8ml MATV was 
69% smaller on PVC image.

Discussion

In the present study we evaluated the impact of frame-wise parametric PVC on 
tumour kinetic parameter estimation derived from dynamic PET-CT scans and 
the resulting effect on validation of simplified metrics. PVC significantly increased 
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both tumour micro- and macrokinetic parameters, and we observed that partial-
volume eff ects varied over time due to blood pool activity and changing tumour 
contrast. Hence, the eff ect of PVC on kinetic parameter estimates was not in 
full concordance with its eff ect on simplifi ed metrics (SUV and TBR), and as a 
consequence PVC was found to aff ect the validation of SUV using VT both for 
single measurements and as biomarker of treatment response to a small extent 
(albeit non-signifi cantly). 

Application of PVC in oncologic dynamic PET-CT studies is scarce. 
Mankoff  et al. (2003) applied PVC in dynamic FDG-PET of breast cancer patients 
using a simple method with recovery coeffi  cients, assuming lesions are spherical 
with homogenous tracer distributions (29). Th ey observed that applying PVC in 
response measurements reduced changes in metabolic rate of FDG and blood fl ow 
of responding patients, reducing signifi cance of parameter changes (albeit still 
statistically signifi cant). By using this method, however, kinetic parameters were 
solely corrected for (changes in) tumour size, and no correction for spill-in from 
blood pool structures and/or heterogeneous tumour background was applied. In 
2007, Teo et al. validated the use of iterative deconvolution as an image-based 
PVC method not requiring anatomical segmentation or knowledge of lesion size, 
and suggested its potential application in kinetic modeling, which to the best of 
our knowledge has not been performed to date for oncologic PET-CT (30).
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Figure 3.4: Scatter plot of VT versus SUV, without and with PVC. For both LR and LR+HYPR, the Spearman 
correlation between VT and SUV increased from 0.82 to 0.90 aft er PVC.
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Figure 3.5: Correlation (Spearman) between changes in kinetic parameter estimates vs. simplified metrics 
during treatment with TKI, with and without PVC. Results shown are for SUV at 7 (A) and 28 (B) days, and 
for TBR at 7 (C) and 28 (D) days after treatment start.

Both tumour macroparameters VT and BPND, and microparameter K1 
significantly changed after application of PVC. This corresponds with results 
from applications of PVC in brain dynamic PET studies, where similar increases 
in kinetic parameter estimations have been observed when applying PVC in 
case of activity spill-out (19-21,31). Interestingly, the effect of PVC on kinetic 
parameter estimates was poorly (albeit significantly) correlated with its effect 
on simplified measures. As previously described(9), the effect of PVC on SUV 
of (hotspot) lesions on static PET-CT scans is straightforward: an expected net 
increase in activity, mainly dependent on lesion size (and, in lesser extent, shape 
and local contrast). This can be seen in Figure 3.2, where change in SUV after PVC 
is highly (inversely) correlated to tumour volume, whilst the kinetic parameter 
estimations are not. This illustrates that impact of PVC on tumour kinetic 
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parameter estimation is more complex, as seen in Figure 3.1 which displays the 
non-linear temporality of partial-volume eff ects for a typical mediastinal lymph 
node metastasis. Here, an early spill-in of activity due to blood pool proximity is 
noted, with increasing activity spill-out aft erwards as tumour uptake increases 
and background activity decreases. Hence, across lesions the eff ect of PVC on 
kinetic parameters may diff er depending not only on size, but as well on presence 
of proximate high activity structures, rate of tracer uptake during the scan, and 
background activity.

For quantifi cation of functional tumour characteristic on PET-CT in 
clinical practice, a simplifi ed quantitative method is necessary, obviating the need 
for complex and extended dynamic image acquisitions, need for blood sampling, 
and facilitating the possibility of whole-body acquisitions. To this end, per 
radiotracer and cancer type simplifi ed metrics needs to be technically validated 
by pharmacokinetic modeling using dynamic PET-CT (4). In the current study 
the eff ect of PVC on kinetic parameter estimates was diff erent from its eff ect on 
simplifi ed metrics, which explains why it might aff ect validation of these simplifi ed 
metrics (using VT). We observed a trend that PVC increased correspondence of 
SUV with VT in single measurements (correlations improving from 0.82 to 0.90) 
and as a biomarker of treatment response (correlations improving from 0.90 to 
0.95 at 7 days and from 0.79 to 0.88 at 28 days aft er treatment start). However, 
confi dence intervals of these correlations overlapped, which might at least partly 
be due to the sample size (inherent to this type of study), and therefore these 
diff erences are not statistically signifi cant. Th erefore, while PVC is mandated to 
acquire accurate quantitative reads, it only increases correspondence of kinetic 
parameters with simplifi ed metrics to a small extent on a cohort level. Th is 
indicates that the impact of image resolution on technical validation of simplifi ed 
metrics of 18F-FLT as biomarkers of response to TKI might be small, and that PET 
images without PVC seem non-inferior for this purpose. It should be noted that 
for response assessment to treatments that aff ect tracer kinetics and blood pool 
activity to a larger extent than TKIs and for other cancer types more aff ected by 
spill-in (eg. prostate cancer lesions with urinary tract proximity), PVC may have a 
larger impact on validation of simplifi ed metrics.

Spill-out due to PVE will result in overestimation of metabolic tumour 
volumes, which increases the underestimation of true tracer uptake since 
background activity is included (11). A parametric PVC method may therefore 
theoretically reduce inaccuracies in delineation. However, iterative deconvolution 
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has been proposed with use of VOIs defined on uncorrected images, due to the 
expected propagation of image noise after PVC (30). We evaluated the impact of 
delineation on deconvoluted images with HYPR denoising, and found not only 
substantial decreases in MATVs (Figure 3) but also an increase in PVCs effect 
on kinetic parameter estimates (Supplemental Table 3). Nonetheless, our previous 
study demonstrated that the reduction in MATV after PVC may not necessarily 
lead to more accurate definition of tumour volumes (11).

In brain PET studies, frequently a small vessel such as the carotid artery 
needs to be utilized for IDIF generation. This mandates PVC due to the small 
artery diameter (32,33). In this study on thoracic oncological PET-CTs, the 
ascending aorta, a large vessel, was used for IDIF generation. We noted that PVC 
introduced negligible differences in IDIF area-under-the-curves, and that without 
denoising this introduced small but significant differences in kinetic parameter 
estimates (Supplemental Table 2). However, since HYPR denoising using a single 
composite image (providing maximum noise reduction) appeared to completely 
mitigate this effect, the effect of PVC on these input functions seems to be based 
on PVC-induced noise-propagation. Therefore, when input functions derived 
from large blood pool structures are used, PVC is preferably avoided to evade 
noise-induced inaccuracies in kinetic parameter estimates (assuming no spillover 
from nearby high activity structures).

Iterative deconvolution algorithms are known to propagate image noise, 
which may necessitate denoising methods to be applied to preserve image 
quality. Several approaches have been proposed, such as wavelet-based denoising 
for static PET-CT and HYPR denoising for dynamic acquisitions, respectively 
(26,34). We observed that HYPR needs to be optimized for tracer kinetics using 
a moving composite image, since when applied using a single composite image 
(maximal denoising) it seems to lose the temporal dynamic course of the PVC 
(Figure 3.1). Including HYPRmoving resulted in very similar outcomes compared 
to PVC alone, and slightly mitigated the increase in kinetic parameter estimates 
after PVC. The latter may not only be attributed to reduced statistical noise, 
but also to some smoothing effects inherent to the algorithm. Also, at late time 
frames it had no effect on intratumoural COV% (Supplemental Figure 1). This 
might be explained by the high tumour contrast and high count number (due 
to the long frame duration), as Golla et al. previously demonstrated (21). The 
increase in COV% at late time frames thus seems to be a resultant of increased 
intratumoural heterogeneity by PVC itself. Therefore, in region-based non-linear 
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regression analyses the impact of PVC-induced increased image noise on kinetic 
parameter estimation seems negligible. However, it may have signifi cant impact 
when tumours are analyzed on a parametric level.

While the presence of PVE and the consequent need for PVC are well 
recognized, to date PVC has rarely been applied in oncological PET studies. Th is 
may be because to date there is no consensus on the optimal correction strategy 
and data yielded from application of PVC does not seem to have triggered routine 
clinical application (12,35). Our study now demonstrates that PVC should not 
only be performed in future regular static PET-CT studies, but in dynamic PET-
CT studies as well, also when simplifi ed quantitative metrics are validated for 
clinical applications. If not applied, small lesions should preferably be excluded 
from analyses, as recommended and performed in previous studies using a 2-3cm 
diameter cut-off  to avoid PVE (36,37). Still, our data demonstrate that lesions 
above these size thresholds are also aff ected by PVE (Figure 3.2). 

Only data from 18F-FLT PET-CT was used. However, the current dataset 
from a widely used whole body TOF PET-CT scanner allowed for both kinetic 
modeling and extraction of simplifi ed parameters per lesion, at time points used 
in clinical practice due to the long acquisition time (0-60min post-injection). Also, 
the dataset included both large and small lesions, both nearby and remote from 
large blood pool structures. Additionally, it facilitated evaluation of PVCs eff ect 
on validation of simplifi ed parameters both in single measurements and during 
systemic treatment. Since we have demonstrated the signifi cant eff ect of PVC in 
kinetic parameter estimation, future dynamic PET studies focusing on other PET-
tracers in small tumours (e.g. PSMA-ligand tracers in prostate cancer metastases) 
should apply PVC as a similar (or larger) impact of PVC may be expected. In the 
current study no correction was made for potential motion blurring eff ects, which 
is another factor possibly aff ecting accuracy of kinetic parameter estimations 
(38). Eff orts should be made to incorporate both PVC and motion correction 
methodologies simultaneously for dynamic PET studies. Also, the impact of 
PVC on parametric kinetic analyses of oncologic dynamic PET warrants further 
investigation, which will require HYPR denoising to be optimized for this purpose. 
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Conclusion

Parametric PVC using iterative deconvolution had a significant impact on 
tumour kinetic macro- and microparameter estimations from dynamic PET-
CT. The relative effects of PVC on kinetic parameter estimations and simplified 
metrics were poorly correlated. This resulted in a non-significant trend in higher 
correlation between VT and SUV in single reads and affected its technical validation 
as a biomarker of treatment response to a small extent. Therefore, the impact of 
image resolution on technical validation of simplified metrics for clinical use 
seems to be small. When optimized according to tracer kinetics, HYPR denoising 
may adequately reduce PVC-induced image noise for low count and low contrast 
timeframes. However, it has only limited effect on kinetic parameter estimations 
and thus may be obviated for region-based non-linear regression analysis. Future 
oncologic dynamic PET-CT studies should preferably incorporate partial-volume 
correction to acquire accurate quantitative reads. 
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Supplemental fi les

Supplemental Figure 3.1: Time-activity curves of intralesional image noise (COV%) without and with 
PVC using several HYPR settings. Frames of 0-4 minutes (A) and 4-60 minutes (B) post-injection. Results 
of a typical mediastinal lymph node metastasis are shown.

Supplemental Table 3.1: Spearman correlations between IDIF AUCs of PVC-images and uncorrected 
images. All correlations were signifi cant with p<0.001.

Entire curve Peak only (2.5 min)

Image-derived Calibrated Image-derived Calibrated
LR 0.994 0.991 0.993 0.988

LR+HYPR (-/+ 3 frames) 0.994 0.990 0.992 0.987

LR+HYPR (single composite) 0.994 0.992 0.997 0.996

Supplemental Table 3.2: Median relative diff erences (% with IQR) in K1, Vt, and k3/k4 of uncorrected 
images using uncorrected versus corrected IDIFs (PVC without and with HYPR denoising). *p<0.05 
Wilcoxon-signed-rank test.

IDIF: K1 Vt k3/k4

LR 2.9 (0.2 to 7.4)* 0.9 (-1.1 to 2.6)* -0.2 (-3.7 to 2.4)

LR+HYPR (-/+ 3 frames) 3.1 (0.9 to 5.5)* 1.1 (-0.4 to 4.5)* -0.8 (-3.2 to 1.6)

LR+HYPR (single composite) 0.0 (-0.2 to 0.1) 0.0 (0.0 to 0.1) 0.1 (-0.1 to 0.1)
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Supplemental Table 3.3: Relative changes (%) in kinetic parameter estimates and simplified metrics after 
PVC using VOIs delineated on PVC images (LR+HYPR). 

Mean Median SD IQR Min Max p-value

LR+HYPR:

Vt 13.6 13.9 7.9 7.6 – 18.7 5.5 37.8 <0.001

K1 6.6 5.3 6.7 2.5 – 10.1 4.4 30.3 <0.001

BP 5.7 5.4 7.6 1.2 – 8.9 3.7 38 <0.001

SUV 15.4 15.8 7.1 8.4 – 20.4 3.6 31.5 <0.001

TBR 15.6 15.8 7.2 8.4 – 20.7 5.7 34.0 <0.001

Supplemental Table 3.4: P-values of testing (Friedman’s test) between changes in kinetic parameter 
estimates and simplified metrics (with and without PVC) during treatment with TKI at 7 and 28 days after 
treatment start.

  Vt K1 BP SUV TBR 

Uncorrected <0.001 0.45 0.038 0.001 0.002

LR <0.001 0.819 0.005 0.001 0.002

LR+HYPR <0.001 0.819 0.031 0.001 0.002
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Abstract

Objectives: Whole body [18F]-fluorodihydrotestosterone positron emission 
tomography ([18F]FDHT PET) imaging directly targets the androgen receptor 
and is a promising prognostic and predictive biomarker in metastatic castration-
resistant cancer (mCRPC). To optimize of [18F]FDHT PET-CT for diagnostic and 
response assessment purposes, we assessed how count statistics and reconstruction 
protocol affect its accuracy, repeatability, and lesion detectability. 
Methods: Whole body [18F]FDHT PET-CT scans were acquired on an analogue 
PET-CT on two consecutive days in 14 mCRPC patients harboring a total of 
336 FDHT-avid lesions. Images were acquired at 45 min post-injection of 200 
MBq [18F]FDHT at 3 min per bed position. List-mode PET data were split on a 
count-wise basis, yielding two statistically independent scans with each 50% of 
counts. Images were reconstructed according to current EANM Research Ltd. 
(EARL1: 4mm voxel) and novel EARL2 guidelines (4mm voxel + PSF). Per lesion 
we measured SUVpeak, SUVmax, SUVmean, and contrast-to-noise ratio (CNR). 
SUV was normalized to dose per bodyweight as well as to the parent plasma input 
curve integral. Variability was assessed with repeatability coefficients (RC).
Results: Count reduction increased liver coefficient of variation from 9.0 to 
12.5% and from 10.8 to 13.2% for EARL1 and EARL2, respectively. SUVs of 
EARL2 images were 12.0-21.7% higher than EARL1. SUVs of 100% and 50% 
count data were highly correlated (R2>0.98; slope=0.97-1.01; ICC=0.99-1.00). 
Intrascan variability was volume-dependent and count reduction resulted in 
higher intrascan variability for EARL2 than EARL1 images. Intrascan RCs were 
lowest for SUVmean (8.5-10.6%), intermediate for SUVpeak (12.0-16.0%) and 
highest for SUVmax (17.8-22.2%). Count reduction increased test-retest variance 
non-significantly (p>0.05) for all SUV types and normalizations. For SUVpeak at 
50% of counts, RCs remained <30% when small lesions were excluded. Splitting 
data reduced CNR by median 4.6% (interquartile range 1.2-8.7%) and 4.6% 
(interquartile range 1.2-8.7%) for EARL1 and EARL2 images, respectively.
Conclusions: Reducing [18F]FDHT PET acquisition time from 3 min to 1.5 per 
bed position resulted in a repeatability of SUVpeak (bodyweight) remaining ≤30%, 
which is generally acceptable for response monitoring purposes. However, EARL2 
reconstruction was more affected, especially for SUVmax whose repeatability 
tended to exceed 30%. Lesion detectability was only slightly impaired by reducing 
acquisition time, which might not be clinically relevant in mCRPC.
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Introduction

Th e androgen receptor (AR) axis plays a central role in hormone sensitive as 
well as castrate resistant prostate cancer (CRPC) (1). In the last decades several 
AR signalling inhibitor (ARSi) therapies have been developed and approved for 
treatment of metastatic (m)CRPC patients (2-5). Results of initial treatment with 
ARSi therapies (e.g. enzalutamide and abiraterone) are excellent, with mild toxicity 
profi les. Unfortunately, initial treatment response and response durability are 
variable, and response to second-line ARSi therapies is oft en short (3,5). Th erefore, 
a predictive biomarker for response to these ARSi drugs is urgently needed. 
Currently used imaging modalities (e.g. CT and bone scintigraphy) for restaging 
and detection of disease progression in CRPC are not suited for this purpose (6).

18F-fl uorodihydrotestosterone ([18F]FDHT) positron emission tomography-
computed tomography (PET-CT) directly targets the AR in whole body imaging 
(7,8). Hereby it can assess AR-status on a lesion-by-lesion level allowing for 
characterization of AR expression and its intra-patient heterogeneity in-vivo(9). 
Th is may not only enable prognostication for ARSi therapies, but also facilitate 
novel AR-targeted drug development (10,11). Recently, technical validation studies 
on the optimal simplifi ed metrics and their repeatability have been performed and 
clinical studies evaluating the value of 18F-FDHT PET/CT as imaging biomarker 
in clinical setting are ongoing (8,12).

Crucial elements of validation and clinical implementation of novel 
oncologic PET tracers and their imaging protocols are patient burden and cost 
of imaging. Th e latter two should be as low as possible, whilst maintaining high 
quantitative and qualitative accuracy for clinical purposes such as prediction or 
monitoring of treatment response. Until now, whole-body [18F]FDHT PET-CT 
studies have been acquired at 3-4 minutes per bed position, resulting in a typical 
in-scanner time of about 30 min for a single scan session (7,12). As mCPRC 
patients oft en have extensive (painful) metastatic disease, frequently involving the 
spine, reducing acquisition time could diminish patient burden, reduce cost of 
imaging, and improve department effi  ciency. Th is requires that the eff ect of count 
statistics on the performance of [18F]FDHT PET-CT is known. For [18F]FDG PET-
CT it has been shown that reducing acquisition times may reduce image quality, 
but does not necessarily aff ect lesion detection rates (13,14).

Th e fi nite spatial resolution of current PET scanners lead to blurring of 
images and cause partial-volume eff ects. Th erefore, the EANM Research Ltd. 
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(EARL) group has incorporated the point spread function (PSF) in reconstruction 
algorithms in the novel EARL2 (2019) guideline to improve image resolution 
(15,16). These novel standards could negatively affect quantitative precision and 
thereby hamper both prediction or monitoring of treatment response (17,18). 
Also, they could affect comparability of data between centres in multicentre trials. 
Therefore, it is important to know how these reconstruction protocols and their 
sensitivity to count statistics affect accuracy and precision of [18F]FDHT PET-CT 
studies.

To technically validate [18F]FDHT PET-CT for trials and future clinical 
use, i.e. for drug development, prognostication, and prediction or monitoring 
of response, it is crucial to know whether and how accuracy and precision of 
[18F]FDHT PET-CT are a function of image count statistics and reconstruction 
protocol. Therefore, the aim of this study was to assess how count statistics and 
reconstruction protocol (EARL1 [2015] vs EARL2 [2019] guidelines) affect 
accuracy, repeatability, and lesion detectability of analogue whole body [18F]
FDHT PET-CT.

Methods

Patients
Fourteen histologically proven mCRPC patients were prospectively included 
at the Amsterdam UMC (location VUmc), the Netherlands, between February 
2015 and April 2016, as part of a multicentre cohort study (12). Patient eligibility 
criteria were: castrate levels of serum testosterone (<1.7 nmol/L [50 ng/dL]); 
≥1 month since their last anti-cancer pharmacologic therapy; no concurrent 
malignancies; and progressive disease based on any of the following: (a) a rise 
in PSA through 3 consecutive measurements; (b) RECIST 1.1 imaging evidence 
of progressive disease and/or (c) bone scan showing at least two new metastatic 
lesions not attributable to flare phenomenon. Patients without orchiectomy 
remained on androgen depletion therapy with a gonadotropin-releasing hormone 
analogue or inhibitor during the study. The Amsterdam UMC (location VUmc) 
institutional review board approved this prospective study and each subject gave 
written informed consent prior to study enrolment.
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PET imaging protocol
Patients were scanned on two consecutive days on a whole body time-of-fl ight 
Gemini TF64 PET-CT scanner (Philips Healthcare, Netherlands) with EARL 
accreditation (16). A 4h fasting period was included to minimize intra-intestinal 
bile activity. Intravenous injection of ±200 MBq [18F]FDHT was followed by a 30 
min dynamic scan of the chest (with aorta in fi eld of view) to acquire an image 
derived input function. Venous blood samples were drawn at 5, 10 and 30 min. 
Analysis of venous samples included measurements of whole blood and plasma 
activity concentrations, parent fraction, and metabolites (details in (19)). A whole 
body scan (3min/bed position) was made from mid-thigh to skull vertex at 45 
min post-injection. Complying with the EARL1 guideline (16), whole body PET 
images were reconstructed with standard iterative time-of-fl ight reconstruction 
algorithm (BLOB-OS-TF) with 3 iterations and 33 subsets, with a matrix size 
of 144x144 and voxels 4x4x4mm. Images were corrected for scatter, random 
coincidences, decay, and attenuation (low-dose CT; 80 mA at 120-140 kV, 5 mm 
slice thickness).

We additionally reconstructed images with the PSF algorithm as provided 
by the vendor (Philips Healthcare) to conform with EARL2 guidelines. Th is 
comprises post-reconstruction image processing using the Richardson-Lucy 
iterative deconvolution algorithm with sieve noise regularization (PSF option: 1 
iteration, regularization full-width-at-half-max at 6 mm) as resolution recovery 
method (20). Th is algorithm uses a scanner-specifi c spatially variant PSF to 
improve image resolution, and is described as follows (20):

      Eq. 1

where Ii+1 is the current image estimate; Ii is the image estimate from the ith

iteration; f is the system Gaussian PSF; s is the sieve kernel; and Io is the original 
measured image.

To evaluate the impact of count statistics (i.e., acquisition time), we split the 
original list-mode data of each whole body PET scan on an alternating count-wise 
basis into two new datasets, which were subsequently reconstructed into whole 
body images (as proposed in (21,22)) using both EARL1 (4 mm) and EARL2 (4 
mm+PSF) reconstructions. Th is generated two statistically equivalent but count-
independent PET-images each containing 50% of the original counts (referred to 
as split 1 and split 2). Due to the linear relationship between (decay corrected) 
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number of counts and acquisition time, the whole body images reconstructed 
from split 50% count data served as surrogates for images acquired at 1.5min per 
bed position (Figure 4.1).

SU
Vb

w
SU

Vb
w

SU
Vb

w
SU

Vb
w

Figure 4.1: Illustration of a PET image of a typical mCRPC patient with extensive [18F]FDHT-avid bone 
metastases reconstructed with (A) 100% counts EARL1, (B) 50% counts EARL1, (C) 100% counts EARL2, 
and (D) 50% counts EARL2. Axial (left column), coronal (middle column), and sagittal views (right column) 
are shown.
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Image analysis
All suspicious FDHT-avid lesions with uptake exceeding background were 
included. Volumes of interest (VOI) were delineated on the original PET images 
using a semi-automatic algorithm using a threshold of 50% of the peak value 
within the area of interest with correction for local background uptake(23). From 
each VOI, we derived the average, peak, and maximum activity concentrations 
(AC; Bq/cc). Next, SUV was derived by dividing the tumour AC to a normalization 
factor. Two normalizations were used (12): a) injected dose per kg bodyweight 
(bw), and b) area-under-the-curve of the parent plasma calibrated image-derived 
input function (AUC-PP). Th e AR-positive tumour volume (ARTV; mL) was 
defi ned as the sum of all voxel volumes within a VOI. To assess lesion detectability, 
we generated a single voxel thick shell around the tumour VOI to determine local 
background activity, yielding the contrast-to-noise ratio (CNR) as follows:

           Eq. 2

where ACavg is the average tumour AC; ACbgr is the average background AC, 
and SDbgr is the standard deviation of AC in voxels included in the background 
shell.

To compare image noise levels of the 100% and 50% count images, a 3cm 
diameter spherical VOI was placed in the liver, from which the coeffi  cient of 
variation (COV%) was calculated as follows:

           Eq. 3

where SDliver is the standard deviation of the ACs of voxels within the liver VOI, 
and ACliver is the mean AC of voxels within the liver VOI. 

Statistical Analysis
Analyses were performed using SPSS statistics (v22, IBM) and Excel datasheets. 
Intrascan variability was defi ned as the diff erence in SUVs between the split 
scans of each original scan (eg. split 1 versus split 2). Interscan variability was 
defi ned as the test-retest variability (repeatability) of SUVs. Both intra- and 
interscan variability were assessed on a per-lesion basis. Repeatability coeffi  cients 
(RC%) were calculated from the standard deviations of the relative diff erences 
of measured SUVs between test-retest scans (day 1 vs day 2) and between split 
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scans (split 1 vs split 2). To evaluate test-retest variability, 50% count scans were 
compared to the mean since split scans could not be directly compared as this 
would yield 4 comparisons (Figure 4.2). Calculation of test-retest RCs was as 
follows (Equation 4-8):

						      								       		   Eq. 4

						      						      		   Eq. 5

						      									         		   Eq. 6

 						      							       		   Eq. 7

	  					     									         		   Eq. 8

where d is the relative difference between day 1 (SUV1) and day 2 (SUV2) for 
original data; di,j is the relative difference of each split i (split 1 and split 2) on each 
day j (days 1 and 2) compared to the average SUVi,j; SD is the standard deviation 
of relative test-retest differences (SDsplit was scaled by factor 2 since SUVs were 
compared to the mean SUVi,j). RCs of intrascan variability were calculated using 
eq. 4, 6, and 8.

Figure 4.2: Schematic representation of assessment of test-retest variability of original 100% count scans 
and split 50% count scans, respectively. Note that, in contrast with original scans, split scans cannot be 
directly compared, as this would yield 4 individual comparisons underestimating true test-retest variability.
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Bland-Altman plots with 95% limits of agreement, R2 and intraclass 
correlation coeffi  cients (ICC) were calculated were calculated to assess inter- 
and intrascan variability (24). ICCs represent the fraction of the total variability 
attributable to between lesion variability, and were calculated using a two-way 
mixed model with absolute agreement defi nition (25). To test for diff erences in 
repeatability between 100% and 50% count scans we used a Wilcoxon signed-rank 
test designed to compare variances of dependent data (p<0.05) (26).

Results

Fourteen patients with a median age of 65 (IQR 47-75) years were included. 
Median Gleason score was 8 (IQR 5-10) and median PSA at imaging was 103 (IQR 
11-1602) ng/ml. Median injected dosages of [18F]FDHT on day 1 and day 2 were 
194 MBq (range 152-216) and 193 MBq (range 186-215) with residual activity in 
syringes/tubes of 37 MBq (range 26-63) and 36 MBq (18-54), respectively (12). In 
two patients, no FDHT-avid lesions were detected. In the remaining 12 patients, 
336 FDHT-avid lesions were visually detectable on both test and retest PET-CT 
scans.
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Figure 4.3: Liver COV% for 100% count and 50% count EARL1 and EARL2 images.
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Image noise
Liver COV% of EARL1 images increased from a median 9.0 (IQR 7.9-10.4) to 
12.5 (IQR 10.5-14.5) after count reduction (Figure 4.3). For EARL2 images, liver 
COV% increased from a median 10.8 (IQR 9.2-12.4) to 13.2 (IQR 12.4-17.3) after 
count reduction.
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Figure 4.4: Correlations between SUVbw of original 100% count scans and split 50% count scans for 
SUVmean (A and B), SUVpeak (C and D), and SUVmax (E and F). Results from both EARL1 images (A, C, 
E) and EARL2 images (B, D, F) are shown.
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Figure 4.5: Relative diff erence (%) between SUVs derived from EARL1 images compared to SUVs derived 
from EARL2 images as a function of lesion ARTV. (A) Results from original (100% of counts) scans and (B) 
split (50% of counts) images.

Semi-quantitative measurements
On EARL1 images, SUVmean, SUVpeak, and SUVmax of 100% count scans were 
highly correlated with those of 50% count scans (Figure 4.4), with SUVmax being 
most aff ected by count reduction (albeit still with R2>0.98 and ICC=0.99-1.00). 
Similar results were observed for EARL2 images (Figure 4.4), with again SUVmax 
being most aff ected by count reduction (R2>0.98 and ICC=0.99-1.00). On 100% 
count EARL2 images, SUVmean, SUVpeak and SUVmax were median 12.1% 
(IQR 9.8-14.2%), 15.6% (IQR 13.1-17.9%), and 21.7% (IQR 18.4-25.1%) higher 
compared to EARL1 images. Similarly, on 50% count EARL2 images, SUVmean, 
SUVpeak and SUVmax were a median 12.0% (9.6-14.2%), 15.5% (IQR 13.2-
17.9%), and 21.6% (IQR 18.5-25.1%) higher compared to EARL1 images. Th ese 
relative diff erences were inversely related to lesion ARTV (Figure 4.5).

Intrascan variability
RCs between 50% count scans on day 1 and 2, respectively, were 9.9% and 
8.5% for SUVmean, 14.3% and 12.0% for SUVpeak, and 19.6% and 17.8% for 
SUVmax (Figure 4.6) on EARL1 images. ICCs and R2 values between SUVs of  
50% count EARL1 scans were high (ICC=0.97-1.00; R2=0.95-0.99). On EARL2 
images, RCs between 50% count scans on day 1 and 2, respectively, were 10.6% 
and 9.1% for SUVmean, 16.0% and 13.3% for SUVpeak, and 22.2% and 19.8% 
for SUVmax (Figure 4.6). For EARL2 images, ICCs and R2 between SUVs of 50% 
count scans were almost identical to EARL1 (ICC=0.97-0.99.;R2=0.94-0.99.). SUV 
intrascan variability was volume-dependent for both EARL1 and EARL2 images 
(Supplemental Figure 1, available at https://ejnmmires.springeropen.com).
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Figure 4.6: Bland-Altman graph of intrascan variability due to 50% count reduction for SUVmean (A and 
B), SUVpeak (C and D), and SUVmax (E and F). Results from both EARL1 images (A, C, E) and EARL2 
images (B, D, F) are shown. Variability was derived from the relative difference in SUV between split 1 and 
2 of each scan on each day. Note that bw or AUC-PP normalization are not reported separately since 
normalization factors are identical for split 1 and split 2.

Interscan variability
For EARL1 images, RCs of 50% count scans were higher than RCs of 100% count 
scans, but differences in variances were not significant (Figure 4.7 and Table 4.1; 
ICC 0.94-0.97). A similar effect of count reduction on RCs was observed for 
selected lesions with ARTV >4.2 mL, but in general RCs for lesions >4.2 mL were 
lower (Table 4.1). Repeatability of EARL2 was worse than EARL1 at both 100% 
and 50% count data (Figure 4.7 and Table 4.1). Repeatability of EARL2 images was 
more affected by count reduction than EARL1 images, yet differences between 
variances of 100% and 50% count data were not significant (p=0.53-1.00; Table 
4.1). Normalizing SUVs to bw (Figure 4.7) resulted in lower RCs than normalizing 
to AUC-PP (Supplemental Figure 2).
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Figure 4.7: Bland-Altman graph of interscan (test-retest) variability of SUVmean (A and B), SUVpeak (C 
and D), and SUVmax (E and F) normalized to bodyweight at 100% and 50% of counts. Results from both 
EARL1 images (A, C, E) and EARL2 images (B, D, F) are shown.

Lesion detectability
In general, the impact of count reduction on lesion detectability was small, with 
a median 4.6% (IQR 1.2-8.7%) reduction in CNR from median 3.7 (IQR 3.1-4.3) 
to 3.5 (IQR 2.9-4.1) on EARL1 images aft er count reduction. For EARL2 images, 
there was a median 4.6% (IQR 1.2-8.7%) reduction in CNR from median 3.9 (IQR 
3.1-4.7) to 3.7 (IQR 2.9-4.5) aft er count reduction. 
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Discussion

We investigated how accuracy, precision, and lesion detectability of analogue whole 
body [18F]FDHT PET-CT are aff ected by image count statistics and reconstruction 
protocol, to optimize imaging protocols for research and clinical use. Reducing 
counts by 50% introduced <20% SUV intrascan variability for EARL1 images, 
which only increased test-retest variability to a small extent. Improving image 
spatial resolution by adhering to EARL2 guidelines might reduce the size-
dependent bias in SUV, but it hampers repeatability and increases sensitivity to 
count statistics. Lesion detectability is only slightly aff ected by reduced counts and 
only marginally increased by resolution modelling.

SUVs of 50% count scans correlated highly with SUVs of 100% count 
scans, indicating accuracy is preserved at lower count statistics. However, when 
comparing split scans directly a variability in SUV ranging 8.5% (SUVmean 
EARL1) to 22.2% (SUVmax EARL2) was observed. Hence, while SUV accuracy 
is maintained at low counts, its precision might be hampered. Still, test-retest 
variability only increased to a small and non-signifi cant extent, which indicates 
that the statistical Poisson image noise is a minor determinant of SUV repeatability 
for [18F]FDHT.

SUV repeatability of oncological 18F-tracers (ie. [18F]FDG, [18F]-
fl uorothymidine, [18F]-fl uoromethylcholine, [18F]FDHT) ranges between 10-30%, 
yielding 30% as the preferred upper threshold for SUV variability for use in e.g. 
response monitoring studies (27-30). As expected, repeatability of SUVmax was 
most aff ected by count reduction and EARL2 reconstruction, yielding RCs >30%. In 
contrast, SUVpeak seemed to be robust to both count statistics and reconstruction 
protocol, yielding an RC of approximately 30% aft er count reduction, which was 
even lower (27.9%) when only lesions >4.2mL were considered. Th e improved 
repeatability of SUV when excluding small lesions seems a direct consequence 
of the size-dependency of intrascan variability at reduced counts (Supplemental 
Figure 1). Note that test-retest variability of [18F]FDHT can be even lower when 
evaluating only selected target lesions, or analysing on a patient- instead of lesion-
basis (12). In the current study, all avid lesions were primarily included to avoid 
selection bias and also evaluate the eff ect of count reduction on smaller and less 
avid lesions. 

Between SUV normalizations, diff erences in test-retest variability were 
observed, with larger variability in SUVauc-pp (>30%) compared SUVbw. While 
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SUV normalized to AUC-PP correlates better with reference pharmacokinetic 
parameters than SUV normalized to bodyweight (19), deriving it is more 
technically demanding and less precise compared to more simple factors such as 
dose per bodyweight, making it less suitable for multicentre studies. Hence, a trade-
off between accuracy, precision, and ease of use has to be made when selecting 
the preferred SUV normalization. For example, while SUVpeak normalized to 
bodyweight had a RC of 30% at half of counts, it exceeded 30% when normalizing 
to AUC-PP rendering it unfit for response assessment. 

Partial-volume effects generally result in volume-dependent 
underestimations of tumour SUV and possibly hamper lesion detectability (31). 
Correcting for PVE in the reconstruction algorithms might be particularly 
important in [18F]FDHT due to the high frequency of small (e.g. <4.2 ml) detected 
lesions. Novel reconstruction algorithms incorporating the PSF either within or 
after reconstruction have been proposed to improve image resolution (17). The 
EARL2 standards have adopted these algorithms as a step forward in scanner 
calibration harmonization between centres (15). However, PSF reconstructions 
are known to suffer from noise propagation and image artefacts (e.g. Gibbs 
phenomenon resulting in edge overshoot), which might lead to misinterpretation 
regarding treatment effects (17,18,32). Indeed, we observed that repeatability was 
worse for the EARL2 reconstruction with higher sensitivity to count statistics, 
resulting in a higher minimal detectable change for response assessment. 

Previous reports argued that PSF reconstructions should be used for 
qualitative purposes (i.e. lesion detection), and that non-PSF images (such as 
EARL1) should be used for tumour quantification (18,33). However, Quak et al. 
found that with additional image filtering the higher lesion detection and image 
resolution of PSF images do not need to be impaired in order to meet the EARL 
criteria (34). In the present study we observed a very small increase in lesion CNR 
when PSF was applied. This will not likely result in clinically relevant different 
conclusions regarding the extent of disease or intrapatient heterogeneity (Figure 
1) due to the vast amount of detected lesions (336 lesions in 12 patients). The 
small reduction in CNR by <5% after count reduction is also not likely to have 
clinical consequences (Figure 1). This corresponds to [18F]FDG PET-CT data in 
several cancer types, where reducing acquisition time from 3 to 1.5min per bed 
position reduced image quality, but did not impair lesion detection rates (13).

Another factor affecting image count statistics is the injected tracer dosage. 
In the present cohort, patients received a relatively low dosage compared to other 
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cohorts from the recent multicentre study (12). However, while SUV test-retest 
variability varied between centres, the authors did not observe a direct relationship 
between injected dosage and repeatability (12). Th is might be explained by 
diff erences in other factors determining repeatability, such as the observer 
variability in tumour delineation, PET system specifi cs, adherence to imaging 
protocols (i.e. uptake interval), and methods for acquiring the SUV normalization 
factors. Hence, count statistics did not appear to be the main determinant of [18F]
FDHT repeatability, which we confi rm in the current study where non-signifi cant 
increases in test-retest RCs were observed aft er count reduction. Th erefore, 
a potentially modifi able and important determinant of SUV variability in [18F]
FDHT imaging seems to be the choice of normalization factors, which, again, 
need some trade-off  between accuracy and precision to be made. 

Th e present study contains several limitations. First, while splitting data on 
a count-wise basis enables evaluation of Poisson noise induced by count reduction, 
the 50% count scans do not fully represent a 50% shorter image acquisition. 
However, [18F]FDHT kinetics commonly reach a plateau aft er 20-30min, yielding 
stable SUV during the whole body acquisition (8). Second, the present study 
contains data acquired on a PET system of a single vendor. As between vendors 
the overlap between bed positions diff ers, count reduction might have a diff erent 
impact on measurement variability for these PET systems. Also, for novel PET 
systems, which may have higher sensitivities and better time of fl ight performance, 
in particular for the new digital systems, the impact of reducing acquisition 
times on measurement variability will be even smaller. Hence, for these systems 
acquisition times may be reduced even further, but this remains to be investigated 
for each type of system. As investigated in the present study for analogue PET, a 
reduction up to 50% compared with current standard practice seems to be feasible 
for diagnostic and response assessment purposes, warranted that use of SUVmax 
is avoided. 

Th e current approach for evaluating the sensitivity of whole body PET-
CT acquisition to scan statistics can be extended to other tracers currently being 
investigated and/or implemented in clinical practice, such as PSMA-ligand PET-
CT. For adequate evaluation of these tracers, however, test-retest data should be 
available.
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Conclusion

In [18F]FDHT PET-CT studies, noise-induced SUV variability leads to small 
increases in test-retest variability, which improves when excluding small lesions. 
Novel EARL2-compliant reconstruction increases lesion SUVs and marginally 
increases CNRs. However, it requires higher count statistics to preserve adequate 
precision. For SUVpeak normalized to bodyweight, test-retest variability remained 
below 30% when lesions <4.2 ml were excluded, which is generally acceptable for 
oncological [18F]-tracers. In contrast, SUVmax was substantially affected by count 
reduction and EARL2 reconstruction, hence its use should be avoided. Lesion 
detectability is only slightly impaired by reducing counts by 50%, which might not 
be clinically relevant in the mCRPC population. 

Taken together, with the current imaging procedure on an analogue PET-
CT system count statistics are more than sufficient and could even be reduced by 
50% without affecting diagnostic performance and at a small expense of reduced 
precision of response assessments. Acquisition time reduction is feasible for 
staging and response assessment purposes.
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Supplemental fi les

Supplemental Figure 4.1: Intrascan variability due to 50% count reduction as function of lesion ARTV for 
SUVmean (A and B), SUVpeak (C and D), and SUVmax (E and F). Results from both EARL1 images (A, C, 
E) and EARL2 images (B, D, F) are shown, with limits of agreement from Bland-Altman analyses.
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Supplemental Figure 4.2: Bland-Altman graph of interscan (test-retest) variability of SUVmean (A and B), 
SUVpeak (C and D), and SUVmax (E and F) normalized to AUC-PP at 100% and 50% of counts. Results 
from both EARL1 images (left column) and EARL2 images (right column) are shown.
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Abstract

Quantitative evaluation of radiolabelled Prostate-Specific Membrane Antigen 
(PSMA) PET scans may be used to monitor treatment response in patients with 
prostate cancer (PCa). To interpret longitudinal differences in PSMA uptake, the 
intrinsic variability of tracer uptake in PCa lesions needs to be defined. The aim 
of this study was to investigate the repeatability of quantitative [18F]DCFPyL (a 
second generation [18F]PSMA-ligand) PET/CT measurements in patients with 
PCa. 
Methods: Twelve patients with metastatic PCa were prospectively included, of 
which 2 were excluded from final analyses. Patients received two whole-body [18F]
DCFPyL PET/CT scans (median dose 317 MBq; uptake time 120 min), within 
median 4 days (range 1-11 days). After semi-automatic (isocontour-based) 
tumour delineation, the following lesion-based metrics were derived: Tumour-
to-Blood ratio (TBRmean, TBRpeak, and TBRmax), Standardized Uptake Value 
(SUVmean, SUVpeak, SUVmax, normalized to bodyweight), tumour volume, 
and total lesion tracer uptake (TLU). Additionally, patient-based Total Tumour 
Volume (sum of PSMA-positive tumour volumes; TTV) and Total Tumour Burden 
(sum of all lesion TLUs; TTB) were derived. Repeatability was analysed using 
repeatability coefficients (RC) and intra-class correlations (ICC). Additionally, the 
effect of point spread function (PSF) image reconstruction on the repeatability of 
uptake metrics was evaluated. 
Results: In total, 36 [18F]DCFPyL PET positive lesions were analysed (up to 5 
lesions per patient). RCs of TBRmean, TBRpeak, and TBRmax were 31.8%, 31.7%, 
and 37.3%, respectively. For SUVmean, SUVpeak, SUVmax the RCs were 24.4%, 
25.3% and 31.0%, respectively. All ICC were ≥0.97. Tumour volume delineations 
were well repeatable, with RC 28.1% for individual lesion volumes and RC 
17.0% for TTV. TTB had a RC of 23.2% and 33.4%, when based on SUVmean 
and TBRmean, respectively. Small lesions (<4.2mL) had worse repeatability for 
volume measurements. The repeatability of SUVpeak, TLU, and all patient-level 
metrics were not affected by PSF-reconstruction.
Conclusion:  [18F]DCFPyL uptake measurements are well repeatable and can 
be used for clinical validation in future treatment response assessment studies. 
Patient-based TTV may be preferred for multicenter studies since its repeatability 
was both high and robust to different image reconstructions.
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Introduction

Prostate cancer (PCa) is the second most common cancer in men worldwide, 
with an estimated annual number of deaths over 350.000 (1). Prostate-Specifi c 
Membrane Antigen (PSMA) Positron Emission Tomography (PET) is increasingly 
used for PCa diagnostics (2). PSMA is a class II trans-membrane glycoprotein that 
provides a valuable target for radiolabelled imaging, as its expression is upregulated 
in malignant prostate cells and associated with aggressive disease characteristics 
(3). Due to larger availability, 68Gallium-labeled PSMA tracers have been studied 
most frequently to date, demonstrating high detection rates for metastatic disease 
(2,4). Alternatively, 18Fluorine-labeled tracers have been developed, including 
[18F]DCFPyL (2-(3-(1-carboxy-5-[(6-18F-fl uoro-pyridine-3-carbonyl)-amino]-
pentyl)-ureido)-pentanedioic acid), a second-generation small-molecule ligand 
that strongly binds to PSMA (5,6). Th e 18F-radionuclide provides for PET-images 
with a higher resolution compared to 68Ga, due to a shorter positron range and 
higher positron yield (2).

Quantitative analysis of PSMA uptake may be used to predict or evaluate 
treatment response, as changes in PSMA uptake over time may indicate response 
to treatment or progression of disease (7-9). Recently, we performed a full 
pharmacokinetic analysis of [18F]DCFPyL to validate simplifi ed methods for 
tumour uptake quantifi cation. Tumour-to-Blood Ratios (TBR; tracer activity 
concentration in the tumour normalized to the whole blood activity concentration 
on PET) were found to best describe the tumour tracer uptake (10). For reliable 
use of quantitative PSMA PET metrics in clinical practice, it is important to 
determine their repeatability. Only changes that exceed random variability 
should be interpreted as treatment response or disease progression. To the best 
of our knowledge, this is the fi rst study reporting on the day-to-day variability 
of [18F]DCFPyL uptake in PCa lesions. Th e aim of this study was to evaluate the 
repeatability of quantitative [18F]DCFPyL PET/CT measurements in patients with 
metastatic PCa.
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Materials and methods

Patients
Twelve patients were prospectively included in the Amsterdam UMC between 
January and May 2019. Inclusion criteria were: (1) histologically proven PCa; (2) 
at least two metastases, detected by any imaging modality; and (3) at least one 
metastasis of ≥1.5cm in size (to minimize partial-volume effects). Patients with 
multiple malignancies and claustrophobia were excluded. 

The study was approved by the ethical review board of the Amsterdam 
UMC and all subjects signed informed consent. This trial was registered under 
EudraCT number 2017-000344-18 and the Netherlands Trial Registry number 
6477. Personal and demographic data regarding age, length, body weight, 
Gleason score, prostate-specific antigen level (ng/mL) at the time of PET/CT, and 
information on prior therapy were collected. 

Data Acquisition
All patients underwent two [18F]DCFPyL PET/CT scans within 4 days (median, 
range 1-11 days). PET/CT imaging adhered to routine clinically used protocols. 

[18F]DCFPyL was synthesized under Good Manufacturing Practices conditions at 
the Amsterdam UMC (Radionuclide Center), using the precursor of ABX GmbH® 
(Germany) (Supplemental Text 1, available at http://jnm.snmjournals.org (11)). 
No fasting was required and no diuretics were administered prior to imaging. PET 
was performed using an European Association of Nuclear Medicine Research Ltd 
(EARL) calibrated hybrid Philips Ingenuity TF scanner (Philips Healthcare®, the 
Netherlands/USA) (12,13). Our imaging protocol included a target injected [18F]
DCFPyL dose of 300 MBq, with an uptake interval after injection of 120 minutes. 
First, a CT scan was made for attenuation correction (30-120 mAs; 120 kV). Next, 
whole-body PET acquisitions were then acquired from mid-thigh to skull base (4 
minutes per bed position).

Images were corrected for decay, scatter, random coincidences, and 
photon attenuation. Images were reconstructed using the (EARL1-compliant 
(13)) Ordered Subsets Expectation Maximization with Time-of-Flight algorithm 
(3 iterations; 33 subsets). Additionally, images were post-processed using Lucy-
Richardson iterative deconvolution (henceforth referred to as Point Spread 
Function [PSF] reconstruction) (14). Using a NEMA-NU-2 Image Quality 
Phantom the full-width-at-half-maximum of this reconstruction was calibrated at 
7.0mm for adequate signal recovery complying with novel EARL2 guidelines (15).
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Data Analysis 
All scans were controlled for image-quality (16) and visually interpreted by 
an experienced nuclear medicine physician (DO), who identifi ed suspicious 
PCa metastases in bone and/or lymph nodes. Lesions were semi-automatically 
delineated using in-house developed soft ware (ACCURATE-tool, previously 
benchmarked against commercially available image-analysis tools (17)) using a 
50% isocontour of SUVpeak (sphere of 1.2 cm diameter, positioned to maximize 
its mean value) with correction for local background uptake to obtain volumes-
of-interest (VOIs) (18). Blood activity concentrations (for TBR calculation) were 
measured in the ascending aorta using: i) a single image slice  3x3 voxel (12x12 
mm) VOI, and ii) a 3x3 voxel VOI in 5 consecutive slices (10). VOIs were created 
on both original (EARL1) and PSF-reconstructions (EARL2).

From each VOI, the following metrics were recorded on a lesion-level: 
tumour volume (mL), TBR (tumour VOI activity concentration/blood activity 
concentration), SUV, and total lesion uptake (TLU). TBR was calculated using 
both the mean, peak, and max activity within the VOI, yielding TBRmean, TBRpeak, 
and TBRmax, respectively. SUV variants included SUVmax (maximum SUV within 
the VOI), SUVpeak (mean SUV within a 12mm diameter sphere positioned within 
the VOI to yield the highest value), and SUVmean (mean SUV within the VOI). 
SUV was normalized to body weight. TLU was defi ned as lesion SUVmean or 
TBRmean multiplied by lesion volume, yielding TLUSUV and TLUTBR, respectively. 
Additionally, two patient-level metrics were derived: Total PSMA-positive 
Tumour Volume (TTV) and PSMA Total Tumour Burden (TTB). TTV was 
defi ned as the sum of the delineated tumour volumes within a patient. TTB was 
defi ned as the sum of the TLUSUV and TLUTBR within a patient, yielding TTBSUV and 
TTBTBR, respectively. As recommended by PERCIST guidelines for PET response 
assessment(19), and to balance the number of analysed lesions between patients, 
for lesion-based analyses we selected the 5 hottest lesions in case of >5 PSMA-avid 
lesions. For patient-level analysis, all suspicious PSMA-avid lesions were included.

Statistical Analysis
To assess diff erence in uptake intervals and injected dosages between test and 
retest scans we used the Wilcoxon singed-rank test for paired data. Repeatability 
of quantitative PET metrics was quantifi ed using repeatability coeffi  cients (RC; 
in percentages). Th e RCs were calculated as 1.96 times the standard deviation of 
relative test-retest diff erences d, that were calculated as follows:
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							      		   Eq. 1 
Where X1 and X2 are the lesion- or patient-level metrics on day 1 (test) and 
day 2 (retest), respectively. X is the average between X1 and X2. Bland-Altman 
plots were used for visual inspection of test-retest differences. Also, intra-class 
correlations (ICC; two-way mixed model with an absolute agreement definition) 
were calculated between test and retest data. The Pitman-Morgan test was used 
to test for differences in repeatability between paired data (correlated variances) 
(20), with α set at 0.05. P-values were corrected for multiple comparisons using 
Holms-Bonferroni method (21). The Levene’s test was used to compare variances 
of independent groups in subgroup analysis (bone vs. lymph node metastases, 
>4.2mL lesions vs <4.2mL lesions). SPSS version 22.0 (IBM) and Excel (Microsoft) 
worksheets were used for statistical analyses.

Results

Patients
Twelve patients were enrolled, of which two patients could not be analysed. Patient 
characteristics and disease stage of the ten finally evaluated patients are presented 
in Table 5.1. Seven (70%) patients were using androgen-deprivation therapy 
(luteinizing hormone–releasing hormone agonist), all of which had been treated 
for at least 3 months at time of PET. In one excluded patient reliable comparison 
of the [18F]DCFPyL scans was impeded due to significant radiolysis of the tracer 
(evident from a visually altered biodistribution as well as highly abnormal bone 
uptake (16)). The radiolysis was likely caused by a relatively high radioactivity 
concentration in the production batch (268 MBq/mL), combined by a long 
interval between delivery of the tracer and injection (>3 hours). Tracer logistics 
and storage were improved after this incidental finding and no other radiolysis 
problems occurred during this study. Another patient was excluded because of 
unconfirmed malignancy upon performing post-hoc CT-guided histological 
biopsy during clinical follow-up for two highly suspicious bone lesions on [18F]
DCFPyL PET. There were no significant differences between uptake intervals, 
injected dosages, and injected masses between test and retest scans (P = 0.799, P = 
0.499, and P = 0.878 respectively).
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Table 5.1: Patient and scan characteristics of the patients included in the repeatability analysis (n=10).

Patient Characteristics Median Range
Age (years) 74 (61-79)
Initial Gleason score 8 (6-9)
PSA at PET/CT (ng/mL) 9 (1-2796)
Length (cm) 178 (168-192)
Weight (kg) 88 (68-94)

PCa stage: n %
Primary metastastic 2 20.0
Biochemically recurrent 3 30.0
Castration-resistant 5 50.0

Analyzed lesion type: n %
Bone 21 58.3
Lymph node 12 33.3
Intraprostatic 3a 8.3

n %
Androgen Deprivation at PET/CT 7 70.0
prior docetaxel 3 30.0

Injected activity: Test (MBq) 317 (280-331)
Injected activity: Retest (MBq) 313 (254-341)
Uptake time: Test (min) 120 (118-153)
Uptake time: Retest (min) 122 (111-149)

Test-Retest diff . injected activity (MBq)b 28 (8-63)
Test-Retest diff . uptake time (min)b 3 (0-22)

atwo intraprostatic foci in one patient; b diff erences were not signifi cant (p>0.05).

Repeatability of Lesion-Level Metrics
In total, 36 [18F]DCFPyL PET-avid lesions were analysed, including 21 bone 
lesions (58.3%), 12 lymph node metastases (33.3%), and 3 intraprostatic foci 
(8.3%). Descriptive values of the analysed PET parameters are shown in Table 
5.2 (PSF-reconstruction data in Supplemental Table 1). Th e best repeatability was 
observed for SUVmean (RC 24.4%) and SUVpeak (RC 25.3%). SUVmax had poorer 
repeatability (RC 31.0%; Table 5.3), but the diff erences between repeatability of 
SUVs were not signifi cant (p=0.06-0.60). Blood activity derived from a 1-slice and 
5-slice VOI had a repeatability of 23.1% and 17.3%, respectively. Consequently, 
calculating TBR using 5-slice blood measurements had better repeatability 
compared to single-slice measurements (RC 31.7-37.3% versus 34.1-40.1%) and 
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was used henceforth. Overall, TBRs had worse repeatability than SUVs, but only 
repeatability of TBRmean was significantly lower than that of SUVmean (RC 31.8% 
versus 24.4%, p=0.03; Figure 5.1).

Table 5.2: Descriptive data of lesion and patient-based uptake metrics on test and retest scans.

Test Retest
Median IQR Median IQR

Lesion-level
Volume 4.6 2.8 – 8.7 4.6 2.5 – 8.6
SUVmean 16.6 9.5 – 24.4 17.1 9.7 – 28.0
SUVpeak 21.7 10.5 - 28.3 21.6 11.4 – 32.2
SUVmax 28.1 16.0 – 41.0 29.8 17.2 – 51.2
TBRmean 13.4 7.1 – 24.1 14.6 8.6 – 22.7
TBRpeak 17.7 7.7 – 28.4 18.8 9.8 – 26.7
TBRmax 25.0 11.7 – 40.9 23.6 14.1 – 38.8
TLUSUV 85.6 32.3 – 192.7 80.1 30.1 – 194.0
TLUTBR 67.6 24.6 – 189.4 66.7 23.5 – 152.6

Patient-level
TTV 21.4 10.6 – 63.2 21.8 10.3 – 69.7
TTBSUV 317.8 70.4 – 1920.7 285.5 70.6 – 1846.4
TTBTBR 236.6 63.2 – 1920.1 224.9 68.2 – 1720.0

IQR = interquartile range; SUV = Standardized Uptake Value; TBR = Tumor-to-Blood Ratio; TLU = Total 
Lesion Uptake; TTV = Total Tumor Volume; TTB = Total Tumor Burden

Table 5.3: Repeatability of lesion- and- patient-based 18F-DCFPyL uptake metrics.

Parameter Mean test-retest
difference %

RC% ICC (95% CI)

Lesion-level
Volume -1.1 28.1 1.00 (0.99-1.00)
SUVmean 1.0 24.4 0.99 (0.98-0.99)
SUVpeak 1.8 25.3 0.99 (0.97-0.99)
SUVmax 1.9 31.0 0.97 (0.94-0.99)
TBRmean 1.9 31.8 0.98 (0.96-0.99)
TBRpeak 2.6 31.7 0.98 (0.96-0.99)
TBRmax 2.7 37.3 0.97 (0.94-0.98)
TLUSUV -0.1 32.1 0.99 (0.98-1.00)
TLUTBR -3.5 39.3 0.98 (0.96-0.99)

Patient-level
TTV -2.2 17.0 1.00 (0.99-1.00)
TTBSUV -0.2 23.2 0.99 (0.97-1.00)
TTBTBR -2.1 33.4 0.98 (0.91-0.99)

IQR = interquartile range; SUV = Standardized Uptake Value; TBR = Tumor-to-Blood Ratio; TLU = Total 
Lesion Uptake; TTV = Total Tumor Volume; TTB = Total Tumor Burden
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Figure 5.1: Test-retest variability of SUV and TBR variants. Signifi cant diff erences have been indicated with 
an asterix (Holms-Bonferroni corrected p-values). Diff erences in repeatability between SUVs and between 
TBRs were not signifi cant.

Repeatability of semi-automatic tumour volume measurement was 28.1%. 
Repeatability of TLUTBR (RC 39.3%) was non-signifi cantly lower than that of TLUSUV

(RC 32.1%, p=0.08). Bland-Altman plots did not demonstrate a skewed variability, 
but variability of SUV and TBR tended to be less for higher values (Figure 5.2). 
In subgroup analysis, no signifi cant diff erences between repeatability of metrics 
derived from bone versus lymph node metastases were observed (p=0.06-0.98). 
Only volume measurements had a signifi cantly diff erent repeatability for lesions 
>4.2mL versus <4.2mL (RC 17.6% and 36.8%, respectively; p=0.015).
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Figure 5.2: Bland-Altman plots of lesion-level metrics (A) SUVpeak, (B) TBRpeak, (C) volume, and (D) TLUTBR. 
Y-axis in (C) and (D) were log-scaled for visual interpretation.
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Repeatability of Patient-Level Metrics
The highest repeatability was observed for TTV (RC 17%).  TTBSUV had better 
repeatability than TTBTBR, albeit non-significantly (RC 23.2% versus 33.4%, 
p=0.19). Bland-Altman plots demonstrated no skewed variability (Figure 5.3).
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Figure 5.3: Bland-Altman plots of patient-level metrics TTV, TTBSUV, and TTBTBR. Y-axes were log-scaled 
for visual interpretation.
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Eff ect of PSF-Reconstruction on Repeatability
PSF-reconstruction worsened repeatability signifi cantly for the TBRs, SUVmean, 
and SUVmax (p≤0.005; Supplemental Table 2). However, the repeatability of tumour 
volume (RC 32.0%, p=0.43), SUVpeak (RC% 27.8%, p=0.15), TLUSUV (RC 30.3%, 
p=0.62), and TLUTBR (RC 41.3%, p=0.70) was not aff ected. Notably, repeatability 
of all patient-level metrics was not signifi cantly aff ected by the PFS-reconstruction 
(p=0.15-0.59; Supplemental Table 2).

Discussion

In this study we investigated the repeatability of [18F]DCFPyL uptake and volume 
measurements in metastatic PCa patients. Knowledge of the day-to-day variation in 
these metrics is indispensable for use of [18F]DCFPyL metrics as novel biomarkers 
for assessment of response to systemic treatments. We conclude that [18F]DCFPyL 
uptake metrics are highly repeatable (ICC ≥0.97) and are thus suited for response 
monitoring purposes. SUV metrics tend to have higher repeatability than TBRs. 
Th e best repeatability was observed for patient-based TTV measurements.

In routine static PET acquisitions, [18F]DCFPyL pharmacokinetics are most 
accurately quantifi ed using the TBR (10), which demonstrated a repeatability of 
31.8% in this study. Hence, a change in TBR exceeding 32% may indicate a change 
in tumoural [18F]DCFPyL -uptake that exceeds the physiological variability, due 
to (e.g.) disease progression, treatment response, a true fl are phenomenon, or 
an imaging protocol deviation. Repeatability of tumour SUVmean was superior 
to TBR (Figure 5.1), which can be explained by added variability of blood pool 
activity measurements used in TBR calculation (blood pool RC 17.3%). Still, 
in our pharmacokinetic analysis we concluded that SUV measurements do not 
universally correlate with the underlying [18F]DCFPyL pharmacokinetics (Ki), as 
intrapatient tumour volumes appear to aff ect the bioavailability of the tracer (a so-
called sink-eff ect) (10,22). At higher tumour loads, SUV tends to underestimate 
[18F]DCFPyL uptake in lesions, while TBR (partly) corrects for this and thus better 
refl ects changes in [18F]DCFPyL during response monitoring. Th ese fi ndings 
are in line with other prostate cancer radiotracers (18F-fl uoromethylcholine, 
18F-fl uordihydrotestosterone) where tumour uptake measurements normalized to 
blood pool activity are more accurate metrics for tracer quantifi cation than SUV, 
but have worse repeatability (23,24). All taken together, TBR may be preferred 
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over SUV metrics despite its lower repeatability, which we recently illustrated in a 
clinical case (22). The higher variability of TBR compared to SUV will only have 
a negative impact on response assessment in patients with small tumour volumes 
with small treatment effect sizes.

Interestingly, the semi-automatically delineated total intrapatient tumour 
volume (TTV) demonstrated the highest overall repeatability (RC 17%). These 
favourable outcomes are likely explained by the high tumour to background 
ratio that [18F]DCFPyL provides (and PSMA tracers in general), permitting 
reliable (semi)automatic identification of tumour extent. On a lesion-basis, 
however, variability of volume measurements was larger (RC 28.1%), which can 
at least partly be explained by the volume-dependency of its variability. The high 
repeatability of TTV may be of benefit for longitudinal assessments of total PSMA 
burden in patients receiving systemic treatments. Especially for PSMA-targeted 
radioligand therapies (e.g. 177Lutetium-PSMA), assessment of changes in the 
total tumour volume as a whole, instead of individual lesion responses, may be 
clinically useful.

In multicenter studies, use of different PET/CT systems with varying image-
reconstruction protocols require quantitative metrics that are robust to such 
factors. Advanced reconstruction methods may improve lesion detection (25), but 
repeatability may be hampered by the inherent image noise propagation. In line 
with previous observations for 18F-fluorodihydrotestosterone (26), we observed 
lower repeatability of several metrics when using an image reconstruction 
with improved signal recovery, adhering to novel imaging guidelines (EARL2). 
However, repeatability of SUVpeak, TLU and patient-level measurements were 
not affected by the PSF-reconstruction, rendering them fit for use in multicenter 
studies were PET imaging protocols differ between centers. As blood activity 
measurements are susceptible to noise, repeatability of TBR was negatively 
affected by PSF-reconstruction. Overall, non-PSF reconstruction images (EARL1-
compliant) may therefore be preferred for quantitative assessment.

Our study has limitations, most notably the small patient sample. 
Still, results were in line with findings on other 18F-labeled PCa radiotracers, 
as well as 18F-FDG (19,23,24). Factors contributing to the total variability in 
quantitative PET-metrics include biological variation in tracer uptake, image 
noise, scan protocol deviations between scans, and the analysis software used. 
We acknowledge the patients’ heterogeneity in terms of disease stages (primary 
metastatic disease, biochemical recurrence, castration-resistance), but subgroup 
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analysis per disease stage was not feasible at the current sample size. We have no 
reason to assume that tracer uptake variability attributable to tumour biology will 
diff er between disease stages, however. In our single-center evaluation, only a 
single type of PET-scanner and analysis soft ware package was used – multicenter 
variability may be higher. We welcome other investigators using [18F]DCFPyL to 
repeat our study in their own center, or even in a multicenter setting, to validate 
our current fi ndings in a larger cohort. In the present study, the tracer uptake 
time and injected dosages of both test and retest scan were similar (Table 5.1). As 
our pharmacokinetic data indicated that tumour [18F]DCFPyL uptake continues 
to rise at 120 min aft er injection (10), test-retest variability might be higher in 
clinical practice, where uptake times between scans may vary more. Clinical 
imaging protocols for [18F]DCFPyL regarding uptake time intervals, total scan 
duration, and patient positioning (i.e. feet fi rst or head fi rst) should be stringently 
adhered to, especially in response assessment studies.

Conclusions

In this study we assessed the repeatability of quantitative [18F]DCFPyL PET/CT 
measurements in patients with metastatic PCa, concluding that [18F]DCFPyL 
uptake metrics are well repeatable. Th e variability limits proposed in this study 
should be validated in future clinical studies. To this end, any change in TBR 
exceeding 32% can be considered a change in tracer uptake beyond physiologic 
day-to-day variability (in case of comparable image-acquisition parameters). 
Additionally, as TTV measurements are highly repeatable (RC 17%) they may 
be specifi cally suitable for longitudinal assessment of PSMA-targeted radioligand 
therapy eff ects. Th e repeatability of SUVpeak, Total Lesion Uptake, and patient-level 
metrics (TTV and TTB) of [18F]DCFPyL uptake is robust to diff erences in image 
reconstructions.
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Supplemental files

Supplemental Table 5.1: Descriptive data of lesion- and- patient-based uptake metrics on test and retest 
scans for PSF-reconstruction images.

Test Retest
Median Range Median Range

Lesion-level
Volume 3.4 2.0 – 7.8 3.6 1.9 – 7.5
SUVmean 25.0 15.0 – 40.3 24.2 14.9 – 47.2
SUVpeak 27.2 15.3 – 38.8 29.5 16.3 – 48.8
SUVmax 52.9 29.2 – 93.9 47.1 29.5 – 98.6
TBRmean 19.7 11.6 – 33.7 19.4 13.1 – 34.1
TBRpeak 23.8 10.4 – 37.7 23.0 13.2 – 36.0
TBRmax 49.3 22.0 – 83.3 36.8 26.9 – 76.1
TLUSUV 100.3 38.5 – 223.0 99.9 35.6 – 240.9
TLUTBR 84.0 29.2 – 213.1 82.2 27.1 – 255.7

Patient-level
TTV 17.2 7.5 – 46.0 17.9 7.8 – 47.0
TTBSUV 375.3 74.6 – 1909.1 340.9 77.4 – 2094.6
TTBTBR 276.9 66.3 – 1933.5 263.5 74.8 – 2215.6

IQR = interquartile range; SUV = Standardized Uptake Value; TBR = Tumor-to-Blood Ratio; TLU = Total 
Lesion Uptake; TTV = Total Tumor Volume; TTB = Total Tumor Burden

Supplemental Table 5.2: Repeatability of lesion and patient-based uptake metrics for PSF-reconstruction 
images. P-value indicates a significant differences in repeatability between original (non-PSF) and PSF-
reconstructions.

Parameter Mean 
test-retest difference %

RC% ICC (95% CI) p-value 
non-PSF vs. PSF

Lesion-level
Volume 0.1 32.0 1.00 (1.00-1.00) 0.427
SUVmean 0.6 32.3 0.97 (0.95-0.99) 0.005
SUVpeak 2.2 27.8 0.98 (0.97-0.99) 0.147
SUVmax -0.9 52.1 0.87 (0.77-0.93) <0.001
TBRmean 2.2 41.7 0.96 (0.92-0.98) <0.001
TBRpeak 3.7 38.1 0.97 (0.94-0.98) <0.001
TBRmax 0.7 58.9 0.88 (0.78-0.94) <0.001
TLUSUV 0.7 30.3 0.99 (0.98-0.99) 0.616
TLUTBR 2.2 41.3 0.97 (0.95-0.99) 0.699

Patient-level
TTV 1.7 13.9 1.00 (1.00-1.00) 0.152
TTBSUV 1.9 23.4 0.99 (0.98-1.00) 0.952
TTBTBR 3.9 37.6 0.98 (0.92-1.00) 0.588
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Abstract

Quantitative [18F]-Prostate Specific Membrane Antigen (PSMA) analysis may 
provide for non-invasive and objective risk stratification of primary prostate cancer 
(PCa) patients. We determined the ability of machine learning-based analysis of [18F]
PSMA PET radiomic features to predict metastatic disease or high-risk pathological 
tumor features. Also, we evaluated the performance of these models with respect to 
tumor delineation method and use of partial-volume correction (PVC).
Methods: 76 consecutive patients with intermediate- to high-risk PCa scheduled 
for robot-assisted radical prostatectomy with extended pelvic lymph node dissection 
prospectively underwent pre-operative [18F]-PSMA PET-CT using [18F]-DCFPyL. 
Primary tumors were delineated using 50 to 70% peak isocontour thresholds on 
PET images with and without PVC. 480 standardized radiomic features were 
extracted per tumor. Random Forest models were trained to predict lymph node 
involvement (LNI), presence of any metastasis, Gleason score ≥8, and presence of 
extracapsular extension (ECE). The impact of several dimension reduction methods 
and use of oversampling on model predictions was evaluated. Model performance 
was validated using 50-times repeated 5-fold cross-validation yielding the mean 
receiver-operator characteristic curve AUC. Random permutations were performed 
to assess cross-validated AUC significance. Differences between the predictive value 
of radiomics and standard PET metrics were compared using the median p-value 
from deLong testing within cross-validation.
Results: The radiomics-based models were significantly able to predict LNI 
(AUC 0.86±0.15, p<0.01), any metastasis (AUC 0.86±0.14, p<0.01), Gleason score 
(0.81±0.16, p<0.01), and ECE (0.76±0.12, p<0.01). Model performance and stability 
for LNI and any metastasis prediction seemed to improve using PVC and a higher 
(70%) delineation threshold. PVC affected all feature types, while delineation 
thresholds mainly affected morphological features. Machine learning pre-processing 
methods had a minor impact on model performance. AUCs using standard PET 
metrics were non-significantly lower than those of radiomics-based models.
Conclusion: Machine learning-based analysis of [18F]PSMA PET-CT radiomics can 
significantly predict metastatic disease and high-risk pathological tumor features in 
primary PCa patients. Future multicenter external validation is needed to determine 
the benefits of using radiomics versus standard PET metrics in clinical practice.
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Introduction

In primary prostate cancer (PCa), risk stratifi cation is crucial to determine 
prognosis and treatment strategies. Extended pelvic lymph node dissection 
(ePLND) is the current standard for identifi cation of lymph node metastases (1-
3). Th is procedure, however, is invasive and associated with complications such as 
lymphocele, venous thrombosis, and extended hospital stays (4,5). Hence, patients 
at risk of lymph node involvement (LNI) are selected using clinical nomograms, 
but these lack adequate performance(3). Also, histopathology data (e.g. Gleason 
score: GS) used as input for these nomograms are based on error-prone prostate 
biopsies (6). Taken together, a novel biomarker able to pre-operatively stratify 
high and low-risk patients is highly needed.

Prostate-Specifi c Membrane Antigen (PSMA) is a type-II transmembrane 
protein known to be highly overexpressed on PCa cells (7). Kaittanis et al. recently 
demonstrated that PSMA is a stimulator of oncogenic signaling, clarifying the role 
of PSMA in PCa progression(8). Moreover, primary tumor PSMA expression on 
immunohistochemistry was a prognostic marker for metastasis-free, recurrence-
free, disease-free, and overall survival (8-11). Th erefore, quantitative measures of 
PSMA-expression are promising biomarkers for risk stratifi cation of primary PCa 
patients.

PSMA-expression may be quantifi ed and characterized on PSMA-ligand 
Positron Emission Tomography Computed-Tomography (PET-CT) through 
radiomics analysis (12). Radiomics entails high-throughput image data mining 
aiming to capture a tumor’s phenotype - potentially refl ecting its metastatic 
tendency (13,14). In contrast with biopsies, radiomics may characterize local 
tumor phenotype based on the entire lesion instead of through tumor subsamples. 
Due to the high dimensionality of radiomics data, machine learning (ML) is 
necessary to translate radiomics data into clinically actionable predictions (15). In 
radiomics validation, tumor segmentation and image processing methods must be 
considered as these may aff ect radiomics data and their predictive value (16,17).

In this study we investigated whether ML-based analysis of pre-operative 
[18F]PSMA PET-CT radiomics could predict metastatic disease and high-risk 
local tumor features in patients with intermediate- and high-risk primary PCa 
scheduled to undergo robot-assisted radical prostatectomy and ePLND. Secondly, 
we assessed the infl uence of tumor delineation method and image processing on 
model predictions.
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Materials and methods

Patients
Between November 2017 and August 2019, 76 consecutive patients prospectively 
underwent pre-operative 18F-DCFPyL PET-CT for lymph node and distant 
metastasis detection (NTR7623). Inclusion criteria were: 1) biopsy-proven 
prostate adenocarcinoma and 2) clinical indication for robot-assisted radical 
prostatectomy with ePLND based on either an ≥8% risk score of LNI based on the 
Memorial Sloan Kettering Cancer (MSKCC) nomogram or any high-risk feature 
(≥T3, Gleason >7, PSA>20 ng/mL). Patients with distant metastases on PET 
for whom surgery was omitted were only included in case of histopathological 
confirmation. Only patients who underwent [18F]DCFPyL PET-CT at the 
Amsterdam UMC were included. Surgical tissue specimens (prostate and lymph 
nodes) were reviewed according to international guidelines by uropathologists 
(3). Patients provided written informed consent for collection and analysis of 
imaging, clinical, and pathology data. The Amsterdam UMC medical ethical 
committee provided formal approval (2017.543).

Outcomes	
All references outcomes were pathology-proven, and dichotomized for ML-based 
classification: post-operative GS (<8 versus ≥8), presence of extracapsular tumor 
extension (ECE; ≤pT2b versus ≥pT3a), pathology-proven LNI (N0 versus N1), 
and presence of any metastasis (pN0 and cM0 versus pN1 and/or pM1).

PET-CT Imaging
Patients were scanned on a time-of-flight PET-CT system (Ingenuity, Philips 
Healthcare) with European Association of Nuclear Medicine Research Ltd. (EARL) 
accreditation (18). A CT scan was acquired at 120kV and 30-110 mAs. Next, whole-
body PET was performed at 122.5±11.1 min post-injection of 310.1±16.2 MBq 
[18F]DCFPyL, from mid-thighs to skull base, at 4min per bed position. Images 
were reconstructed using iterative ordered subset expectation maximization 
reconstruction (3 iterations, 33 subsets) with 4mm voxel dimensions, with 
corrections for decay, scatter, random coincidences, and attenuation correction. 
Lucy-Richardson iterative deconvolution (10 iterations) was applied for partial-
volume correction (PVC) (19). The FWHM for PVC was calibrated at 7.0mm 
using a NEMA NU2 Quality Phantom, such that signal recovery was in line with 
EARL2 guidelines (20). Original and PVC images were analyzed separately.
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Tumor Delineation
An experienced nuclear medicine physician (DO) reviewed all [18F]PSMA PET-
CT scans for intra-prostatic tumor localization. A mask was manually drawn 
around PET-avid intraprostatic tumor volumes to constrain region-growing 
and prevent inclusion of bladder activity. All masks were reviewed by a second 
observer. If needed, consensus was reached through joint revision. Next, tumors 
were delineated using a region-growing algorithm with a background-adapted 
peak threshold (19). Th e thresholds were varied incrementally from 50% to 70% 
(5% intervals). Delineation was performed on original and PVC scans separately 
to mimic clinical reality.

Radiomics Extraction
Radiomic features were extracted from the delineated tumors following 
descriptions of the Image Biomarker Standardization Initiative, as presented by 
Zwanenburg et al., using the RaCaT soft ware (21,22). Voxel values were scaled 
to the net injected tracer dosage per kilogram bodyweight (Standardized Uptake 
Value, SUV). Image voxels and volumes of interest were resampled to 2x2x2 mm 
isotropic voxels using tri-linear interpolation as recommended (23,24). Per tumor 
we extracted 480 radiomic features on intensity (n=50), morphology (n=22), and 
texture (n=408). Intensity features encompassed peak intensity, intensity-based 
statistics, intensity-volume histograms, and intensity histograms. 2D and 3D 
textural features based on grey-level co-occurrence matrices (GLCM), grey-level 
run length matrices (GLRLM), grey-level size zone matrices (GLSZM), grey-level 
distance zone matrices (GLDZM), neighborhood grey-tone diff erence matrices 
(NGTDM), and neighboring grey-level dependence matrices (NGLDM) were 
extracted. Before textural feature calculation, images were discretized using a 
fi xed bin width of 0.25 SUV starting at SUVmin (23). To compare with radiomics, 
from the original and PVC PET images we also extracted standard PET features 
SUVmean, SUVpeak, SUVmax, PSMA-positive tumor volume, and PSMA-total 
lesion uptake (the product of SUVmean and volume) and used these data as input 
for the machine learning pipeline.

Machine Learning
ML algorithms may handle high-dimensional data and/or data with complex non-
linear relations with clinical outcomes. We constructed a ML framework in Python 
3.6 using Scikit-learn library 0.21 (pipeline in Fig. 6.1) (15,25). As ML model we used 
a Random Forest classifi er (1000 decision trees), a commonly used non-parametric 
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ensemble algorithm (26). To assess model generalizability (i.e. its prediction 
performance on unseen data), we used a stratified 5-fold cross-validation approach. 
In each cross-validation fold the Random Forest was trained on 80% of samples and 
validated on an unseen subset of 20% of samples. This was repeated until each fold 
had served as the test set. Finally, this 5-fold cross-validation was repeated 50 times 
to further limit chance findings. Features were scaled using a z-score normalization. 
Model hyperparameters (tree depth, splitting criterion) were optimized within each 
training set in nested cross-validation using a randomized search algorithm. All 
pre-processing and optimization steps were performed within each training fold to 
prevent leakage of test data into the trained model (Fig. 6.1).

Train fold

5-fold cross-validation

All data

Data normalization

Dimension reduction

Hyperparameter optimization

Oversampling

 Random Forest
       training

Transform

Transform

       Trained 
 Random Forest

Test

Cross-validation repeated 50x

Performance score

5x score from 
cross-validation

250x score after
repeated cross-validation

Mean score ± SD

1.

2.

3.

4.

5.

train foldTrain fold Train fold Train fold Test fold

Figure 6.1: Schematic overview of the implemented machine learning pipeline. Data pre-processing and 
model tuning are performed on the training dataset in repeated cross-validation to prevent leakage of 
information between training and testing data.
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Dimensionality Reduction. To mitigate model overfi tting and potentially improve 
generalizability, we applied three diff erent strategies for dimension reduction 
that reduced the number of features used as input for the Random Forests: i) a 
principal component analysis (PCA) retaining 95% of the observed variance, ii) 
a recursive feature elimination approach using a Random Forest in nested cross-
validation, and iii) a univariate selection method based on ANOVA testing that 
retained the top 10 percentile features. Models were also trained without any 
dimensionality reduction. When using standard PET metrics as model input, no 
dimension reduction was applied because of the small number of metrics.

Oversampling. In case of strong class imbalance, a trained ML model may have 
high accuracy in classifying the majority class, but perform poorly for classifying 
the minority class. Th erefore, oversampling was applied in each training set by 
generation of ‘synthetic’ samples with interpolated feature values (SMOTE) (27). 
Models were also trained without oversampling.

Feature Importance. To explore feature importance, coeffi  cients representing the 
relative importance of each feature within a trained Random Forest model can 
be derived (the sum of coeffi  cients being equal to 1.0). Per outcome we visualized 
the top 10% coeffi  cients (n=48) from a Random Forest trained on the entire 
dataset using the feature selection method that yielded the highest predictions per 
outcome (excluding PCA as this does not yield interpretable features).

Statistical Analysis
To evaluate model performance, we generated the Receiver-Operator Characteristic 
curve and calculated the area-under-the-curve (AUC). Th e Brier score was used to 
assess model calibration and refi nement (0.0 being optimal) (28). For each score, 
we calculated the mean with standard deviation over the repeated cross-validation 
folds. Random permutations were used to test whether the models performed 
signifi cantly better than random guessing. To this end, labels were randomly 
shuffl  ed before performing 10-times repeated 5-fold cross-validation, resulting in 
a ‘random guessing’ cross-validated AUC. Th is was repeated 100 times, yielding 
a p-value defi ned as the fraction of repeated cross-validation iterations in which 
the permutated mean AUC was equal or higher than the actual mean AUC (29). 

Comparing the cross-validated AUCs of two machine learning models is a 
known diffi  culty due to the complex relations between the trained models and the 
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inherent dependency of train-test iterations. Still, to be able to compare the mean 
AUCs of radiomics versus standard PET metrics, we used a framework developed 
by Van De Wiel et al. (30): in each fold the AUCs of two models were compared 
statistically using DeLong test (31), and the median of the p-values over the 
different folds was reported as the final p-value. A disadvantage of this method is 
that each p-value is based on the test set of a single fold only, resulting in a rather 
low power to detect true differences. 

Intraclass correlation coefficients (ICC: 2-way mixed model, absolute 
agreement) were calculated for each radiomic feature between original versus 
PVC images (per delineation threshold), and between delineation thresholds. 
ICCs were categorized as poor (ICC<0.5), moderate (0.5<ICC<0.75), good 
(0.75<ICC<0.9), or excellent (ICC>0.9) (32).

Results

Patients
We included 76 patients (Table 6.1), of which 71 ultimately underwent surgery. 
Six patients had uptake suspicious for distant metastases on PET (n=2 nodal, 
n=1 bone, n=3 both), all of which were biopsied. In 4 of these patients biopsies 
confirmed malignancy and surgery was omitted; in 2 patients (n=1 bone, n=1 
nodal lesion) biopsy did not confirm malignancy and surgery was performed 
as planned. Additionally, 1 patient had biopsy-proven LNI within the ePLND 
template, but surgery was omitted due to additional PSMA-positive nodal 
metastases outside the ePLND template. The final pathology findings are listed in 
Table 6.2.

Impact Of PVC And Delineation Threshold
Delineated tumor volumes for each delineation threshold with and without 
PVC are shown in Supplemental Fig. Most radiomic features had a moderate 
agreement between original and PVC data (Fig. 6.2A). Delineation thresholds 
mainly affected morphological features, while intensity and textural features were 
less affected (Fig. 6.2B). For LNI and any metastasis prediction, PVC and a higher 
delineation threshold tended to improve model stability, reducing the width of the 
cross-validation AUC distributions (Figs. 6.3A-B). For GS and ECE predictions, 
there was no optimal delineation threshold and PVC had no apparent benefit 
(Figs. 6.3C-D).
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Table 6.1: Patient characteristics.

Number of patients n=76
Age (mean ± SD) 66 ± 6 years

PSA at PET (median, [range]) 11 (4-70) ng/ml
ISUP Gleason grade (biopsy)

Group 1
Group 2
Group 3
Group 4
Group 5

n (%)
4 (5.3%)

21 (27.6%)
19 (25.0%)
21 (27.6%)
11 (14.5%)

Positive biopsies  %
(mean ± SD)

54.7% ± 27.3%

Clinical T-stage
T1c
T2a
T2b
T2c
T3a

n (%)
26 (34.2%)
24 (31.6%)
12 (15.8%)
11 (14.5%)

3 (3.9%)

Table 6.2: Final pathological fi ndings. 71 patients underwent robot-assisted radical prostatectomy with 
ePLND; 1 patient had biopsy-proven LNI but did not undergo surgery; 4 patients did not undergo surgery 
due to proven distant metastases. Pathological N-stage refers to LNI, ISUP grade 4-5 represent Gleason ≥8, 
and ≥T3 to ECE.

n (%)
ISUP Gleason grade

Group 1
Group 2
Group 3
Group 4
Group 5

1 (1.4%)
27 (38.0%)
24 (33.8%)

5 (7.0%)
14 (19.7%)

Pathological T-stage
T2a-c
T3a-b

T4

35 (49.3%)
35 (49.3%)

1 (1.4%)
Pathological N-stage

N0
N1

62 (86.1%)
10 (13.9%)

Biopsy-proven M-stage
M0
M1

72 (94.7%)
4 (5.3%)

Resection margin status
R0
R1

43 (60.6%)
28 (39.4%)
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Figure 6.2: Agreement of radiomic features (A) between original versus PVC images at each delineation 
threshold, and (B) between the applied delineation thresholds for original and PVC images. Shown are the 
relative distributions of the radiomics ICC values per ICC category (poor, moderate, good or excellent).
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Figure 6.3: Boxplots of cross-validation AUCs for (A) LNI, (B) any metastasis, (C) Gleason score ≥8, and 
(D) ECE prediction. Results are shown for each delineation threshold on both original and PVC PET 
images, for all dimension reduction methods. Also, AUCs of standard PET metrics are shown in grey.
Radiomics results in (A) and (B) with use of oversampling, results in (C) and (D) without use of oversampling. 
Standard PET results in (A) and (D) with use of oversampling, results in (B) and (C) without use of 
oversampling. Boxplots are outlier-trimmed (±2.5 percentile).
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Impact Of Data Pre-Processing
Dimension reduction had a limited eff ect on mean AUCs, with median diff erences 
of -0.02 (range -0.11 to 0.07), -0.02 (range -0.07 to 0.04), -0.02 (range -0.11 to 
0.04), and 0.00 (range -0.11 to 0.04) for LNI, metastasis, GS, and ECE prediction, 
respectively. Overall, oversampling tended to slightly increase AUCs for LNI and 
metastasis prediction, with a median diff erence in AUCs of +0.02 (range -0.06 
to 0.07) and +0.02 (range -0.01 to 0 0.06), respectively. Generally, GS and ECE 
prediction did not benefi t from oversampling, with a median diff erence in AUCs 
of 0.0 (ranging -0.02 to 0.05) and 0.0 (no range), respectively.

Final Predictions
Overall, the highest AUC of LNI prediction was 0.86±0.15 (p<0.01; Fig. 6.4: 
Youden sensitivity and specifi city of 65% and 91%, respectively). A similar 
AUC of 0.86±0.14 (p<0.01) was found for prediction of any metastasis (Fig. 6.4:  
Youden sensitivity and specifi city of 62% and 99%, respectively). Th e AUC of GS 
≥8 prediction was 0.81±0.16 (p<0.01; Fig. 6.4: Youden sensitivity and specifi city of 
69% and 90%, respectively). Th e AUC for ECE prediction was 0.76±0.12 (p<0.01; 
Fig. 6.4: Youden sensitivity and specifi city of 47% and 99%, respectively).

All LNI, metastasis, and GS AUCs were highest using univariate feature 
selection and minority class oversampling, on PVC images with a 70% (LNI and 
metastasis) or a 60% (GS) delineation threshold. ECE prediction AUC was highest 
using RFE-RF, no oversampling, and a 60% threshold on original images. Using 
these settings, Brier scores for LNI (0.09±0.05), any metastasis (0.10±0.04), and 
GS prediction (0.15±0.06) were low, indicating adequate model calibration. For 
ECE prediction, Brier scores were higher (0.21±0.05). 

Feature Importance
For both LNI and metastasis prediction, intensity-based features diff erence volume 
at intensity fraction (importance coeffi  cient 0.14 and 0.11, respectively) and 
volume at intensity fraction 10 (importance coeffi  cient 0.11 and 0.11, respectively) 
were most important, followed by multiple textural features and in a lesser extent 
several morphological features (Fig. 6.5). For GS prediction, textural features
were evidently most important, specifi cally zone size non uniformity (importance 
coeffi  cient 0.07), zone distance non uniformity (importance coeffi  cient 0.06), and 
grey level variance (importance coeffi  cient 0.05), with minor contributions from 
intensity and morphological features. For ECE prediction, again the diff erence 
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volume at intensity fraction (importance coefficient 0.03) and volume at intensity 
fraction 10 (importance coefficient 0.02) features were among the most important 
features, along with grey level non uniformity (GLSZM; importance coefficient 0.02). 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1-specificity

Se
ns
iti
vi
ty

LNI                            
Metastatic disease
Gleason score ≥8 
ECE

Outcome: AUC:

0.86 ± 0.14   
0.86 ± 0.15   

0.81 ± 0.16   
0.76 ± 0.12   

Figure 6.4: Mean cross-validated ROC curves of radiomics-based ML models. Random forest with 
univariate feature selection and minority class oversampling for LNI, metastasis, and GS prediction. 
Random forest RFE-RF feature selection without oversampling for ECE prediction.
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Figure 6.5: Feature importance coefficients from Random Forests trained to predict (A) LNI, (B) any 
metastasis, (C) Gleason score ≥8, and (D) ECE. Each bar represents the relative feature importance 
coefficient from a single radiomic feature. Shown are the top 10 percentile feature coefficients.
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Standard PET Metrics
For the models using standard PET metrics as input, the highest AUCs for LNI, any 
metastasis, GS, and ECE prediction were 0.77±0.21 (p=0.03), 0.81±0.16 (p<0.01), 
0.76±0.14 (p<0.01), and 0.67±0.14 (p=0.03), respectively. Diff erences between 
the highest mean AUCs of the standard PET metrics and radiomics models were 
-0.09 for LNI, -0.05 for any metastasis, -0.05 for GS, and -0.09 for ECE prediction. 
While these AUCs are consistently lower than those of the radiomics-based 
models, diff erences were not statistically signifi cant (p=0.25-0.29). Still, relative 
standard deviations were higher (except for GS). Also, the average Brier scores 
of these models for these outcomes were higher than those of radiomics-based 
models (0.14±0.06, 0.11±0.04, 0.17±0.05, and 0.24±0.06, respectively).

Discussion

Th e present study demonstrates that [18F]PSMA PET-CT radiomics can predict 
disease risk in primary PCa patients before treatment, rendering this approach 
clinically attractive to identify low-risk patients for whom ePLND will be 
unnecessary (Fig. 6.6). Our fi ndings indicate that PSMA-expression detected on 
PET is related to both local tumor histopathology and metastatic tendency. For 
metastasis prediction, a higher tumor delineation threshold and PVC benefi tted 
model stability. Th e use of diff erent ML pre-processing methods (dimension 
reduction and oversampling) did not substantially aff ect model prediction 
performance. Standard PET metrics yielded non-signifi cantly lower AUCs than 
radiomics-based models, a fi nding that will warrant confi rmation in future 
external validation studies.
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Figure 6.6: Illustration of a potential workfl ow for using 18F-PSMA radiomics and machine learning in a 
clinical setting.
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Kaittanis et al. observed that PSMA-expression on [68Ga]PSMA PET/MR 
correlated with phosphorylation of Akt, a kinase involved in oncogenic signaling 
that drives PCa progression, but less so with GS and PSA (8). This might explain 
why intensity-based features were most important in prediction of metastatic 
disease (Fig. 6.5). Moreover, a recent study observed that PSMA-expression on 
[68Ga]PSMA PET correlated with genomic index lesions (33). While PSMA-
expression correlated with GS on immunohistochemistry, the association 
between PSMA uptake on PET (expressed in SUVmax) and GS is not fully evident 
(34-36). This may indicate that information on the spatial distribution of PSMA-
expression is needed. Indeed, textural features appeared to be most important 
within the Random Forest models for GS prediction (Fig. 6.5). As texture on PET 
may be partly related to tumor volume, some caution regarding interpretation of 
these data is warranted. Still, morphological features appeared to be of limited 
value for GS prediction. Taken together, PSMA PET radiomics may capture tumor 
aggressiveness by carrying genomic as well as histopathological information. A 
full head-to-head comparison of radiomics with genomic, molecular (e.g. PSMA- 
and androgen receptor expression (37)), and histopathological features will be 
necessary to establish the biological basis of PSMA PET radiomics.

Zamboglou et al. similarly investigated [68Ga]PSMA PET radiomics for 
prediction of GS ≥8 and LNI, observing similar validation AUCs for GS (AUC 0.84) 
and LNI prediction (AUC 0.85) (38). However, no cross-validation was applied to 
mitigate bias induced by a limited sample size. Also, the authors selected a single 
radiomic feature for LNI prediction based on its correlation with GS, which might 
explain why the AUCs of LNI and GS prediction were similar. Recently, Ferraro et 
al. evaluated whether standard PET metrics from [68Ga]PSMA could predict LNI, 
and observed AUCs of 0.70-0.76, similar to the AUCs we observed for standard 
PET metrics (39). While PSMA PET radiomics seem to outperform standard PET 
features for prediction of LNI, in our study the differences were not significant, 
which is at least partly due to the limited power of statistical testing in cross-
validation.

Validation of radiomics for predictive modelling warrants that 
methodological PET factors are taken into account (17). To date, use of PVC is not 
often considered in PET radiomics studies (40). PVC could improve accuracy of 
intensity feature measurements in small and heterogeneous lesions, and improve 
textural features calculation by reducing spill-over between voxels. Also, as PVC 
increases tumor-to-background contrast it may improve tumor delineation, which 
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may be of particular benefi t for low-grade prostate cancer lesions that tend to be 
less avid on PSMA PET. We observed that PVC had a substantial impact on most 
radiomics features (Fig. 6.2A). Also, use of PVC tended to increase the predictive 
value of radiomics for LNI and any metastasis by improving model stability.

Between prediction of metastatic disease and histopathological features 
there was no single delineation threshold optimal for both, which may be due 
to the diff erent importance of features between these outcomes. For metastasis 
prediction, a higher delineation threshold seemed to benefi t model performance, 
while for GS and ECE prediction no clear trend was observed between the diff erent 
thresholds and use of PVC. Specifi cally for multicenter settings, harmonization 
of tumor delineation method and use of PVC data will be crucial. In order to 
facilitate radiomics analysis, it may be an option to extract radiomics features 
using a 70%peak threshold on PVC-images for all predictions as this approach 
tended to improve LNI and metastasis prediction AUCs and model stability 
(Fig. 6.3), and had minimal eff ect on the other outcome predictions. 

Some studies have observed that in radiomics analyses, calculation of 
textural features might be biased in small tumors or provide little added value 
above lesion volume itself (41,42), suggesting small lesions might need to be 
excluded from such studies. Still, the redundancy of those features will depend 
on a complex relationship between lesion size distributions, level of correlation 
between the individual features, and the relative importance of those features 
within the prediction models. Perhaps, a better approach to determine the clinical 
added value of small tumor PET radiomics might be to determine its predictive 
value and benchmark this against that of basic PET features. Also, a potential 
benefi t of PVC needs to be considered. Despite analyzing predominantly small 
lesions (see Supplemental Fig.), we did fi nd signifi cant predictive value in the 
radiomics data, with (non-signifi cantly) higher AUCs than based on standard 
PET-metrics. Also, use of PVC seemed to benefi t LNI and metastasis prediction. 
Hence, small tumor radiomics and use of PVC may indeed allow for worthwhile 
radiomics studies in cancers with predominantly small lesions. Still, future 
multicenter external validation is needed to demonstrate true benefi ts of PSMA-
radiomics over standard PET metrics in these small prostate cancer lesions, 
especially since using diff erent PET systems with potentially diff erent imaging 
protocols might negatively aff ect radiomics-based predictions more than those 
based on standard PET features.
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Our study has several limitations. First, the data set was relatively small. 
Still, the significant high cross-validated prediction scores indicate that even for 
such a training dataset size the ML models were able to identify high-risk patients 
in independent data. Enlargement of the current dataset will likely improve model 
stability and potentially model calibration. Finally, external model validation 
was not yet performed. In such analysis, harmonization of image processing and 
tumor delineation method is recommended (23).

Conclusions

[18F]PSMA PET radiomic features analyzed with ML are significantly predictive 
for LNI, presence of any metastasis, and high-risk pathological tumor features in 
primary PCa patients. These data demonstrate that the spatial distribution and 
levels of PSMA expression quantified on [18F]PSMA PET are related to both tumor 
histopathological grade and metastatic tendency. For prediction of nodal and/
or distant metastatic disease, PVC and a higher segmentation threshold seemed 
to improve model stability. Future multicenter external validation is needed to 
determine the benefits of using radiomics versus standard PET metrics.
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Abstract

Positron-emission tomography can be useful in oncology for diagnosis, (re)
staging, determining prognosis, and response assessment. However, partial-
volume effects hamper accurate quantification of lesions <2-3x the PET system’s 
spatial resolution, the clinical impact of which is not evident. This systematic 
review provides an up-to-date overview of studies investigating impact of partial-
volume correction (PVC) in oncological PET studies. 
Methods: We searched in PubMed and Embase databases according to the 
PRISMA statement, including studies from inception till May 9th 2016. Two 
reviewers independently screened all abstracts and eligible full-text articles, and 
performed quality assessment according to QUADAS-2 and QUIPS criteria. For a 
set of similar diagnostic studies, we statistically pooled the results using bivariate 
meta-regression.
Results: Thirty-one studies were eligible for inclusion. Overall, study quality was 
good. For diagnosis and nodal staging, PVC yielded a strong trend of increased 
sensitivity at expense of specificity. Meta-analysis of six studies investigating 
diagnosis of pulmonary nodules (679 lesions) showed no significant change in 
diagnostic accuracy after PVC (p=0.222). Prognostication was not improved 
for non-small cell lung cancer and esophageal cancer, whereas it did improve 
for head-and-neck cancer. Response assessment was not improved by PVC for 
(locally advanced) breast cancer and rectal cancer, and was worsened in metastatic 
colorectal cancer. 
Conclusions: The accumulated evidence to date does not support routine 
application of PVC in standard clinical PET practice. Consensus on the preferred 
PVC methodology in oncological PET should be reached. Partial-volume 
corrected data should be used as adjuncts, but not yet replace, uncorrected data.
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Introduction

Positron-emission tomography (PET) enables in-vivo assessment of metabolic 
and intracellular processes. Whereas in clinical practice PET is predominantly 
used to qualitatively assess tracer uptake, PET(/CT) may also serve as a surrogate 
quantitative biomarker of, for example, tumour metabolism and proliferation. 
Interest into quantitative approaches of tumour assessment has grown 
considerably, for discriminating between benign and malignant lesions, staging, 
prognostication, and determining or predicting therapy response (1-4). 

Accurate quantifi cation of metabolic volumes <2-3x the spatial resolution 
of PET is hampered by partial-volume eff ects, leading to underestimations of 
standardized uptake values (SUV), and possibly compromising lesion detection 
(5,6). Many methods for partial-volume correction (PVC) have been advocated 
(7). Th e simplest way is to use recovery coeffi  cients obtained from phantom 
experiments, which assumes that true metabolic volume is known and that lesions 
are spherically shaped with homogeneous uptake. More sophisticated methods 
have been developed, but all suff er from limitations (7,8). Voxel-wise resolution 
recovery methods, incorporating the point spread function (PSF) within iterative 
reconstruction (9) (PSF reconstruction) or performing post-reconstruction 
iterative deconvolution (10), could improve both qualitative and quantitative reads. 
To date, consensus on standardized application of PVC in oncological PET/CT 
studies is lacking, and perhaps as a consequence PVC is not yet routinely applied. 
In fact, most current clinical quantitative PET studies merely exclude small lesions 
(e.g. <2cm in diameter), as recommended in the PERCIST criteria (3). 

Th e clinical impact of PVC in oncological setting, and thus the need for 
standardized application, is not yet fully elucidated (7). We performed a systematic 
review and meta-analysis to assess the impact of PVC in clinical PET studies, 
focusing on diagnosis, staging, prognostication, and response assessment. 

Materials and methods

Search strategy
Th is systematic review was conducted in accordance with the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. A 
comprehensive search (Supplemental Tables 1 and 2, available at https://www.
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springer.com/journal/259) was performed in PubMed and Embase.com from 
inception to May 9th 2016, in collaboration with a medical librarian (LJS). Search 
terms included controlled terms (MesH in PubMed, EMtree in Embase) as well as 
free text terms. The following terms were used (including synonyms and closely 
related words) as index terms or free-text words: ‘positron-emission tomography 
or ‘PET’ and ‘partial volume correction’ or ‘point spread function reconstruction’ 
and ‘neoplasms’ or ‘cancer’. 

Selection process
Abstracts and titles of all studies retrieved from the search were independently 
screened by two researchers (MCFC and GMK). Afterwards, eligible articles were 
studied in full-text. In case of differences in judgment, consensus was reached 
through discussion. Cross-referencing was performed to further identify relevant 
articles.

Inclusion criteria were: studies applying PVC in clinical PET studies, using 
oncological patients, reporting PET data with and without PVC, and investigating 
clinical impact of PVC on either diagnosis, staging, prognostication (reporting 
survival data), or response assessment.

Exclusion criteria were: reviews, letters, editorials, conference abstracts, 
case reports, full-text not available or not in English, no adequate reference data, 
no description of, or reference to, PVC method, combined PVC and motion blur 
correction method, or overlapping patient cohort with other included study.

Quality assessment
Quality of included articles was assessed (independently by MCFC and GMK) 
according to the QUADAS-2 (11) (n=25) or QUIPS (12) (n=12) tools. QUADAS-2 
assesses bias and applicability of diagnostic studies, whereas QUIPS assesses bias 
of studies investigating prognostic factors. Staging and response assessment 
studies were assigned to either of the quality assessment tools. Consensus was 
reached through discussion.

Data-extraction and meta-analysis
Both researchers independently extracted results regarding impact of PVC 
on diagnostic accuracy (for diagnosis and staging), prediction of survival (for 
prognostication), and response assessment. Measures of diagnostic accuracy 
were derived with and without PVC. If test characteristics were described for 
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subgroups, overall measures of accuracy were calculated when possible. When 
p-values of diff erences in accuracy between uncorrected and PVC data were not 
reported, these diff erences were deemed not statistically signifi cant. Descriptive 
data regarding cancer type, number of patients, lesion sizes, scanner type, and 
PVC method were also extracted. Unless stated otherwise, we presented data on 
SUV quantifi cation.

Diagnostic studies on the same topic were pooled using bivariate random 
eff ects meta-regression analysis, which is the recommended method for meta-
analysis of diagnostic studies (13). Th is method provides summary estimates of 
sensitivity and specifi city with 95% confi dence intervals, taking into account the 
correlation between sensitivity and specifi city and heterogeneity in results between 
studies. We tested for diff erences in overall diagnostic accuracy between diff erent 
diagnostic tests using a likelihood ratio test, comparing models that included and 
excluded a covariate for the diagnostic test. For illustrative purposes, summary 
receiver-operator-characteristics (ROC) curves were calculated according to the 
Moses-Littenberg method (14). We used Stata soft ware (StataCorp. 2015. Stata 
Statistical Soft ware: Release 14. College Station, TX: StataCorp LP.) for statistical 
analyses. 

Results

Study selection
Pubmed and EMBASE searches yielded 371 potentially eligible studies (Figure 7.1). 
Th ree studies were additionally found through reference screening. Two-hundred 
and ninety-three abstracts were excluded based on eligibility criteria, leaving 
81 for full-text screening. For 19 (5.1%) abstracts, judgments were confl icting, 
which were resolved through discussion. Aft er full-text reviewing, 31 studies 
met eligibility criteria (Figure 7.1). Studies on diagnosis (n=10), staging (n=10), 
prognostication (n=6), and response assessment (n=5) are presented in Tables 7.1-
7.4, respectively. Supplemental Table 3 contains the PVC and tumour delineation 
methodologies, reconstruction settings, full-width at half maximums, and voxel-
sizes of each included study. Th irty studies used 18F-FDG as radiopharmaceutical, 
one study used 18F-Choline. 
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Figure 7.1: PRISMA flowchart.

Quality assessment
For extensive descriptions of the QUADAS-2 and QUIPS scoring criteria, we refer 
to their respective primary publications (11,12).

Considering QUADAS-2 (Figure 7.2a), the ‘reference standard’ and ‘patient 
selection’ items resulted in low risk of bias (high risk of bias in 14% of studies for 
either item). Elevated risk of bias for the ‘reference standard’ item was caused by 
use of multiple reference tests within the same study. Risk of bias in index test 
was high in 24% of studies due to use of data-driven, instead of pre-defined, SUV 
cut-offs. Applicability concerns regarding patient selection were mainly caused by 
large tumour size spectra and unspecified tumour sizes. 

Using QUIPS (Figure 7.2b), low risk of bias scores were found in the 
majority of the studies for the items measurement of outcome and prognostics 
factors, study attrition, and statistical analysis and reporting. Several studies did 
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not adequately investigate potential factors of study confounding, which resulted 
in a moderate risk of bias in 40% of studies and high risk of bias in 40% of studies. 
Unclear descriptions of included patient cohorts (‘study participation’ item) 
resulted in moderate risk of bias in 40% of included studies.

Figure 7.2: Results of quality assessment according to QUADAS-2 (a) and QUIPS (b) tools.
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Table 7.3: Eligible studies evaluating prognostication, in chronological order. 

Ref. No. of 
patients

Cancer type No. of 
lesions

Spectrum of tumor sizes (mm)* Effect on prognostication?

(35) 145 NSCLC n.s. median 30 (range 10-110) not improved
(37) 52 esophageal n.s. n.s. not improved
(38) 50 esophageal n.s. 39.9±36.1mL not improved
(36) 191 NSCLC n.s. median 23 (range 10-36) not improved
(39) 19 HNC 19 15.2±5.0 improved 
(40) 19 HNC 19 15±5 improved for subgroup

*Sizes are presented in mean±SD, unless stated otherwise. NSCLC = non-small cell lung cancer; mLN = 
lymph node metastases; HNC = head-and-neck cancer; n.s. = not specified.

Table 7.4: Eligible studies evaluating response assessment, in chronological order. 

Ref. No. of 
patients

Cancer 
type 

No. of 
lesions

Spectrum of tumor sizes 
(mL)*

Reference 
test

Effect on response 
assessment?

(41) 35 LABC n.s. n.s. clinical + 
pathologic

not improved

(42) 51 breast n.s. median 14 (range 2-227) pathologic not improved
(43) 28 LARC n.s. median 23 (range 2-397) pathologic not improved
(44) 40 mCRC 101 34.4±66.4 RECIST worsened 
(45) 19 NSCLC 24 median 6.95 (range 2.2-46) clinical PERCIST classification 

improved in 5 lesions, 
confirmed in follow-up

*Sizes are presented in mean±SD, unless stated otherwise, at baseline. LABC = locally-advanced breast 
cancer; LARC = locally-advanced rectal cancer; NSCLC = non-small cell lung cancer; mCRC = metastatic 
colorectal cancer; n.s. = not specified.

Diagnosis
Impact of PVC on diagnosis (Table 7.1, n=10) was investigated for pulmonary 
nodules (n=6), breast lesions (n=1), and lymphoma (n=3). PVC included recovery 
coefficient-method (n=9) and CT-volume-based PVC (n=1). All studies reported 
lesion sizes. One study stratified both uncorrected and PVC data for lesion size in 
secondary analysis.  

The six studies evaluating diagnostic accuracy of PET for pulmonary 
nodules were pooled (Table 7.1, Figure 7.3-7.4), including a total of 352 malignant 
and 327 benign lesions (15-20). Prevalence of malignancy ranged from 27-77% 
(mean 57%). Five studies applied an RC-method for PVC, one study applied a 
CT-volume-based correction. Thresholds of PET positivity were predefined in 
5/6 studies and data-driven in 1/6 studies. Predefined thresholds were similar for 
uncorrected and PVC data. Three studies used SUV 2.5 as predefined threshold 
(16,17,20). One study used SUV 2.0 and 2.5 as thresholds (19). One study used SUV 
1.5, 2.0, 2.5, and 3.0 as thresholds (15). In case of multiple predefined thresholds, 
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results of the SUVmax 2.5 threshold were used in meta-analysis (SUVmean 
for PVC data in Hickeson et al.) since this was reported in all 5 studies with 
predefi ned SUV thresholds. One study used data-driven thresholds specifi cally 
for uncorrected (SUV 2.4) and PVC data (SUV 2.9) (18). Pooled sensitivity and 
specifi city of uncorrected data were 81% (95%CI 70-89) and 70% (95%CI 48-
86), respectively (Figure 7.5). Pooled sensitivity and specifi city of partial-volume 
corrected data were 91% (95%CI 83-95) and 60% (95%CI 37-79), respectively 
(Figure 7.4). No signifi cant change in diagnostic accuracy aft er PVC was found 
(p=0.222), using the SUV thresholds as described above. One of the pulmonary 
studies (by Hickeson et al.) stratifi ed both uncorrected and corrected data for 
lesion size (15). Th e authors observed that for lesions <2cm accuracy increased 
from 59% to 85% using SUV cut-off  2.5, while for lesions >2cm accuracy changed 
from 95% to 100%.

Figure 7.3: Forest plots presenting sensitivity (a) and specifi city (b) with 95% CI of discrimination between 
benign and malignant pulmonary nodules with 18F-FDG-PET.
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Figure 7.4: Summary ROC curves of discrimination between benign and malignant pulmonary nodules 
with 18F-FDG-PET.

With diagnosis of breast lesions, using data-driven SUVmean thresholds of 
2.1 for PVC and non-PVC, at a fixed specificity of 90%, PVC increased sensitivity 
from 69 to 81%, but the impact on accuracy was not statistically significant (21). In 
discriminating between aggressive and indolent non-Hodgkin lymphoma (NHL), 
PVC decreased specificity without affecting sensitivity (22). Similarly, PVC did not 
improve differentiating between high- and low-grade NHL (23). PVC to enabled 
differentiation between indolent NHL and Kikuchi-Fujimoto disease (24). 

Staging
Studies evaluating the effect of PVC on staging (Table 7.2, n=10) included 
lung (n=3), breast (n=2), thyroid (n=1), head-and-neck squamous cell (n=1), 
nasopharyngeal (n=1), prostate (n=1), and colorectal cancer (n=1). Applied 
PVC methods were the recovery coefficient-method (n=4), PSF reconstruction 
(n=4), iterative deconvolution (n=1) and geometric transfer matrix (n=1). Most 
of these studies did not specify SUV thresholds of test positivity for uncorrected 
and PVC data. Four studies did not specify lesions sizes. One study stratified both 
uncorrected and PVC data for lesion size in secondary analysis.

In non-small cell lung cancer (NSCLC) patients the association between 
primary tumour SUVmax and overall TNM stage disappeared after PVC (25). 
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For nodal staging using SUV, non-signifi cant trends of increased accuracy 
for breast, head-and-neck squamous cell, and thyroid cancer  (from 80%, 66% 
and 95% to 84%, 71% and 100%, respectively) (26-28), and decreased accuracy 
for nasopharyngeal and prostate cancer (from 84% and 85% to 73% and 80%, 
respectively) were observed (29,30). Th e study investigating accuracy of nodal 
staging of nasopharyngeal cancer did observe a large increase in accuracy, from 
14% to 71%, when stratifying for lesion size (6-7mm diameter) (29). 

With visual image interpretation, PSF reconstruction tended to increase 
accuracy of nodal staging in NSCLC, breast, and colorectal cancer (not statistically 
signifi cant) compared to non-PSF reconstruction (from 76%, 76%, and 89% to 
84%, 80%, and 92%, respectively) (31-33). Another study found no signifi cant 
diff erence in lung cancer (several types) overall staging accuracy between non-
PSF and PSF reconstruction (34).

Prognosis
Impact of PVC on prognostication (Table 3, n=6) was investigated for NSCLC 
(n=2), esophageal (n=2), and head-and-neck cancer (n=2). Applied PVC methods 
were the recovery coeffi  cient-method (n=4), iterative deconvolution (n=1), and 
mask-based PVC (n=1). Only prognostic studies providing survival data were 
included. One study did not specify lesion sizes. None of the studies stratifi ed 
results on PVC for lesion size in secondary analysis. 

PVC did not alter the association of SUVmax with disease-free survival 
of NSCLC (various histological types) patients in multivariate analysis (35,36). 
Similarly, in NSCLC patients (various histologic types) PVC did not alter the 
ROC area-under-the-curve of primary tumour SUVmax to diff erentiate between 
groups of patients in terms of disease-free and overall survival (36). Primary 
tumour SUVs, regardless of PVC, were insuffi  cient as prognostic markers in 
esophageal (adeno- and squamous cell) cancer in univariate and ROC analysis 
(37,38). In head-and-neck cancer patients, partial-volume-corrected SUV was 
signifi cantly diff erent between patient groups stratifi ed according to disease-free 
survival, whereas uncorrected SUV was not (39). In univariate analysis, PVC 
did not aff ect predictive value of head-and-neck cancer primary tumour SUV 
on local recurrence-free survival, distant metastasis-free survival, and disease-
free survival, but did allow for prediction of distant metastasis-free survival in a 
subgroup of patients with PET-positive lymph nodes (40).
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Figure 7.5: Summary sensitivity and specificity with 95% confidence region of discrimination between 
benign and malignant pulmonary nodules with 18F-FDG-PET.

Response assessment
Impact of PVC on response assessment (Table 4, n=5) was investigated for breast 
(n=2), rectal (n=1), colorectal (n=1), and NSCLC (n=1). Applied PVC methods 
were the recovery coefficient-method (n=2), iterative deconvolution (n=2), and 
both RC-method and iterative deconvolution (n=1). One study did not specify 
lesion sizes. None of the studies stratified results on PVC for lesion size in 
secondary analysis.

For locally-advanced breast cancer (41), regardless of PVC primary tumour 
FDG metabolic rate was not able to differentiate between clinical and pathologic 
responders and non-responders during neoadjuvant chemotherapy (after 2 
months). In another study in breast cancer patients PVC did not significantly 
change prediction of pathologic response with primary tumour SUV during 
neoadjuvant therapy (after 2 cycles) (42)]. In locally-advanced rectal cancer 
patients treated with (preoperative) chemoradiotherapy, PVC had no impact on 
histopathological response prediction, at baseline or after 1 or 2 weeks of therapy 
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(43). In patients with metastatic colorectal cancer PVC signifi cantly reduced the 
ROC area-under-the-curve of SUV in discriminating between responders and 
non-responders aft er 2 weeks of chemotherapy, as defi ned with RECIST (44). 
In NSCLC patients treated with radio- or radiochemotherapy PVC changed 
PERCIST (3) classifi cation of response in 5/24 lesions, which were verifi ed as 
correct alterations in clinical follow-up (45).

Discussion

Quantifi cation of functional tumour characteristics with PET is considered to 
be useful in clinical oncology, oft en using semi-quantitative analyses resulting in 
SUVs. Unfortunately, partial-volume eff ects are known to cause underestimations 
of tumour activity, and hence the necessity of PVC for accurate semi-quantitative 
reads for small lesions is well recognized (5)]. However, many factors aff ect its 
accuracy and potentially hamper its optimal usage. Perhaps as a consequence, its 
resulting advantage in oncological PET studies is not yet evident. Additionally, 
the lack of consensus on the preferred PVC and delineation method may result in 
suboptimal results and could hamper comparisons between studies. Th is review 
discusses the clinical impact of PVC and gives recommendations for specifi c 
research questions and analyses in future studies applying PVC. 

When applied to diagnosis of primary lesions and (mainly nodal) staging 
PVC oft en yielded higher sensitivity at the expense of  specifi city  (Tables 7.1-
7.2 and Figures 7.3-7.4), which is an obvious consequence when using the same 
test positivity SUV thresholds for uncorrected and PVC data. In the subset of 
studies which allowed statistical pooling (679 lesions), meta-analysis showed that 
PVC did not signifi cantly alter the overall diagnostic accuracy of characterizing 
pulmonary lesions with PET (Figure 7.5). When estimating the eff ect of PVC, 
the optimal trade-off  between sensitivity and specifi city (the SUV threshold of 
test positivity) may be diff erent for PVC and uncorrected data. At an exploratory 
level, one should defi ne this cut-off  for either method. Of note, Degirmenci et 
al. (on pulmonary nodules) used data-driven SUV cut-off s of 2.4 and 2.9 for 
uncorrected and PVC data, respectively, which yielded a specifi city fi xed at 80% 
with sensitivities of 62 and 73% for uncorrected and PVC data, respectively 
(18). We performed a similar analysis using the (individual patient) data from 
Hickeson et al. (15). At a predefi ned SUV cutoff  of 2.5, PVC decreased specifi city 
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and increased sensitivity (Table 1). However, when applying cut-offs of 2.55 and 
2.8 (as derived from ROC analysis) for uncorrected and PVC data, respectively, 
PVC increased sensitivity from 72% to 94% while specificity remained 91%. 
This provides further demonstration that PVC may indeed increase diagnostic 
accuracy when SUV cutoffs are adequately adapted for this correction. Obviously, 
each proposed threshold requires external validation. 

Another explanation of the limited impact of PVC on diagnostic accuracy 
as published in the literature may relate to the size spectra of included lesions, 
with the distribution of benign and malignant lesions therein. When performing 
PVC analysis on all lesions, both large and small simultaneously, the overall 
impact of PVC on diagnostic accuracy will be diluted. Indeed, several studies 
demonstrated high impact of PVC on accuracy for small lesions (when stratifying 
for lesion size), but less so when including all lesions regardless of size (15,29). 
Therefore, we suggest that investigators stratify diagnostic performance results for 
lesion size in secondary analyses. However, since partial-volume effects are not 
merely size-dependent, but are also affected by lesion contrast and shape, reliable 
classification of lesions that are (most) affected by partial-volume effects will be 
difficult. In our previous simulation study we observed that for high contrast 
spherical lesions partial-volume effects started to occur below 3cm diameter 
(8). A practical approach for stratification would thus be to stratify results using 
a 3cm lesion diameter or a 14mL metabolic volume cutoff (corresponding to a 
3cm diameter sphere). Even though larger lesions may also be somewhat affected 
by partial-volume effects depending on their shape and contrast, such a size 
cutoff will ensure that lesions that are most affected by partial-volume effects are 
separated. Another approach would be to plot the percentage increases in SUV 
after PVC as function of metabolic tumour volume to determine an appropriate 
size cutoff for stratification of results within studies (not possible when applying 
the RC method).

Regarding visual nodal staging, PSF reconstruction did not significantly 
alter accuracy, but tended to increase sensitivity in lung, breast, and colorectal 
cancer (Table 7.2) (31-33). This may be attributed to improved qualitative reads, 
improved (small) lesion detection, and higher diagnostic confidence (31-33). 
Therefore, it may be worthwhile to validate these higher-resolution reconstruction 
algorithms for use in clinical practice, especially for detection of small lymph node 
metastases and lesions embedded in high background activity such as in liver or 
mediastinum. However, PFS reconstructions may suffer from Gibbs artefacts 
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(overshoot in activity) and, moreover, they are also known not to guarantee full 
signal recovery (9). Also, further research into their impact on compliance with 
EANM standards is needed to ensure equal scanner calibration in multicenter 
quantitative PET/CT studies, which may require a SUV harmonization procedure 
(46). 

We found that PVC might improve prognostication in head-and-neck 
cancer (39,40), but these studies did not stratify for the human papilloma virus-
status, a prognostic marker associated with lower tumour SUV and smaller 
MATV (47). For future studies, please note that appropriate PVC may not 
necessarily improve prognostication with SUV, but rather may enable it to refl ect 
its true prognostic value. For example, Vesselle et al. found that PVC mitigated 
the correlation between primary tumour SUV and overall survival in NSCLC 
patients, and also observed that the correlation between SUV and overall TNM-
stage, which in essence is based on patient prognosis, disappeared aft er PVC, 
suggesting that the ‘prognostic value’ of uncorrected SUV was based on tumour 
volume rather than metabolic activity (25,48). 

For response assessment no conclusions regarding PVC’s eff ect can 
be made at this point, due to the small number of heterogeneous studies. One 
included study demonstrated that aft er PVC PERCIST classifi cation of response 
was altered for 5/24 NSCLC lesions during radio- or radiochemotherapy (45). 
Th is is an important observation, since conceptually PVC may correct changes 
in SUV during treatment for changes in tumour volume and contrast, allowing 
for more appropriate PET-based classifi cation of tumour response. Interestingly, 
two studies (excluded since no clinical verifi cation was performed) demonstrated 
PVC to alter response classifi cations according to EORTC or PERCIST criteria 
in patients with bone metastases and NSCLC (39,49). Concluding, future PET 
response assessment studies should include PVC to allow for metabolic response 
assessment irrespective of tumour shrinkage or growth and quantify its clinical 
impact.

To improve comparison of PVC’s impact between studies, consensus 
on the preferred combination of PVC and lesion delineation methodologies 
should be reached. Many PVC methods have been advocated, some specifi c 
for oncological application (5,7,50,51). Still, most studies in this review applied 
a recovery coeffi  cient-method, a quite simple method assuming spherically 
shaped lesions, homogeneous activity distributions, and known tumour sizes. 
Using this method, even small errors in tumour size measurements may result 
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in over- or underestimations of true SUVs. Also, size measurements are often 
CT-based, whereas partial-volume effects affect metabolic volumes, which may 
be different from anatomical tumour volume (52) (e.g. due to necrosis and 
treatment effects). In a previous phantom and simulation study we found that 
voxel-wise PVC methods such as iterative deconvolution may be preferred, 
since this only assumes approximate knowledge of PET/CT systems’ resolution 
kernel size, has low dependency on accurate delineation, and has only limited 
effect on precision (8). Additionally, such a voxel-wise PVC method could allow 
for more accurate delineation of tumours (53) and, theoretically, heterogeneous 
tumour background. However, iterative deconvolution is known to increase 
image noise levels, which may require some form of a denoising algorithm to be 
applied (9,54). Iterative deconvolution may be relatively easy to implement, and 
has demonstrated to perform well using commonly applied background-adapted 
threshold-based delineation methods (8). Since to date iterative deconvolution 
has been predominantly applied by the same research group (Supplemental Table 
3), more extensive clinical evaluation is warranted. Our previous phantom and 
simulation study showed that for lesions ≤10mm in diameter even with PVC no 
fully accurate results can yet be acquired (8), which may contribute to the relatively 
low impact of PVC. Due to heterogeneity between studies the impact of chosen 
PVC methods on outcomes cannot be established in this review. 

A limitation of this systematic review and the meta-analysis was the 
small number of studies included (only six diagnostic studies could be pooled; 
which is the maximum number of studies in any of the other subsections), with 
several sources of heterogeneity, such as the included lesion types, malignancy 
prevalence, lesion size spectra, PET acquisition and reconstruction settings, 
quantitation methods, and methodological quality. The overall study quality as 
assessed by QUADAS and QUIPS was good (Fig.2), but more specific research 
questions regarding PVC and more rigorous designs are needed. Apart from being 
a limitation, the small number of retrieved studies applying PVC in oncology is 
also an important finding, designating the lack of application of PVC in recent 
decades. 

Recommendations
When applying PVC in studies investigating diagnostic accuracy, SUV thresholds 
should be redefined for corrected data. Also, results on test characteristics 
should be stratified for lesion size (using a 3cm diameter or 14mL cutoff). In 
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prognostication studies, partial-volume-corrected SUV may complement rather 
than substitute uncorrected SUV, and could be included separately in prognostic 
models. Th e impact of PVC on PERCIST classifi cations of response merits further 
investigation in prospective studies. For now we recommend that lesions ≤10mm 
in diameter should not be included in quantitative analyses until novel PVC 
methods proven to be effi  cacious for these lesions are available. To demonstrate 
dependency of results on the applied PVC methodology, studies comparing 
multiple methods in the same sample of patients are highly recommended. Both 
functional and volumetric semi-quantitative PET metrics should be investigated 
simultaneously, including SUVs, MATV, and their product TLG (see for example 
refs. (27,38,40,42,43)). Also, when PET is used for therapeutic dosimetry 
applications, e.g. for nuclide radiotherapy, PVC will likely improve estimates of 
tracer or radionuclide uptake, and thereby improve estimates of tumour radiation 
dose.

Conclusion

Th e accumulated evidence to date does not support routine application of PVC 
in standard clinical PET studies. In meta-analysis of quantitative diagnostic PET 
studies, PVC did not increase diagnostic accuracy. Limitations of published 
studies pertain to lack of analysis stratifi ed for size, limited exploration of the 
impact of alternative (SUV) thresholds of test positivity on diagnostic accuracy 
measures and heterogeneity in applied PVC methodologies. For accurate and 
reproducible results on tumour uptake quantifi cation, consensus on the preferred 
tumour delineation and PVC methodologies needs to be reached. Partial-volume 
corrected metrics should be used as adjuncts to, but not yet replace, uncorrected 
data.
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Supplemental fi les

Supplemental Table 7.1: Search strategy in PubMed May 9, 2016 (read from bottom-up).

Set Search terms Result
#4 #1 AND #2 AND #3 322
#3 partial-volume eff ect*[tiab] OR partial volume eff ect*[tiab] OR partial-volume 

correction*[tiab] OR partial volume correction*[tiab] OR deconvolution*[tiab] 
OR recovery coeffi  cient*[tiab] OR point spread function reconstruction*[tiab] 
OR PSF reconstruction*[tiab] OR PSF-reconstruction*[tiab] OR point-spread-
function reconstruction*[tiab] OR resolution model*[tiab] OR resolution 
recover*[tiab] OR resolution model*[tiab] OR high defi nition*[tiab] OR high 
defi nition*[tiab] OR PSF model*[tiab] OR point-spread-function model*[tiab] 
OR point spread function model*[tiab] OR HD reconstruction*[tiab]

10752

#2 "Neoplasms"[Mesh] OR oncolog*[tiab] OR cancer*[tiab] OR neoplasm*[tiab] OR 
tumour*[tiab] OR tumor*[tiab] OR carcinoma*[tiab] OR malignan*[tiab] OR 
metasta*[tiab] OR lesion*[tiab] OR lymphoma*[tiab]

3931706

#1 "Positron-Emission Tomography"[Mesh] OR positron emission tomograph*[tiab] 
OR PET[tiab] OR PET/CT[tiab] OR PET-CT[tiab] OR FDG-PET*[tiab] OR 
18F-FDG-PET*[tiab]

90587

Supplemental Table 7.2: Search strategy in Embase.com May 9 , 2016 (read from bottom-up).

Set Search terms Result
#5 #4 NOT 'conference abstract'/it 335
#4 #1 AND #2 AND #3 614
#3 'neoplasm'/exp OR  'oncology'/exp OR  oncolog*:ab,ti OR  cancer*:ab,ti 

OR  neoplasm*:ab,ti OR  tumour*:ab,ti OR  tumor*:ab,ti OR  carcinoma*:ab,ti 
OR malignan*:ab,ti OR metasta*:ab,ti OR lesion*:ab,ti OR lymphoma*:ab,ti

5026012

#2 (partial NEXT/1 volume  NEXT/1 eff ect*):ab,ti OR (partial NEXT/1 volume 
NEXT/1 correction*):ab,ti OR  deconvolution*:ab,ti OR (recovery NEXT/1 
coeffi  cient*):ab,ti OR (point NEXT/1 spread NEXT/1 function NEXT/1 
reconstruction*):ab,ti OR (psf NEXT/1 reconstruction*):ab,ti OR (resolution 
NEXT/1 model*):ab,ti OR (resolution NEXT/1 recover*):ab,ti OR (high NEXT/1 
defi nition*):ab,ti OR (psf NEXT/1 model*):ab,ti OR (point NEXT/1 spread 
NEXT/1 function NEXT/1 model*):ab,ti OR (hd NEXT/1 reconstruction*):ab,ti

13014

#1 'positron emission tomography'/exp OR (positron NEXT/1 emission NEXT/1 
tomograph*):ab,ti OR  pet:ab,ti OR (pet NEXT/1 ct):ab,ti OR (fdg NEXT/1 
pet*):ab,ti

157749
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Abstract

Purpose: Treating oligometastases detected by [18F]-fluoromethylcholine positron-
emission tomography/computed tomography (PET/CT) with stereotactic body 
radiotherapy (SBRT) may postpone initiation of androgen-deprivation therapy, 
and possibly prolong progression-free survival (PFS). However, better prognostic 
factors are needed to improve patient selection. We investigated the predictive 
value of [18F]-fluoromethylcholine-PET/CT-derived parameters on PFS in 
oligometastatic prostate cancer patients treated with SBRT. 
Methods and Materials: In [18F]-fluoromethylcholine PET/CT scans of forty 
consecutive patients with ≤4 metachronous metastases treated with SBRT we 
retrospectively measured the number of metastases, standardized uptake values 
(SUVmean, SUVmax, SUVpeak), metabolically active tumour volume (MATV), 
and total lesion choline uptake (TLCU). Partial-volume correction was applied 
using the iterative deconvolution Lucy-Richardson algorithm. 
Results: 37 lymph node and 13 bone metastases were treated with SBRT. 33 
patients (82.5%) had 1 lesion, 4 (10%) had 2 lesions, and 3 (7.5%) had 3 lesions. 
After a median follow-up of 32.6 months (IQR 35.5), the median PFS was 11.5 
(95%CI 8.4-14.6). Having more than a single lesion was a significant prognostic 
factor (HR=2.74; p=0.03), and there was a trend in risk of progression for large 
MATV (HR=1.86; p=0.10). No SUV or TLCU was significantly predictive for PFS, 
regardless of partial-volume correction. All PET semi-quantitative parameters 
were significantly correlated with each other (p≤0.013).
Conclusion: The number of choline-avid metastases was a significant prognostic 
factor for progression after [18F]-fluormethylcholine PET/CT-guided SBRT for 
recurrent oligometastatic prostate cancer, and there seemed to be a trend in 
risk of progression for patients with large MATVs. The lesional level of [18F]-
fluoromethylcholine uptake was not prognostic for progression.  
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Introduction

For hormone-sensitive metastatic prostate cancer fi rst-line treatment commonly 
consists of androgen deprivation therapy (ADT) with or without chemotherapy 
(1,2). While eff ective in deferring disease progression, side-eff ects can compromise 
quality of life (3). Th ere is growing interest in local therapy for oligometastatic 
disease (e.g. stereotactic body radiotherapy, SBRT) with the aim of achieving 
prolonged progression-free survival (PFS) and postponing or avoiding initiation 
of ADT (4-9). However, reported PFS and ADT-free survival rates are variable 
and oft en limited (5). Th erefore, prognostic or predictive biomarkers are urgently 
needed.

[18F]-fl uoromethylcholine PET/CT may provide prognostic information 
in prostate cancer patients (10-12). We therefore comprehensively explored the 
potential prognostic value of semi-quantitative [18F]-fl uoromethylcholine PET-
derived metrics in SBRT-treated oligometastatic patients.

Materials and Methods

Patients
We included 40 consecutive patients with PSA relapse aft er primary local treatment 
for prostate adenocarcinoma, with oligometastases (≤4 lesions) detected at [18F]-
fl uoromethylcholine PET/CT, treated with SBRT between January 2009 and 
December 2015, without ADT during SBRT. Clinical results have been reported 
[9]. Standard dose-fractionation schedules were 5x7Gy and 3x10Gy. Biochemical 
progression aft er SBRT was defi ned as PSA rising ≥25% or ≥2.0 ng/ml above 
baseline or post-SBRT nadir, documented on two consecutive measurements. Our 
institutional medical ethics committee waived the need for informed consent.

PET/CT
Forty (±9) minutes aft er injection of 336±68MBq [18F]-fl uoromethylcholine 
(4MBq/kg) patients underwent whole body [18F]-fl uoromethylcholine PET/CT 
(n=37 Gemini/Ingenuity [Philips Healthcare], n=3 Biograph [Siemens]; EARL-
accredited), with image reconstruction compliant with EANM standards (13). We 
analysed lesions on volume-of-interest basis, yielding mean standardized-uptake-
value (SUV, equation 1) with and without correction for partial-volume eff ects by 
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Lucy-Richardson iterative deconvolution (SUVmean, SUVpvc, resp.), SUVmax, SUVpeak, 
metabolically active tumour volume (MATV), and total lesion choline uptake 
(TLCUpvc). Within patients, we calculated both highest and total MATV and 
TLCU in case of multiple lesions (indicated as suffix). Tabular data of uncorrected 
SUVmean, SUVmax, SUVpeak and uncorrected TLCU are presented as supplemental 
data, available at https://www.redjournal.org/.

		  SUV = 				    Eq.1

Statistical analysis
Survival analysis was performed using the Kaplan-Meier method, univariate Cox-
regression, and log-rank test (variables were dichotomized). Besides quantitative 
PET-parameters, we analysed several other potential prognostic factors (number 
of choline-avid lesions, lesion type, prior ADT treatment, Gleason score, PSA 
at metastasis, PSA nadir). We assessed correlations with Spearman rank, and 
differences between groups with Mann-Whitney U test, setting significance levels 
at p=0.05. Analyses were performed using SPSS (22.0;IBM).

Results

Table 8.1 presents baseline characteristics. Thirty-three patients had a solitary 
metastasis on PET/CT (n=25 lymph node, n=8 bone); 4 had two (nodal) 
metastases, and 3 presented with three metastases, (n=1 all lymph nodes, n=1 all 
bone, n=1 lymph node and bone). Median follow-up and PFS after SBRT were 
32.6 (IQR 14.7-50.3) and 11.5 (95%CI 8.4-14.6) months, respectively. Compared 
to patients without a post-SBRT PSA nadir, patients with a PSA nadir had a HR 
for progression of 0.23 (p<0.001). 

Median (IQR) MATVhighest, MATVtotal, SUVmean-pvc, TLCUhighest-pvc, and 
TLCUtotal-pvc were 2.3 (1.5-3.7), 2.6 (1.6-4.3), 4.3 (3.2-5.8), 9.5 (5.5-17.5), and 10.5 
(5.9-22.7), respectively. The lesion-based MATV and TLCUpvc were significantly 
higher for bone compared to lymph nodes (Table 8.2). The presence of >1 
metastasis on [18F]-fluoromethylcholine PET/CT had a HR of 2.74 (p=0.03) for 
progression. All PET semi-quantitative parameters were significantly correlated 
(p≤0.013). There was no PET parameter threshold on ROC analysis (supplemental 
data). No semi-quantitative PET/CT parameter predicted PFS, but a trend in risk 
of progression for large MATV was noted (HR=1.86; p=0.10) (Table 8.3). 
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We assessed potential associations of PET quantitative parameters 
with clinical data (supplemental data). Several SUV and TLCU variants were 
signifi cantly higher for patients with PSA levels above median (3.75 ng/ml) at 
PET/CT (p=0.01-0.04). For Gleason score and pre-treatment with ADT we found 
no signifi cant association with quantitative PET parameters.

Table 8.1: Patient characteristics.

Characteristic 
Age at metastases 
Mean±SD 67±6.7 years
Time from diagnosis to metastases
 Median (IQR) 46.2 (12.0-81.8) months
Gleason score
 5 2 (5%) 
 6 5 (13%)
 7 16 (41%)
 8 10 (26%)
 9 6 (16%)
TNM-stage at diagnosis
 Stage 2 20 (51%)
 Stage 3 16 (41%)
 Stage 4 3 (8%)
Primary treatment
 Surgery 25 (63%)
 Surgery + radiotherapy 4 (10%)
 Radiotherapy 5 (13%)
 Radiotherapy + hormone therapy 3 (8%)
 Brachytherapy 3 (8%)
Lymph node dissection
 Yes 13 (33%)
 No 27 (68%)
PSA at metastases
 Median (IQR) 3.75 (2.43-6.80) ng/ml 
Type of metastases
 Bone 9 (23%)
 Lymph node 30 (75%)
 Bone + Lymph node 1 (3%)

Table 8.2: Lesion-based values of PET parameters. Data are presented as median with IQR.

All lesions (n=50) Lymph node (n=37) Bone (n=13) p-valuea

MATV 2.21 (1.58-3.28) 1.92 (1.40-2.74) 3.46 (2.68-8.96) <0.001

SUVmean-pvc 3.93 (3.01-5.34) 3.72 (3.12-5.25) 4.45 (2.80-5.55) 0.816

TLCUpvc 8.39 (5.24-15.43) 7.43 (4.77-13.06) 12.68 (7.52-50.33) 0.009

aLymph node vs. bone 
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Table 8.3: Results from survival analyses. Significant differences in bold.

PFS (95%CI) HR (95%CI) p-valueb

PET parameters: 
MATVhighest          < 2.3 mL                    

≥ 2.3 mL
14.3 (2.8-25.8)
9.5 (8.5-10.5)

1.86 (0.87-3.97) 0.103

MATVtotal < 2.6 mL
≥ 2.6 mL

12.1 (4.4-19.9)
9.5 (6.8-12.3)

1.66 (0.78-3.51) 0.181

SUVmean-pvc < 4.3
≥ 4.3

11.5 (6.8-16.2)
9.5 (5.8-13.3)

0.99 (0.47-2.00) 0.969

TLCUhighest-pvc < 9.5
≥ 9.5

9.4 (1.3-17.4)
11.5 (8.6-14.4)

0.98 (0.48-1.99) 0.944

TLCUtotal-pvc < 10.5
≥ 10.5

9.4 (1.2-17.6)
11.5 (8.6-14.4)

0.98 (0.48-2.00) 0.955

number of metastases =1
>1

11.5 (8.1-15.0)
6.5 (2.6-10.4)

2.74 (1.06-7.11) 0.031

lesion typea lymph node
bone

11.5 (7.2-15.8)
9.5 (6.3-12.7)

1.37 (0.61-3.09) 0.436

Gleason score ≤ 7
> 7

13.4 (9.6-17.2)
8.5 (3.9-13.2)

1.81 (0.86-3.81) 0.112

PSA at PET/CT < 3.75 ng/ml
≥ 3.75 ng/ml

9.4 (4.7-14.1)
11.5 (8.7-14.4)

0.86 (0.42-1.74) 0.670

PSA nadir after SBRT no
yes

3.5 (2.6-4.5)
12.1 (9.8-14.5)

0.23 (0.11-0.50) <0.001

pre-SBRT ADT no
yes

11.5 (8.7-14.3)
6.5 (0.0-15.0)

0.85 (0.29-2.43) 0.753

alesion with highest uptake in case of >1 lesion; bfrom log rank-test.

Discussion

The number of metastases at [18F]-fluoromethylcholine PET/CT predicted 
progression after SBRT for recurrent hormone-sensitive oligometastatic prostate 
cancer, but other (quantitative) PET measures did not.

In patients receiving ADT for treatment of hormone-sensitive prostate 
cancer recurrence a similar association between number of metastases and 
survival has been reported, and at biochemical recurrence after primary therapy 
the disease burden (number of [18F]-fluoromethylcholine PET/CT positive 
lesions) was an independent prognostic factor for developing castration-resistant 
disease (14-16). 

[18F]/[11C]-labelled choline PET/CT is one of the preferred methods for 
restaging at biochemical progression (1,17), with a prevalence of oligometastatic 
disease of 40-91% (14,18-21). However, other PET tracers (e.g. PSMA-ligands) 
may detect more metastases, especially at low PSA values (22,23). Schwenck et al. 
observed that in 27% of patients with oligometastases on choline PET/CT, PSMA 
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detected more lesions, resulting in their re-classifi cation as non-oligometastatic 
(23). In our study, 11/40 patients (27.5%) had no initial PSA response aft er 
SBRT (presence of PSA nadir: HR 0.23; p<0.001), which may refl ect suboptimal 
metastasis detection rates for [18F]- fl uoromethylcholine PET/CT in this setting. 
However, whether PSMA-guided management will improve patient outcomes 
remains to be shown. 

Limitations of this study are its retrospective nature and relatively small 
sample size. A strength is its clinical relevance - and PET/CT imaging, SBRT, and 
PSA follow-up (tested at least every 3 months) were all performed according to 
institutional protocols used in clinical practice. 

Th e role of post-SBRT ADT or the relative benefi ts of SBRT to only PET 
positive lesion(s) versus larger volume irradiation (e.g. the involved lymph 
node chain) remains to be investigated. Further research is also warranted to 
characterize the time-course of activity in treated lesions on post-SBRT [18F]-
fl uoromethylcholine PET/CT scans, and to avoid over-diagnosing local failure 
(Figure 8.1).

In conclusion, the number of detected oligometastases seems prognostic. 
Additional data, including from prospective randomised controlled trials (e.g. 
NTC01558427 and NTC02680587), will hopefully determine whether the 
advantage of SBRT for oligometastatic prostate cancer is limited to deferring 
systemic therapy and identify additional patient or tumour characteristics 
predictive for disease progression.

Figure 8.1: [18F]-fl uoromethylcholine PET/CT images of a 74-year-old patient with persisting, but 
decreasing, activity in a right para-iliac lymph node aft er SBRT. PET, low-dose CT, and fused PET/CT 
images before (A-C) SBRT, 20 months (D-F) and 32 months (G-I) aft er SBRT, respectively.
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Supplemental files
Supplemental Table 8.1: Patient-based values of PET parameters. Data is presented as median with IQR. 

SUVmean 2.9 (2.2-3.7)

SUVmax 4.9 (3.4-6.7)

SUVpeak 3.1 (2.2-4.7)

TLCUhighest 6.6 (3.6-12.1)

TLCUtotal 7.1 (4.0-14.8)

Supplemental Table 8.2: Lesion-based values of PET parameters. Data is presented as median with IQR. 

All lesions (n=50) Lymph node (n=37) Bone (n=13) p-value*
SUVmean 2.75 (2.10-3.50) 2.55 (2.10-3.31) 3.39 (2.11-4.28) 0.237
SUVmax 4.59 (3.07-5.88) 4.50 (3.02-5.61) 5.16 (3.30-7.04) 0.347
SUVpeak 2.79 (2.12-4.05) 2.63 (1.99-3.51) 3.89 (2.25-5.43) 0.099
TLCU 5.64 (3.51-10.90) 5.07 (3.29-9.33) 10.09 (5.54-41.79) 0.004

*Lymph node vs. bone

Supplemental Table 8.3: Results from ROC analysis at median PFS (11.5 months). 

11.5 month PFS 

AUC p cut-off

SUVmean-pvc 0.41 0.34 4.2

SUVmean 0.41 0.34 7.4

SUVmax 0.42 0.40 4.6

SUVpeak 0.44 0.50 1.7

MATVhighest 0.51 0.92 1.8

MATVtotal 0.56 0.50 1.8

TLCUhighest-pvc 0.44 0.51 4.6

TLCUtotal-pvc 0.47 0.77 4.6

TLCUhighest 0.45 0.57 3.0

TLCUtotal 0.49 0.87 3.0

Supplemental Table 8.4: Results from survival analyses. 

PFS (95%CI) HR (95%CI) p-value#

SUVmean    < 2.9
≥ 2.9

9.4 (2.1-16.6)
11.5 (7.9-15.2)

0.87 (0.43-1.76) 0.694

SUVmax < 4.9
≥ 4.9

9.4 (2.1-16.6)
11.5(7.9-15.2)

0.88 (0.43-1.79) 0.722

SUVpeak < 3.1
≥ 3.1

9.4 (2.1-16.6)
11.5 (7.9-15.2)

0.89 (0.44-1.81) 0.751

TLCUhighest < 6.6
≥ 6.6

9.4 (1.2-17.6)
11.5 (8.6-14.4)

1.00 (0.49-2.03) 0.990

TLCUtotal < 7.1
≥ 7.1

9.4 (1.2-17.6)
11.5 (8.6-14.4)

1.00 (0.49-2.03) 0.990

#from log-rank
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[18F]FDHT and [18F]DCFPyL PET-CT 
in Castration-Resistant Prostate 
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Background

We read with interest the recently published paper by Werner et al. on the impact 
of prostate cancer tumour burden on uptake of [18F]DCFPyL, a 2nd generation 
fl uorine-labeled prostate-specifi c membrane antigen (PSMA) ligand, in normal 
tissues (1). Such studies are essential for future use of theranostic PSMA radioligand 
therapies (e.g. 177Lu-PMSA), as the presence of a so-called ‘sink eff ect’ might 
require adaptation of therapeutic dosages to intra-patient tumour volumes. Th e 
authors performed a secondary analysis on a cohort of 50 prostate cancer patients 
that underwent [18F]DCFPyL PET-CT for various clinical indications, correlating 
PSMA-positive tumour volume with uptake values in normal tissues. Th ey 
concluded that, in their cohort, PSMA-positive tumour volume did not correlate 
with [18F]DCFPyL uptake in normal organs, such  lacrimal glands, parotid glands, 
submandibular glands, spleen and liver. Of all tissues examined, only left  kidney 
uptake correlated signifi cantly with tumour volume. We would like to compliment 
the authors for their thorough analysis and appropriate acknowledgement of its 
limitations. In this reply, we would like to address some additional methodologic 
aspects and supplement the analysis of Werner et al. with our own experience of 
[18F]DCFPyL imaging, especially those patients with larger tumour volumes.

Th e spectrum of the included patients by Werner et al., appears to be 
consisting largely of patients with low tumour burden. Th e low prostate cancer 
burden is evident from several parameters: i) a low median PSA level of 3.2 ng/mL 
with a maximum of 48 ng/mL, ii) a median of 3 tumour volumes-of-interest (VOI) 
delineated per patient with a positive PET scan, and iii) a median total PSMA-
positive tumour volume of 4.8 ml with a maximum of 98.4 mL. Th e authors do 
acknowledge the low tumour burden as a limitation, but counterpoint this with 
the fact that patients with ‘superscans’ (i.e. with extensive skeletal involvement) 
were also included. However, only one of the included patients presented with a 
tumour volume above 40 mL (see Figure 1 in Werner et al. (1)). In order to fi nd 
a statistically signifi cant correlation between tumour volume and normal tissue 
PSMA-uptake, including only a few patients with relatively large tumour burden 
will likely not suffi  ce. Moreover, it is not explicitly mentioned in the manuscript 
how many castration-resistant patients were included. Seemingly, at least 46% of 
the included patients underwent [18F]DCFPyL PET-CT for clinical indications in 
the hormone-sensitive setting, whereas 177Lu-PMSA therapy is primarily indicated 
for metastatic castration-resistant (mCRPC) patients (2). Gaertner and colleagues 
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did find a significant sink effect of large tumour burden in [68Ga]PSMA PET, 
including a population that is more representative of patients currently receiving 
177Lu-PMSA radioligand therapy (3). To compare, their included patients had 
a mean PSA of 188 ng/mL (ranging up to 2860 ng/mL), and for part of the 
patients evaluation for 177Lu-PSMA therapy was the indication of [68Ga]PSMA 
PET-CT. Unfortunately, tumour PSMA burden was assessed visually rather than 
quantitatively (3).

The sink effect

Recently, we reported on a full pharmacokinetic analysis of [18F]DCFPyL on PET-
CT, from which we concluded that SUV is not a valid parameter for quantifying 
[18F]DCFPyL uptake in prostate cancer lesions (4). In using SUV, one assumes that 
input functions (e.g. the time activity curves of [18F]DCFPyL in blood) are equal 
in shape and size across patients and scale proportionally by injected activity over 
weight. We concluded that this assumption was invalid for [18F]DCFPyL since 
two patients with large tumour volumes had lower activity concentrations of [18F]
DCFPyL in their blood (see Supplemental Figure 3 in Jansen et al. (4)). Moreover, 
liver SUVmean of the patient with a superscan was below previously reported 
reference values (1.68; reference range 3.31–8.53) (5). The consequence was a poor 
correlation between SUV and reference pharmacokinetic parameter Ki (R2 0.47-
0.60; see Figure 4 in (4)). However, when normalizing tumour uptake (Bq/mL) to 
activity concentrations in blood (Bq/mL), we derived a Tumour-to-Blood ratio 
that correlated near perfectly with Ki (R2 0.96) (4). This provided fundamental 
insight into the effect of intrapatient tumour burden on kinetics of [18F]DCFPyL, 
indicating that a ‘sink effect’ can indeed be present for [18F]DCFPyL – as it is for 
[68Ga]PSMA. In patients with low tumour burden, however, no measurable effect 
on [18F]DCFPyL input functions was present, conforming to the conclusions of 
the study by Werner and colleagues

For [68Ga]DOTATATE PET-CT in patients with neuroendocrine tumours 
(NET) a similar relationship between tumour burden and normal tissue uptake 
has been observed (6). Intriguingly, in a recent pharmacokinetic analysis of this 
tracer, tumour Ki correlated strongly with Tumour-to-Blood ratio (R2 0.93), whilst 
the correlation between tumour Ki and SUV was non- linear and much lower 
(R2 0.78) (7). Hence, as also noted by Ilan et al., a general effect may be present 
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for PET quantifi cation of specifi cally targeted radiotracers (such as [68Ga]/[18F]
PSMA, [68Ga]DOTATATE, and [18F]fl uorodihydrotestosterone [FDHT](8)), as 
the distribution volumes of such tracers are mostly limited to tissues that express 
their specifi c target (7). Th us, (at fi xed tracer dosages) large tumour volumes are 
more likely to infl uence tracer availability in plasma for such tracers and using 
SUV for quantifi cation can become invalid.

Clinical illustration

To illustrate the sink eff ect, we hereby present a case of a 72-year old patient with 
mCRPC who underwent [18F]DCFPyL and [18F]FDHT PET-CT before starting 
abiraterone treatment, and again aft er 1 month of treatment (as part of an ongoing 
IRB-approved prospective study, IRB number 2014.218; the patient provided 
written informed consent for participation). Th is patient had been treated 
sequentially with upfront docetaxel, enzalutamide, and cabazitaxel. Baseline and 
follow-up PSA levels were 1436 ng/mL and 1936 ng/mL, respectively, indicating 
progressive disease under abiraterone. 

Figure 9.1: [18F]DCFPyL PET-CT images of a 72-year old patient with metastatic castration-resistant 
prostate cancer scanned (A) before and (B) during abiraterone treatment. A PSA rise from 1436 ng/mL to 
1936 ng/mL indicated disease progression (one month aft er treatment start), and an accompanying increase 
in PSMA-positive disease burden is evident. PET images are shown as maximum-intensity projections.

Matthijs Cysouw.indd   189Matthijs Cysouw.indd   189 26-08-20   09:0426-08-20   09:04



Chapter 9

190

Methods
The patient underwent whole body PET-CT imaging on a time-of-flight scanner for 
both [18F]DCFPyL and [18F]FDHT. Injected dosages of [18F]DCFPyL at baseline and 
follow-up were 316 MBq and 303 Mbq, with uptake intervals of 124 min and 133 
min, respectively. Injected dosages of [18F]FDHT were 232 MBq and 238 Mbq, with 
uptake intervals of 45 min and 45 min, respectively. For [18F]DCFPyL, we delineated 
the total tumour burden using a PERCIST SUV threshold based on liver uptake (9), 
which is a feasible approach due to the high tumour-to-background contrast and 
stable liver uptake between patients. Due to the unfavorable biodistribution of [18F]
FDHT, an alternative approach was needed. Therefore, the total tumour burden 
was delineated using a bone-mask (CT-based) where all uptake with SUV >1.9 
was included (10). Next, nodal metastases and bone marrow disease was manually 
delineated. On each scan, we measured the PSMA- or FDHT-positive tumour 
volume, SUVmean, the Tumour-to-Blood ratio (TBR), and the total lesion uptake 
for SUV and TBR (SUV/TBR multiplied by the total tumour volume). Also, we 
measured the SUVmean in normal tissues: blood, kidneys, parotid glands, spleen, 
and liver for [18F]DCFPyL; blood, kidneys, spleen, muscle, and liver for [18F]FDHT. 
Then, we calculated the relative differences in those measures between the baseline 
and follow-up PET-CT scans. As prostate cancer metastases are often very small, 
we also quantified the total tumour burden using images that were corrected for 
partial-volume effects using post-reconstruction iterative deconvolution that was 
calibrated to comply with updated EARL2 guidelines. 
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Figure 9.2: Changes in [18F]DCFPyL uptake of (A) normal tissues and (B) the total tumor burden, from the 
scans shown in Figure 9.1. Changes in normal tissue uptake pertain to SUVmean. The whole body tumor 
metrics were derived from the total tumor burden as a single VOI. PVC = partial-volume correction.
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Figure 9.3: [18F]FDHT PET-CT images of a 72-year old patient with metastatic castration-resistant prostate 
cancer scanned (A) before and (B) during abiraterone treatment. A PSA rise from 1436 ng/mL to 1936 ng/
mL indicated disease progression (one month aft er treatment start), and an accompanying increase in 
androgen receptor-positive disease burden is evident. PET images are shown as maximum-intensity 
projections.

Results
Visually, a substantial increase in PSMA-avid disease is apparent, accompanied 
by clear decreases in uptake in parotid glands, liver, spleen, and kidneys (Figure 
9.1). Th is was in agreement with the substantial increase in measured PSMA-
positive tumour volume, which increased by +134%, from 1001.3 mL to 2340.9 
mL (Figure 9.2). Th is was accompanied by an inverse change in blood SUVmean, 
which decreased by 50.4%, from 0.85 to 0.42. Moreover, the SUVmean in all 
measured normal tissues consistently decreased by 28.6-45.7% (Figure 9.2). A 
less pronounced but very similar eff ect was noted for [18F]FDHT, where there was 
a clear visual progression of disease, and a decrease in uptake in normal tissue 
and organs (Figure 9.3). Th is visual progression conformed to a large increase in 
FDHT-positive tumour volume, which increased by 61%, from 1093 mL to 1763 
mL (Figure 4). Again, this was accompanied by a decrease in blood SUVmean, 
which decreased by 22.7%. Also, all other measured tissues demonstrated 
consistent decreases in uptake ranging -14.3% to -21.6% (Figure 9.4).
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Figure 9.4: Changes in [18F]FDHT uptake of (A) normal tissues and (B) the total tumor burden, 
from the scans shown in Figure 2. Changes in normal tissue uptake pertain to SUVmean. The 
whole body tumor metrics were derived from the total tumor burden as a single VOI. PVC = 
partial-volume correction.

Interpretation
Due to the ‘sink effect’ that occurred as the result of the increased tumour volume, 
a clear discrepancy between changes in SUVmean and Tumour-to-Blood ratio 
between scans is evident for both tracers. At disease progression, tumour SUVmean 
had decreased by 13% for [18F]DCFPyL and increased by 14.6% for [18F]FDHT, 
both within repeatability limits. In contrast, the Tumour-to-Blood ratio increased 
substantially by 75% for [18F]DCFPyL and 49% for [18F]FDHT. Hence, using the 
TBR seems to correct for the sink effect and adequately reflects the clinically 
observed disease progression. Though we present a rather extreme case, this does 
provide further illustration that use of SUV should be avoided for both individual 
reads and response assessment purposes of [18F]DCFPyL and [18F]FDHT PET in 
large tumour volume patients. While we cannot exclude an effect of abiraterone 
on tumoural uptake, it is highly unlikely that it directly impacted normal tissue 
uptake. While having a clear effect on absolute reads at baseline and follow-up, 
partial-volume correction did not substantially change relative quantitative reads. 
This is in agreement with what we observed in Chapter 5, where the total tumour 
burden metrics seemed robust to reconstruction protocol.
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Conclusion

In conclusion and in addition to the results of Werner et al., in patients harboring 
a small tumour load no relevant sink eff ect of [18F]DCFPyL is to be expected. 
However, for patients with larger tumour volumes a sink eff ect may in fact occur, 
meaning personalized dosimetry of 177Lu-PSMA radioligand therapy might be 
needed for these patients. For [18F]FDHT, a similar sink eff ect of tumour load can 
be expected. Hence, there indeed seems to be a general eff ect for radiotracers that 
have a specifi c targeting, rendering use of SUV for such tracers invalid. We urge 
colleagues currently using both [18F]DCFPyL and 177Lu-PSMA radioligand therapy 
to repeat the study by Werner et al. in patients with a clinical indication for 177Lu-
PSMA radioligand therapy. Moreover, since a clear defi nition of small versus large 
tumour load is not established, future studies should refrain from using SUV for 
quantifi cation of tumoural [18F]DCFPyL uptake and resort to using TBR instead 
(4). For [18F]FDHT, use of SUV should be avoided regardless of tumour load, but 
more specifi cally in high-volume patients in response assessment settings.
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Research letter

Risk stratifi cation of patients with primary prostate cancer (PCa) before initial 
treatment is notoriously challenging. Prostate-Specifi c Membrane Antigen 
(PSMA) PET-CT has proven value for detection of metastases in recurrent PCa, 
but its sensitivity for detection of lymph node involvement (LNI) in primary PCa is 
limited (1). PSMA is a type-II transmembrane protein that is highly overexpressed 
on PCa cells. Clinically, this characteristic has been exploited exclusively for the 
visual detection of disease on PET-imaging. However, PSMA is not merely an 
identifi er of PCa presence, but may have a biological role in disease progression 
through stimulation of oncogenic signalling (2).

PET off ers a unique opportunity to quantify primary PCa PSMA-expression 
and with this measure disease aggressiveness. Next, these data can be used 
for pre-operative risk stratifi cation. Quantifi cation on PET can be done using 
artifi cial intelligence-based radiomics analysis, which aims to capture intensity, 
morphological, and spatial patterns of PSMA-expression within tumours. Basic 
PET quantifi cation can also be employed, confi ning analyses to intensity and 
volumetric data of PSMA-expression. Th e advantage of PET is that it allows for 
measurement of the entire tumour, even before radical prostatectomy. In Chapter 
6, we performed a PSMA-radiomics analysis in patients with PCa patients who 
prospectively underwent [18F]PSMA PET-CT imaging prior to robot-assisted 
radical prostatectomy and extended pelvic lymph node dissection (3). In the present 
chapter, we benchmark these fi ndings to clinical prediction approaches (for example 
using nomograms) in the same cohort, and compare our results to those of similar 
studies using the receiver-operator characteristics area under the curve (AUC).

Th e main fi nding of our study was that the machine learning models trained 
using PSMA-radiomics predicted LNI with an AUC of 0.86, which is comparable 
to the results from Zamboglou et al. and higher than observed by Ferraro et al. 
(Table 10.1) (3-5). Th ese AUCs were similar or even higher than those of several 
nomograms were (Table 10.1). Adding visual analysis to the radiomics predictions 
in cross-validation did not improve the LNI prediction AUC. See Figure 10.1 for 
a clinical case where PSMA-radiomics outperformed the MSKCC nomogram 
for LNI prediction. Additionally, we found a high AUC in PSMA-radiomics for 
predicting Gleason score ≥8 in the radical prostatectomy specimen (AUC 0.81), 
as was similarly observed by Zamboglou et al. (3). Interestingly, the PSMA-
radiomics outperformed biopsy samples for prediction of Gleason score ≥8 in the 
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prostatectomy specimens (AUC 0.74 for biopsy Gleason score versus AUC 0.81 for 
PSMA-radiomics). Lastly, the PSMA-radiomics predicted extracapsular tumour 
extension at an AUC of 0.76, again outperforming the MSKCC nomogram (AUC 
0.69). 

Table 10.1: Receiver-operator characteristics AUCs for the prediction of lymph node involvement (LNI), 
radical prostatectomy Gleason score, and extracapsular extension (ECE) in the radical prostatectomy 
specimen using PSMA-expression quantified on PET imaging versus classical prediction models using 
clinical features such as within nomograms.

Study
Tracer 

n PSMA-expression on PET Clinical approaches

LNI Gleason  
score ≥8

ECE LNI Gleason 
score ≥8

ECE

Cysouw et al.(3)
[18F]DCFPyL

72 0.86 0.81 0.76 0.70# 0.74‡ 0.69#

Zamboglou et al.(4)
[68Ga]-PSMA-11

60 0.85 - 0.87 0.84 - 0.93

Ferraro et al.(5)†

[68Ga]-PSMA-11
60 0.70 - 0.76 0.62 - 0.83*
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Figure 10.1: Pre-operative [18F]PSMA PET-CT images of (A) a patient with a high MSKCC risk for LNI of 
31% (Gleason 4+4, PSA 7.4 ng/ml, cT2b, 50% positive cores) who was pN0 after ePLDN, and (B) a patient 
with a low MSKCC risk for LNI of 9% (Gleason 3+4, PSA 10.4, cT2a, 67% positive cores) that had pN1 
disease after ePLND. A machine learning model trained on [18F]PSMA PET radiomics predicted risks of 
LNI of 3% for patient (A) and 98% for patient (B), respectively. In this example, the MSKCC nomogram did 
not accurately predict LNI, in contrast with the [18F]PSMA PET radiomics-based model.
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Conclusion

Th ese emerging data may indicate that PSMA-expression might be an additional 
biomarker to PSA, biopsy pathology characteristics, and tumour stage in the pre-
treatment stratifi cation of primary PCa patients. Th e predictive value of PSMA-
expression on PET seems to be valid using both basic PET analysis (5) and 
radiomics analysis (3,4), and using both [18F]-labelled and [68Ga]-labelled PSMA-
ligands, and may even outperform existing prediction models. In clinical practice, 
PSMA PET can initially be used in intermediate- to high-risk patients to visually 
exclude distant metastases, and subsequently to predict the risk of LNI through 
quantifi cation of PSMA-expression in the primary tumour. We acknowledge that 
current datasets are relatively small and that external model validation is lacking. 
Larger multicenter cohort studies are needed to validate these fi ndings and 
develop robust prediction models. 
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Summarizing discussion

Th e present thesis focused on technical validation of quantitative PET-CT 
as biomarker in primary, recurrent, and castration-resistant prostate cancer 
(mCRPC) and in non-small cell lung cancer (NSCLC). More specifi cally, in 
Part 1 we investigated technical and methodological aspects of small tumour 
quantifi cation on PET-CT, including radiomics analysis, followed by evaluation of 
their clinical application in Part 2.

Methodological validation
Th e validity of a biomarker as a measure of tumour biology or pathology, relies 
on the accuracy and precision of its measurement. As already introduced in 
Chapter 1, accuracy and precision are two terms that are oft en used in describing 
the performance characteristics of a measurement device, such as PET-CT (1). To 
assess the validity of quantitative tumour measurements on PET, it is important 
that both accuracy and precision are taken into account (2). Ideally, a biomarker 
is both accurate (it measures the truth) and precise (it is reliable). Yet, an accurate 
biomarker can have low precision and, vice versa, a precise biomarker can be 
inaccurate. 

Using PVC requires careful validation with respect to tumour delineation
In Chapter 2 we empirically validated the use of PVC to improve the accuracy 
of small tumour quantifi cation, while taking into account the eff ect of PVC 
on its precision (1). To assess accuracy, we used a phantom scan and clinically 
realistic [18F]FDG PET-CT simulations to assess true tumour uptake. Results of 
both methods are obtained under rather ideal circumstances, as phantom and 
simulated lesions are spherical and have homogeneous tracer uptake. Nonetheless, 
it provided valuable insight into the performance of several PVC methods and 
their susceptibility to tumour delineation accuracy that needs to be taken into 
account.

We observed that PVC methods have great potential to improve accuracy 
of small tumour quantifi cation, but that they do not reach full accuracy for lesions 
≤1cm in diameter. Th is means that 1 cm tumour diameter seems to be the limit of 
current PET systems.  Still, as PVE generally started to occur below 3cm diameter, 
this still indicates a large benefi t of PVC to acquire accurate reads. An important 
fi nding of this study was that the PVC methods that make use of the pre-defi ned 
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tumour boundaries (i.e. the volumes of interest defined on PET) are highly 
susceptible to delineation accuracy. Therefore, such methods may worsen rather 
than improve accuracy. We recommend the use of parametric (voxel-wise) PVC 
methods such as iterative deconvolution, which performed rather well regardless 
of tumour delineation accuracy. An advantage of an iterative deconvolution 
algorithm is that it is easily implemented and computationally efficient since it 
can be applied to standard reconstructed clinical images (3,4). It does, however, 
require that the PSF setting is calibrated for individual PET-CT systems. This 
might be easily performed using the phantom images that are routinely acquired 
for the EARL calibration (5). A disadvantage of such an algorithm is that it tends 
to amplify image noise, mandating some form of image denoising when SUVmax 
is used (6).

PVC in dynamic PET: worth the trouble?
In Chapter 3 we evaluated the impact of PVC in a dynamic pharmacokinetic 
[18F]FLT PET-CT study in NSCLC patient treated with tyrosine kinase inhibitors 
(7). Full pharmacokinetic studies are needed to technically validate simplified 
quantitative metrics of tracer uptake on PET (e.g. SUV or TBR) (8-11). In this 
regard, accuracy has a somewhat different meaning than it had it the previous 
paragraph. Here, the ground truth is the reference pharmacokinetic parameter 
(distribution volume, VT), and accuracy pertains to the correlation between VT 

and the simplified parameters. PVC may affect both differently, and thus needs 
to be considered in such pharmacokinetic PET studies. We observed that during 
a dynamic PET acquisition, the PVE changes over time, depending on tracer 
kinetics in blood and tumour. Also, the denoising algorithm required specific 
optimization to prevent that the temporal course of PVE was omitted (12). As 
expected, PVC increased both tumour kinetic parameters and SUV/TBR reads. 
However, as the effects of PVC on both these parameters were quite similar, it did 
not substantially change their correlation coefficients (despite having a significant 
impact on absolute values). Therefore, PVC improved nor worsened the accuracy 
of SUV and TBR taking VT as reference for response assessment purposes. This 
study provided valuable, and perhaps reassuring, insight into the impact of PVE 
on technical validation of simplified PET metrics for clinical use, indicating that it 
may not be of value for future full pharmacokinetic response monitoring validation 
studies in oncology. It should be noted that these findings only apply to relative 
treatment-induced changes in measured tumour parameters. If absolute values, 
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for example pre-treatment (baseline) reads, are validated in pharmacokinetic 
analysis for prognostic or predictive purposes, PVC may have a substantial 
impact on validation of the preferred simplifi ed metric. Also, in situations where 
a variable treatment eff ect on tumour size is expected (i.e. pseudo-progression 
during immunotherapy), the impact of PVC could be larger. In dynamic PET 
acquisitions in brain studies, PVC will be of benefi t as the image-derived input 
function derived from carotid arteries is subject to PVE, but this is not an issue in 
oncological PET (13).

Precision must be balanced against accuracy
One of the main focuses of quantitative PET research has been its potential use 
in response assessment to systemic treatment (14). Use of PET for this purpose is 
attractive since it may provide for an assessment of the cancer burden as a whole, 
and for assessment of intrapatient heterogeneity of response. Also, the general 
hypothesis is that functional changes (e.g. reduction in tumour metabolism 
or proliferation) precede the anatomical tumour changes that are commonly 
measured on CT (e.g. using RECIST1.1), allowing for earlier positioning of 
PET in the clinical follow-up (15,16). As previously stated, knowledge of the 
intrinsic variability of PET quantifi cation is necessary to be able to discern actual 
treatment-induced changes versus day-to-day variations (17-21). When aiming 
to improve the accuracy of small tumour quantifi cation with PVC, or when 
using novel PSF image reconstructions, a potential negative eff ect on precision 
must be acknowledged and investigated as this may negatively aff ect the response 
assessment abilities of quantitative PET.

In Chapters 2, 4, and 5, we thoroughly investigated how PVC aff ects the 
test-retest variability of quantitative PET metrics in patients with NSCLC ([18F]
FDG) and metastatic prostate cancer ([18F]FCH, [18F]FDHT, and [18F]DCFPyL). 
First, we demonstrated that the PVC methods that are prone to yield inaccurate 
results (i.e. those depending on tumour delineation accuracy) also had a 
substantial negative impact on the test-retest variability (1). In contrast, methods 
that performed well in terms of accuracy (e.g. iterative deconvolution) had only 
a marginal eff ect on the repeatability as expressed in the intra-class correlation 
coeffi  cient (ICCs >0.9), and was thus chosen for clinical evaluation in Chapters 
4 and 5.

[18F]FDHT and [18F]DCFPyL (a PSMA-ligand) both are prostate cancer-
targeted radiotracers that may provide for PET-derived biomarkers in metastatic 
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castration-resistant mCRPC and hormone-sensitive prostate cancer (22-24). In 
Chapter 4 ([18F]FDHT) and Chapter 5 ([18F]DCFPyL) we applied PVC such 
that signal recovery complied with novel EARL (‘EARL2’) guidelines for scanner 
calibration. The EARL guidelines have recently been updated to accommodate 
the novel high-resolution reconstructions (or post-reconstruction processing) 
that are now routinely provided by system vendors (5). These ‘high-resolution’ 
PET images are often preferred by clinicians due to a higher diagnostic confidence 
and assumed higher detection rates. However, as we show in both Chapter 4 and 
Chapter 5, the test-retest variability of tumour quantitative measurements tends 
to increase to a variable extent, depending on the metric used (25). For example 
SUVmax, being most sensitive to image noise levels, became rather unreliable 
after PVC, rendering it unsuitable for response assessment. SUVpeak, however, 
seems to be a good alternative, as it is was robust to PVC-induced noise and is 
similarly observer-independent.

Simplified quantification of both [18F]FDHT and [18F]DCFPyL has been 
validated in two full pharmacokinetic PET studies (10,11). In both studies, SUV 
measurements proved to be invalid surrogates for the reference pharmacokinetic 
parameter Ki. Consequently, some form of tumour activity normalization to blood 
pool radioactivity was needed (input function integral for [18F]FDHT, yielding 
SUVauc; whole blood image-based activity for [18F]DCFPyL, yielding TBR). These 
metrics, however, have an inherently lower repeatability than SUV measurements 
due to the added variability in blood activity normalization parameters. Since 
these parameters are in whole (TBR) or partly (SUVauc) derived from the PET 
image itself, applying PVC adds additional noise to the measurements, potentially 
rendering them less suitable for use in response assessment studies with small 
effect sizes.

A way to at least partially mitigate the PVC-induced noise propagation, is 
to improve the count density of the images. In theory, this can be achieved in two 
ways: 1. by increasing the injected dosages, or 2. by extending the image acquisition 
time. Increasing the injected dosage to improve count statistics assumes that the 
dosage does not affect the tracer distribution. Extending the image acquisition 
time to improve count statistics assumes that tracer kinetics are stable (within and 
between bed positions), and neglects the added noise induced by radioactive decay. 
In Chapter 4, we investigated the repeatability of [18F]FDHT PET in mCRPC as a 
function of PVC and acquisition time. We hereto split the original list-mode data 
(i.e. the counts) from an original 3 minutes per bed position to a 1.5 minutes per 
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bed position. We observed that PVC does have a rather small negative impact on 
the test-retest repeatability, but that this worsened when reducing the counts in 
the PET image. Th erefore, shortening the acquisition time propagates the negative 
impact of PVC on PET precision. Extending acquisition times currently used for 
[18F]DCFPyL and [18F]FDHT will not likely be clinically feasible. Still, it should 
be maximized as the repeatability of uptake quantifi cation can be substantially 
aff ected when count density is reduced, as we show in Chapter 4 for [18F]FDHT 
(25).

Taken together, for [18F]DCFPyL and [18F]FDHT PET quantifi cation, the 
original (non-PVC, EARL1-calibrated) images may be preferred for response 
assessment studies. Clinical protocols should preferably include double image 
reconstruction: EARL1 for quantifi cation in response assessment, EARL2 for 
routine visual analysis (26). Of note, we did observe that the repeatability of whole 
body tumour burden assessments, which are usable in 177Lu-PSMA response 
monitoring, are robust to PVC and require no additional image reconstructions. 
Th e relative changes measured during treatment might not necessarily lead to 
diff erent conclusions between non-PVC and PVC images, as we observed in 
Chapter 3 for lung cancer and Chapter 9 for prostate cancer (7,27). Th e negative 
impact of PVC on response assessment will of course depend on the treatment-
induced eff ect sizes.

Extracting PET radiomics from small tumours is feasible and valuable
In recent years, artifi cial intelligence (AI) has gained immense popularity and 
attention in the fi eld of radiology and nuclear medicine (28). While AI models and 
algorithms have existed for some decades, computational power and large amounts 
of available data now allow for its potential to be fully revealed (28). Specifi cally in 
the fi eld of medical imaging, there are high hopes for AI to of signifi cant clinical 
benefi t, as large amounts of data are acquired on a routine basis. Here, AI may 
be used to perform physician tasks (e.g. detection or classifi cation of disease), or 
to make objective predictions on patient outcomes (clinical or pathological). Th e 
latter may be of particular interest for PET imaging, as it is inherently quantitative 
and targeted at tumour biology.

In Chapter 6 we investigated the use of artifi cial intelligence (AI) in 
analysis of [18F]DCFPyL PET images to predict prostate cancer risk, combining 
radiomics with machine learning. From [18F]FDG PET studies, it is well known 
that PET radiomics features, especially those based on texture analysis, are strongly 
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influenced by image reconstructions, use of PVC, and tumour segmentation 
approaches (21,29,30). However, few studies have evaluated whether this 
sensitivity propagates into clinical outcome predictions. Therefore, we optimized 
the PET methodology as function of the accuracy of the AI-based predictions. 
We concluded that the machine learning algorithms that were trained using [18F]
PSMA-radiomics features could accurately predict presence of metastatic disease 
and tumour histopathological grade (ROC AUC 0.76-0.86). However, especially 
for lymph node metastasis prediction, the tumour delineation approach and use of 
PVC seemed to affect the prediction AUC. This may raise some concerns regarding 
the robustness of the PSMA radiomics analysis in multicenter setting, especially 
with regard to heterogeneity in PET image characteristics (31). To circumvent the 
issues in radiomics analysis due to tumour segmentation, it might be worthwhile 
to investigate the use of ‘deep learning’ instead of radiomics and machine learning 
(30). In contrast with radiomics, deep learning models require no pre-defined 
features and segmentations. An in-depth discussion on deep learning for image 
analysis is beyond the scope of this work (32).

In PET radiomics studies, the added value of using radiomics versus using 
standard PET metrics (SUV, metabolic volume, etc.) should always be determined. 
If equal in performance, such standard metrics are preferred over radiomics due 
to their ease of use, widespread availability, and potentially better generalizability. 
In Chapter 6 we found that there was predictive value in the basic PET features, 
but predictions seemed to be less stable compared to when based on radiomics 
data.

It is often assumed that PET radiomics, especially those based on texture 
analysis, cannot be reliably extracted from small lesions (33). Still, even in small 
lesions, there can be complementary value of radiomics above basic PET features 
(30,34). Indeed, in our study we mainly included small lesions (inherent to primary 
prostate cancer) and radiomics still outperformed basic PET features (though 
non-significantly). Due to the inherently small tumour lesions, we applied PVC, 
which seemed of particular benefit for the radiomics-based predictions of lymph 
node metastases. This benefit may partly be due to the improved uptake contrast, 
which may have improved delineation of low-contrast lesions.

Overall, PET radiomics analysis in [18F]PSMA PET imaging of primary 
prostate cancer is promising, but the predictions are susceptible to variations 
in PET methodological factors. Future work should validate the superiority of 
radiomics above standard PET features, preferably in a multicenter (multivendor, 
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multisystem) setting. To this end, the benefi t of using post-acquisition feature 
harmonization algorithms should be evaluated (35).

Clinical application
From a scientifi c standpoint, validation of quantitative biomarkers in terms of 
accuracy and precision is of the utmost importance. However, the ultimate goal 
of such validation is to defi ne and/or improve the clinical benefi t of quantitative 
PET analysis. Th e latter is an important aspect that is not oft en taken into 
consideration in validation studies. Simply stated: will patients benefi t from our 
validation eff orts? To arrive at an answer to this question is complex and not 
straightforward, as most technical validation studies do not (or cannot) make use 
of clinical endpoints.

Th e clinical benefi t of partial-volume correction thus far
At writing of this thesis, many quantitative oncological PET studies with clinical 
endpoints have been performed over several decades. Th erefore, in Chapter 7 
we aimed to review the body of literature for PET studies with clinical endpoints 
that evaluated the benefi t of PVC (36). To avoid narrative and potentially biased 
summarization of the literature, we performed a systematic review with a meta-
analysis that was not restricted to cancer type.

Th e fi rst striking fi nding was that only 31 studies were eligible for inclusion, 
from which several studies were performed by the same groups. In almost all of 
the investigated studies, PVC did not change the fi nal conclusions on the clinical 
value of quantitative PET. A critical note was that the PVC methodology was oft en 
confi ned to a recovery coeffi  cient method, which is the most basic method for 
PVC (37). Indeed, it might be expected that such methods do not benefi t clinical 
predictions or diagnoses. We elaborately discussed the reviewed studies and 
provided our recommendations for future use of PVC towards a clinical benefi t. 
To summarize, we recommended that i) more sophisticated and better validated 
PVC methods should be used, and that ii) there should be a consensus amongst 
investigators regarding the preferred methodologies, and iii) in future studies 
partial-volume corrected data should be used in parallel to uncorrected data.

Quantifi cation does not add to visual reads in oligometastatic prostate cancer
Oligometastatic prostate cancer has become a newly recognized clinical entity, 
both at diagnosis (synchronous) and at biochemical recurrence (metachronous) 
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(38). The hypothesis is that these metastases run a more indolent course as they 
originate from a more hospitable primary tumour environment (39), therefore 
being more amenable to local metastasis-direct treatments, such as stereotactic 
body radiotherapy (SBRT) (40). Still, not all patients have a (lasting) PSA response 
after SBRT treatment. In Chapter 8, we aimed to predict which patients were more 
likely to have durable treatment responses by quantifying uptake of [18F]FCH in 
metastatic lesions, but concluded that none of the investigated PET metrics was 
predictive for biochemical progression-free survival (PFS) (41). We hypothesized 
that PVC might improve these predictions, since the analyzed metastases were 
inherently small, but this was not the case. The only ‘quantitative’ measure 
prognostic for PFS was the number of visually detected [18F]FCH-avid lesions 
(41). This study is an example of a clinical setting where, despite methodological 
rigor, PET quantification does not add to current practice.

Technical PET validation into clinical practice
In Chapter 9 we commented on a study that investigated whether [18F]DCFPyL 
was subject to a ‘sink effect’ in metastatic prostate cancer (27,42). A sink effect 
pertains to the observation that the distribution of a radiotracer in background 
tissues (e.g. liver, blood pool, spleen etc.) is inversely related to the tumour 
burden(43). The authors of the study that we commented on did not observe a sink 
effect, but they only investigated patients with low tumour burden. This provided 
us with an opportunity to discuss previous findings on the pharmacokinetics of 
[18F]DCFPyL, where we observed that a high tumour burden affected the plasma 
and whole blood input functions, resulting in lower activity concentrations over 
time in blood (11). The consequence of this was that SUV as simplified parameter 
for tumour PSMA uptake was not valid. However, the tumour-to-blood ratio 
(TBR) strongly correlated with the validated pharmacokinetic parameter Ki (11). 

The sink-effect may be a general effect that occurs for PET radiotracers that 
are targeted to a specific ligand or receptor (44). For such tracers, the distribution 
volume is limited (almost) exclusively to tumours that express their targets. Hence, 
in patients with a relatively large tumour burden, this might results in a sink-
effect. Moreover, large longitudinal changes in tumour volumes within patients 
will hamper use of SUV for response assessment as this could affect the blood 
input functions (27).

To illustrate the clinical relevance of this effect, and demonstrate the 
importance of technical PET validation, we presented a clinical case of a patient 
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with high-volume mCPRC who underwent both [18F]DCFPyl and [18F]FDHT 
PET before and during systemic treatment. For both tracers, we demonstrated 
that there was a large tracer sink eff ect over time, due to substantial increases in 
tumour volumes. Moreover, changes in TBR evidently correlated with the clinical 
progression, whereas changes in SUV erroneously indicated stable disease. We 
also evaluated whether application of PVC in compliance with EARL2 aff ected 
these conclusions, but found no substantial change. As we previously discussed, 
use of TBR for response assessment is oft en unwanted due to the added noise of 
blood activity measurements, especially when PVC is applied. However, despite 
its worse precision, TBR did accurate refl ect the true progressive disease during 
treatment, in contrast with SUV (Figure 9.2 and 9.4). Hence, this clinical example 
illustrates that, in some cases, high accuracy (use of TBR) is more important than 
high precision (use of SUV), even in response assessment. 

Finally, we must acknowledge that the progression quantifi ed on both [18F]
DCFPyL and [18F]FDHT PET was confi rmed by basic prostate specifi c antigen 
(PSA) measurements. Initial studies on response assessment with PSMA PET have 
shown a similar correlation between PSA response and PET response, warranting 
further determination of the true added value of PET-based response assessment 
in metastatic prostate cancer (45,46). Here, the advantage PET-based assessments 
will be capturing interlesional heterogeneity of response.

PSMA-expression quantifi ed on PET as novel biomarker?
In Chapter 6 we validated and optimized the use of PET radiomics from [18F]
DCFPyL for risk stratifi cation in primary prostate cancer. In this analysis, we found 
that these radiomics features were highly predictive when optimized according to 
tumour delineation and PVC, and that these features may outperform basic PET 
parameters. In Chapter 10 these results were briefl y discussed with respect to 
clinical relevance for the urologist community. We summarized results from our 
and two other studies on PSMA-expression quantifi ed on PET for prediction of 
lymph node involvement (LNI), high Gleason score, and/or extracapsular tumour 
extension (47,48). Interestingly, all studies observed high AUCs for prediction of 
LNI, high Gleason score, and (in our study) extracapsular tumour extension. We 
also benchmarked the radiomics AUCs to clinical prediction models, and found 
that the [18F]PSMA radiomics outperformed these models. All taken together, 
PSMA-expression quantifi ed on PET is a very promising new player in the group 
of biomarkers in primary prostate cancer (e.g. PSA, Gleason score). However, 
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there still are significant challenges that remain to be solved, regarding collection 
of large harmonized multicenter datasets for model training, external validation 
of radiomics versus simplified metrics, and incorporation of the available 
biomarkers (e.g. Gleason score, PSA, tumour stage, and PSMA expression) into a 
novel prediction model that will fit into clinical workflows.

Future perspectives and recommendations

In this thesis, we performed technical validation of small tumour quantification 
on PET-CT to derive biomarkers for prognostication and response assessment 
in prostate and lung cancer. Part of this validation included an investigation into 
use of artificial intelligence for quantitative PET analysis in prostate cancer. We 
also investigated and commented on the benefits of clinical application of these 
biomarkers with respect to clinical endpoints. 

As always in medical research, no study fills all knowledge gaps or answers 
all questions. Even more so, well-performed studies tend to generate more new 
questions than answers. Hence, using the knowledge gained in this thesis we can 
now comment on the future perspectives of the investigated radiotracers and use 
of quantitative PET biomarkers, and provide some recommendations for future 
research.

Prostate cancer
In Chapter 2 and Chapter 8, we investigated the repeatability and prognostic 
value of [18F]FCH PET-CT in metastatic prostate cancer (1,41). In the process of 
writing this thesis, choline-based ligands for prostate cancer have been (almost) 
entirely replaced by the novel PSMA-ligands, due to the higher detection rates 
for metastatic disease of the latter (49-52). Therefore, we think that [18F]FCH 
PET-CT will have no significant indication in future prostate cancer imaging. It 
may, however, be of interest for early response assessment of therapeutic PSMA-
inhibitors, where PSMA PET-CT will not be feasible due to tracer competition. 
Whether PSMA-inhibitors will have any future as clinical drugs remains to be 
investigated, though (53).

PSMA-ligands are the most revolutionary and successful (group of) 
radiotracers in nuclear medicine since the advent of [18F]FDG (54,55). Clinically, 
success of this tracer is greatest in the biochemical recurrence stage of prostate

Matthijs Cysouw.indd   216Matthijs Cysouw.indd   216 26-08-20   09:0426-08-20   09:04



Summarizing discussion

217

11

PCa diagnosis
Intermediate risk

or 
high-risk

PSMA PET-CT

biopsy

systemic treatment

+

-

Randomizedistant metastasis?

Arm
 A

Arm B

standard treatment: 
prostatectomy + ePLND

PSMA 
Radiomics

prostatectomy + ePLND

 prostatectomy only
low risk

high risk

-

+

PCa diagnosis
Intermediate risk

or 
high-risk

PSMA PET-CT

biopsy

systemic treatment

+

-

Randomizedistant metastasis?

Arm
 A

Arm B

standard treatment: 
prostatectomy + ePLND

PSMA 
Radiomics

prostatectomy + ePLND

 prostatectomy only
low risk

high risk

-

+

Figure 11.1: Example of a randomized-controlled trial to demonstrate the clinical benefi t of using PSMA-
radiomics with machine learning in primary prostate cancer patients before surgery. Th is should be a non-
inferiority trail with biochemical recurrence-free survival as the primary endpoint. Secondary endpoints 
should include time to castration-resistance and prevalence of surgical complications. ePLND = extended 
pelvic lymph node dissection.

cancer, where detection rates (even at low PSA levels) are higher than for any 
other imaging modality (56,57). For [68Ga]PSMA, a recent study demonstrated its 
superiority over the currently registered ligand [18F]Fluciclovine, rendering FDA 
approval of this ligand quite likely (57). It remains to be shown whether the ligand 
investigated in this thesis, [18F]DCFPyL, has the same benefi t over [18F]Fluciclovine, 
but initial results are promising (58). Investigations into the true clinical benefi t of 
PSMA PET at biochemical recurrence are ongoing. Quantitative PET-CT analysis 
will not likely have be useful in this clinical setting to make clinical predictions. 
Deep learning approaches might, however, support radiologists in image reading.

In primary prostate cancer, the story of PSMA PET-CT has not been 
glorious, with a sensitivity for lymph node staging that tends to be around 40-
50%, with large variations between studies (59-62). However, as we show in 
Chapter 6, in this setting there still is a very promising role for PSMA PET-
derived quantitative imaging biomarkers. Here, tumour biology and PET 
technology are perfectly integrated, yielding clinically usable data to predict a 
patient’s risk for metastatic disease. To get quantitative PSMA PET biomarkers, 
such as radiomics, into the clinical daily practice will require further validation 
using large pooled multicenter datasets, and thorough cross-center prospective 
validation studies (63). Following such (methodological) validation, the clinical 
benefi t of PSMA radiomics will need to be proven in a randomized controlled 
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trial, where patients with primary prostate cancer (non-metastatic on PET) are 
treated based on predictions from clinical nomograms versus predictions from 
machine learning-based radiomics analysis (Figure 11.1). Such a trial (aimed at 
proving non-inferiority) would need to utilize a hard clinical endpoint, such as 
time to biochemical recurrence, and/or time to castration-resistant disease.

In mCRPC, the main current role seems to be selection of patients amenable 
to PSMA-radioligand therapy (177Lu or 225Ac) and follow-up imaging during and 
after these treatments (45,64). Response assessment is especially promising, since 
the repeatability of whole body quantitative PET parameters is very high as we 
show in Chapter 5. For other treatments, such as taxane chemotherapy and 
androgen-axis inhibitors, the benefit of quantitative PSMA PET-CT for response 
assessment over basic measures such as PSA remains to be shown (46,65). This 
needs to include a more elaborate investigation of the flare phenomenon that 
maybe present during AR-targeted therapy (66,67). Also, the superiority in 
assessment of treatment response using PSMA PET-CT versus standard imaging 
modalities (bone scintigraphy and diagnostic CT) has not yet been established.

Finally, we may briefly speculate about the use of PSMA PET-CT in 
development of drugs that target PSMA, such as the PMPA-2 PSMA inhibitor 
(53). Pre-clinical data have shown that inhibiting PSMA has a therapeutic effect, 
but these drugs have not yet been clinically tested (53). If phase I trials are to 
be performed, they should use PSMA PET-CT to evaluate treatment targeting, 
preferably using quantitative analysis to assess heterogeneity of drug targeting 
between (or even within) lesions.

The treatment paradigm for mCRPC has shifted toward androgen 
receptor (AR) axis-targeted treatments. As [18F]FDHT specifically targets the 
AR, it has been shown to be very prognostic and may also be predictive for 
these treatments(24). For [18F]FDHT PET-CT, response assessment in mCPRC 
is mostly limited to abiraterone as this drug does not directly bind the AR (68). 
Prognostication, on the other hand, can be performed for all treatment types. 
Especially for AR-targeted treatments, [18F]FDHT PET biomarkers will be useful 
as it can be used to assess intrapatient heterogeneity of AR-expression, potentially 
identifying AR-mutant lesions, or lesions harboring AR-splice variants (69,70). A 
limitation of [18F]FDHT PET is its poor biodistribution, presence of metabolites, 
and the need for dynamic imaging; all rendering routine clinical use unlikely (10). 
We recommend that [18F]FDHT PET quantification should be used as a tool in 
clinical trials aiming to identify AR-mutant lesions for biopsy targeting to identify 
novel molecular prostate cancer subtypes.
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Lung cancer
In lung cancer, we assessed whether correcting for PET’s limited spatial resolution 
using PVC i) hampered the test-retest repeatability of [18F]FDG PET biomarkers 
(1), and ii) improved pharmacokinetic parameter estimation and validation of 
simplifi ed parameters for response assessment of [18F]FLT PET. For both, using 
PVC did not substantially aff ect the methodological validity of quantitative 
PET biomarkers for response assessment needs. Taken together, we think that 
methodological validation of these tracers for NSCLC response assessment 
studies have been adequately studied in recent years. In NSCLC, the future of 
quantitative PET biomarkers will be in prediction of response to immunotherapy 
using PD1/PD-L1-targeted radioligands, or even with [18F]FDG PET (71,72). 
Here, quantifying intratumoural heterogeneity of target expression (e.g. using 
radiomics analysis) might be crucial for accurate response prediction, which 
will again require thorough methodological validation with respect to tumour 
delineation and PVC.

PET biomarkers in general
To date, full pharmacokinetic PET studies have mainly been used for tracer 
validation studies. Now, with the advent of total body PET scanners, performing 
whole body dynamic studies has become a possibility (73). Still, even with these 
new scanners we do not think that dynamic imaging will become the new clinical 
standard, since it still requires extended imaging acquisitions, and (depending on 
the tracer) arterial or venous blood sampling. Moreover, the costs of total body 
PET scanners will limit their availability.

Simplifi ed analysis of PET data, on the other hand, has become routinely 
available in virtually all clinical PET centers, as system vendors have implemented 
such quantifi cation analysis into their soft ware. Unfortunately, there are many 
drawbacks to using simplifi ed analysis (SUV) pertaining to e.g. scanner calibration 
and harmonization, sensitivity of such parameters to variations in imaging 
protocols, tumour delineation methodology, and PET image processing (2,74). 
However, as these issues have been elaborately investigated, the routine clinical 
use of simplifi ed PET metrics is nearby.
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In recent years, AI-based analysis of PET images has made an entrance. 
Especially in molecular imaging, such analysis is attractive since it fully integrates 
tumour biology and PET technology, and may allow for thorough image-based 
tumour phenotyping. Still, radiomics or deep learning analyses are challenging in 
PET, due to the poor resolution, relatively high image noise levels, and difficulty 
in tumour delineation (31). Moreover, robustness of analysis, especially between 
centers, is a large issue. A main issue here is the heterogeneity between studies/
centers regarding image reconstruction parameters (voxel size) and use of post-
processing. The Image Biomarker Standardization Initiative (IBSI) has aimed to 
harmonize radiomics analysis, but evidence of a benefit for external validation 
remains to be shown. An idea would be to perform an additional ‘IBSI-radiomics’ 
reconstruction, besides the standard EARL reconstructions. Such a reconstruction 
should include isotropic voxels, preferably small (e.g. 2x2x2mm (75)) and a use of 
post-filtering calibrated using on phantom data that harmonizes both recovery and 
noise. To enhance clinically applicability, system vendors will need to implement 
standardized radiomics analysis within their software packages. Finally, a step-
by-step guideline for initiating, developing, and validating PET radiomic analysis 
for clinical use needs to be defined (Figure 11.2). Such a guideline could perhaps 
also mitigate the publication bias present in radiomics research, which is a known 
issue (76). The role of deep learning analysis in PET is still promising, as it avoids 
known issues in radiomics analysis pertaining to tumour delineation and feature 
definitions. Still, such models are more complex to develop and train and require 
large computational power.

Finally, if AI-based prediction algorithms, whether radiomics or deep-
learning-based, have been validated to such extent that they can be clinically 
deployed to have an effect on patient management, several ethical and legal issues 
arise. For example, the person who is responsible for mistakes made by these 
AI-models needs to be defined: the physician using the model, or the model 
developer? Also, legislation will need to be developed to ensure a minimum 
level of safety and efficacy of such models for routine clinical use.  The FDA has 
already approved several AI-models as Software as a Medical Device (SaMD), and 
is moving towards a certification framework for modifying approved AI-models 
(77).
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6. External validation
- Validate radiomics prediction models  using optimized PET methodology.

- Compare performance of radiomics with simplified PET metrics.
- Benchmark radiomics model to clinical standards.

5. Internal validation
- Perform rigid internal cross-validation on the development dataset.

- Compare performance of radiomics with common PET metrics.
- Evaluate influence of PET methodology on clinical value of radiomics.

4. Development dataset
- Collect training data representative for clinical practice.

- Ensure quality of training data by performing quality control.
- Adhere to standardized guidelines for radiomics extraction (IBSI). 

3. Gold standard
- Choose a validated pathological or clinical reference outcome.

2. Hypothesis
- Construct a biology-based hypothesis on use of PET radiomics 

to answer this question.

1. Clinical relevance
- Define the clinical question that needs to be answered.

7. Multicenter validation
- Train a radiomics model on multicenter data.

- Prospectively validate the trained model in a multicenter study.
- Benchmark radiomics model with clinical standards.

8. Validating clinical benefit
- Perform a randomized controlled trial of radiomics-informed 

strategies versus usual care.

Figure 11.2: A potential guideline for validation of PET radiomics prediction models towards clinical 
implementation.
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Conclusion

In this thesis we optimized and validated quantitative PET biomarkers derived 
from small tumours in primary, recurrent, and castration-resistant prostate 
cancer and in non-small cell lung cancer. We observed that despite PET’s low 
resolution, small tumours can be accurately quantified when PVC methods are 
carefully validated. This comes at a small expense of worsened precision for [18F]
FCH, [18F]FDG, [18F]FDHT, and [18F]DCFPyL, which could hamper response 
assessment using these tracers. Therefore, a balance needs to be struck between 
accuracy and precision, depending on the specific clinical indication and the 
expected effect sizes. Pharmacokinetic response assessment validation studies will 
not likely require any correction for the poor resolution of PET, as we showed 
for NSCLC using [18F]FLT PET-CT. [18F]FCH quantification did not allow for 
prediction of progression-free survival in oligometastatic prostate cancer. We 
validated artificial intelligence-based analysis of [18F]DCFPyL radiomics analysis 
for risk stratification in prostate cancer, where tumour delineation and PVC 
seemed to be important determinants for prediction accuracy. Future technical 
validation studies for quantitative PET biomarkers should preferably include 
clinical endpoints. Lastly, we made several recommendations for future radiomics 
development studies towards clinical use. 
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Introductie
Kanker is een zeer veel voorkomende en ernstige ziekte, en is wereldwijd een grote 
oorzaak van morbiditeit en mortaliteit. Ondanks dat er grote vooruitgangen zijn 
geboekt in het screenen, diagnosticeren, en behandelen van kanker is het nog 
steeds de grootste doodsoorzaak in Nederland, waar ongeveer een derde van 
alle overlijdensgevallen kanker-gerelateerd zijn. In dit proefschrift  worden twee 
veelvoorkomende soorten kanker onderzocht: prostaatkanker en longkanker.

Prostaatkanker is de meest voorkomende kankersoort bij mannen, met 
meer dan 12.000 nieuwe diagnoses per jaar in Nederland. Het is zowel klinisch 
als biologisch een heterogene ziekte die geclassifi ceerd kan worden als primair 
hormoongevoelige ziekte, biochemisch recidiverende hormoongevoelige ziekte, en 
gemetastaseerde of niet-gemetastaseerde castratie-resistente ziekte. Longkanker 
komt veel voor bij zowel mannen als (in minder mate) vrouwen, met ongeveer 
13.000 nieuwe diagnoses per jaar in Nederland. Bij diagnose is de ziekte helaas bij 
veel patiënten al gemetastaseerd en is de prognose zeer matig. In dit proefschrift  
onderzoeken we het niet-kleincellig longcarcinoom (NSCLC).

De behandelingen van kanker zijn (grof gesteld) onder te verdelen in 
chirurgie, radiotherapie, en systemische therapie (o.a. chemo-, immuno- en 
hormoontherapie). Bij lokale ziekte wordt meestal gekozen voor chirurgie of 
radiotherapie (al dan niet voorgegaan door systemische therapie), terwijl bij 
gemetastaseerde ziekte wordt er veelal gekozen voor systemische therapie. Een 
uitzondering hierop zijn oligometastasen, waar het beperkte aantal metastasen 
lokale behandeling mogelijk maakt.

Ondanks dat er veel werkzame behandelingen zijn ontwikkeld, zijn veel 
middelen niet of matig werkzaam bij een deel van de patiënten. Dit betekent dat 
deze patiënten ineff ectief behandeld worden, onnodige toxiciteit ondergaan, en 
dat deze zorg niet kosteneff ectief is. Het is erg lastig om per patiënt te voorspellen 
of een behandeling tegen kanker gaat werken, of het eff ect van behandeling 
betrouwbaar vast te kunnen stellen. Van oudsher werden kankerpatiënten 
behandeld volgens vaststaande en rigide richtlijnen, waarin geen of weinig 
patiënt-specifi eke informatie werd meegenomen. In de huidige medische zorg 
wordt geprobeerd om hier zo veel mogelijk van af te stappen, en de behandeling 
waar mogelijk af te stemmen op de individuele patiënt.
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Om dit te kunnen doen zijn zogeheten biomarkers nodig. Een biomarker kan 
(vrij vertaald) gedefinieerd worden als een “karakteristiek dat objectief gemeten 
en geëvalueerd wordt als maat van normale biologische processen, pathogene 
processen, of farmacologische respons op een therapeutische interventie”. 
Biomarkers kunnen dus gebruikt worden om per patiënt een rationele keuze te 
maken voor een bepaalde behandeling, of vroegtijdig ineffectieve behandeling te 
stoppen. Ze kunnen onder andere bepaald worden in bloed, weefsel (verkregen 
via biopten), of uit beeldvorming.

Het voordeel van beeldvorming is dat biomarkers zowel op patiënt- als 
op laesie-niveau geëxtraheerd en longitudinaal geëvalueerd kunnen worden. 
Een beeldvormingsmethode die zich in oncologie uitermate goed leent voor het 
verkrijgen van in-vivo kwantitatieve biomarkers is positron emissie tomografie 
(PET). In PET-beeldvorming worden radioactief-gelabelde stoffen (tracers) 
geïnjecteerd, waarvan de distributie vervolgens 3-dimensionaal gevisualiseerd en 
gekwantificeerd kan worden. Deze tracers zijn gericht op specifieke karakteristieken 
van maligne tumoren, en de opname ervan kan op PET gekwantificeerd worden 
om te voorspellen of te meten of een behandeling effectief is of zal zijn. We 
onderzoeken in dit proefschrift de tracers [18F]fluoromethylcholine, [18F]
DCFPyL, en [18F]fluorodihydro-testosteron ([18F]FDHT) bij hormoongevoelig 
en castratie-resistent prostaatkanker, en [18F]fluorodeoxyglucose ([18F]FDG) en 
[18F]fluorothymidine ([18F]FLT) bij NSCLC. Door met PET te meten hoe veel van 
deze radioactieve tracers wordt opgenomen in tumoren, of hoe deze zich verdelen 
bínnen tumoren, kunnen we proberen te voorspellen hoe de ziekte zal verlopen 
of te meten of de behandeling effectief is. Echter, voordat deze kwantitatieve 
PET biomarkers in de klinische praktijk geïmplementeerd kunnen worden, is 
biologische, methodologisch, en klinische validatie noodzakelijk. 

Het kwantificeren van traceropname in kleine tumoren is op PET een 
lastig probleem door de lage spatiele resolutie. In deel 1 van dit proefschrift 
richten we ons op methodologische validatie van kwantitatieve PET biomarkers, 
waarbij we met name onderzoeken óf en hóe we kleine tumoren het beste kunnen 
kwantificeren en wat voor invloed dat heeft op de test-hertest betrouwbaarheid. 
Ook onderzoeken we hoe kunstmatige intelligentie ons kan helpen in het 
voorspellen van gemetastaseerde ziekte vanuit kleine prostaattumoren. In deel 2 
van dit proefschrift kijken we vervolgens naar de klinische toepassing van de PET-
kwantificatie die we in deel 1 gevalideerd hebben.
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Deel I – Methodologische validatie
In hoofdstuk 2 onderzochten we de eff ectiviteit van partial-volume correction 
(PVC) methoden, die als doel hebben de PET-kwantifi catie van traceropname 
in kleine laesies (<2 tot 3cm diameter) te corrigeren voor de beperkte resolutie 
van PET. Dit onderzochten we met gebruik van [18F]FDG PET simulaties van 
longkankerpatiënten en fantoomscans (aldus in tamelijk ideale omstandigheden). 
We vonden dat deze PVC-methoden veel potentie hebben om de metingen 
nauwkeuriger te maken voor laesies tot 1cm diameter, soms wel tot 100% 
nauwkeurigheid, maar dat er een aantal methoden zijn die erg gevoelig zijn 
voor de tumorsegmentatie methode. Ook observeerden we dat deze gevoelige 
PVC methoden een sterk negatief eff ect konden hebben op de test-hertest 
betrouwbaarheid van [18F]FCH opname in gemetastaseerd prostaatkanker en 
[18F]FDG opname in NSCLC tumoren.

In hoofdstuk 3 onderzochten we of PVC op voxel-niveau met en zonder 
gebruik van denoising in dynamische [18F]FLT PET-CT scans bij NSCLC patiënten 
een eff ect had op de validatie van versimpelde maten van tracer opname voor het 
meten van respons op behandeling. De versimpelde maten waren de Standardized 
Uptake Value (SUV) en de Tumour-To-Blood ratio (TBR). We zagen dat de 
beperkte resolutie van PET over de tijd (tijdens de scan) variabel eff ect had op de 
tumor kwantifi catie, en dat dit eff ect niet volledig gelijk was aan het eff ect op de 
versimpelde PET-maten. Echter, PVC had geen evident eff ect op de validatie van 
deze versimpelde PET maten voor het vaststellen van respons op behandeling. 
Het lijkt bij dit soort respons monitoring studies dus niet nodig om te corrigeren 
voor de beperkte resolutie van PET, zelfs bij kleine longtumoren en metastasen, 
als het volume van de tumor over de tijd niet stabiel blijft .

In hoofdstuk 4 onderzochten we de invloed van ruis en PVC (conform 
de vernieuwde scanner-kalibratie richtlijn; EARL2) op de test-hertest 
betrouwbaarheid van [18F]FDHT PET in gemetastaseerd castratie-resistent 
prostaatcarcinoom (mCRPC). Het doel was om te onderzoeken of we korter 
konden scannen met [18F]FDHT PET, omdat patiënten met deze ziekte vaak 
pijnlijke uitzaaiingen hebben in het skelet en dus niet lang comfortabel in de 
scanner kunnen liggen. Ook wilden we de invloed van de nieuwe scanner-kalibratie 
richtlijn EARL2 op de betrouwbaarheid onderzoeken, omdat deze de komende 
jaren in de praktijk ingevoerd gaat worden. Deze vernieuwde richtlijn houdt in 
dat er bij PET-beeldreconstructie gebruikt wordt gemaakt van PSF-reconstructies, 
welke in principe een vorm van PVC zijn. We vonden dat zowel het verhogen 
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van de beeldruis van de PET scans (korter scannen) als het gebruik van PVC de 
test-hertest betrouwbaarheid vermindert, en [18F]FDHT PET daarmee minder 
geschikt maakt voor het meten van respons op behandelingen. Dit effect was met 
name aanwezig voor SUVmax, wat de meest gebruikte maat voor tumor opname 
is wereldwijd. Echter, SUVpeak was veel minder aangedaan door de ruizigheid en 
toepassing van PVC, en zou dus bij voorkeur gebruikt moeten worden voor dit 
soort [18F]FDHT PET scans.

Een andere nieuwe tracer voor PET beeldvorming van prostaatkanker 
is [18F]DCFPyL. [18F]DCFPyL is een prostaat-specifiek membraan antigeen 
(PSMA) ligand, dat zeer specifiek gericht is op prostaatkanker cellen. Door te 
kwantificeren hoe veel [18F]DCFPyL-opname er is in tumoren kan (bijvoorbeeld) 
gemeten worden of een behandeling effectief is. Net zoals bij [18F]FDHT, moet 
hiervoor de test-hertest betrouwbaarheid worden onderzocht, wat we in 
hoofdstuk 5 gedaan hebben. We vonden bij patiënten met hormoongevoelig 
en castratie-resistent prostaatcarcinoom dat de verschillende maten voor PET-
kwantificatie zeer betrouwbaar waren, en deze tracer dus geschikt maken voor 
gebruik in responsmetingen. Ook vonden we dat de totale tumor opname-maten 
(alle tumoren binnen patiënten gecombineerd) het meest betrouwbaar waren, 
wat deze maten erg geschikt maken voor het meten van effect van systemische 
therapie (bijvoorbeeld 177Lu-PSMA-radioligandtherapie). Ook waren deze totale 
tumor opname-maten én SUVpeak ongevoelig voor gebruik van PVC (conform 
EARL2), wat de bruikbaarheid van deze maten in de klinische praktijk vergroot.

In hoofdstuk 6 onderzochten we of we met machine learning, een vorm 
van kunstmatige intelligentie, en radiomics verkregen uit primaire prostaatkanker-
lesies op [18F]DCFPyL PET het risico op lymfekliermetastasen en hoog-risico 
factoren konden voorspellen. Radiomics betreft het uitvoerig kwantificeren van 
traceropname uit tumoren (in dit geval op PET), waarbij honderden maten van 
intensiteit, morfologie, en heterogeniteit verkregen worden. In dit onderzoek 
keken we daarbij specifiek naar de invloed van tumorsegmentatie en gebruik 
van PVC op de nauwkeurigheid van de voorspellingen van het machine learning 
model. We vonden dat de PSMA-radiomics zeer voorspellend waren voor de 
aanwezigheid van lymfekliermetastasen en hoge tumorgraad (Gleason score 
≥8). Ook was het toepassen van PVC en een wat hogere afkapwaarde voor 
tumorsegmentatie (65-70% van SUVpeak) van positieve invloed op het kunnen 
voorspellen van lymfekliermetastasen. De resultaten uit deze studie zijn zeer 
veelbelovend, en toekomstige prospectieve studies met grotere cohorten dienen 
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zich richten op externe validatie om uit te wijzen of deze methode betrouwbaar 
genoeg is voor klinische implementatie.

Deel II – Klinische toepassing
Methodologische validatie van kwantitatieve PET biomarkers met betrekking tot 
hun nauwkeurigheid en betrouwbaarheid is van groot belang voor valide klinisch 
gebruik. Echter, evaluatie van de toegevoegde waarde van hun klinische toepassing 
is minstens net zo belangrijk. In de meeste technische PET-validatiestudies 
worden er geen klinische eindpunten meegenomen, omdat deze niet bij de 
doelstellingen van deze studies horen, of simpelweg niet mogelijk zijn door het 
design van de studie (bijvoorbeeld in een test-hertest studie). In dit deel van het 
proefschrift  evalueerden we het voordeel van toepassing van PET-kwantifi catie in 
verscheidene klinische settings.

In hoofdstuk 7 hebben we de gepubliceerde literatuur over het gebruik van 
PVC in PET biomarker studies in oncologie systematisch samengevat en kritisch 
beoordeeld. Hierbij evalueerden we studies die keken naar het eff ect van PVC op 
het stellen van diagnose, de stadiëring van ziekte, het voorspellen van prognose, 
en het monitoren van respons op behandeling. Ook deden we een meta-analyse 
van studies naar het gebruik van [18F]FDG PET voor het maken van onderscheid 
tussen benigne en maligne nodules in de long. We concludeerden dat, tot heden, 
het gebruik van PVC geen klinische toegevoegde waarde heeft  gehad, behalve 
voor het voorspellen van prognose in patiënten met hoofdhalskanker. Een andere 
bevinding was dat de meeste studies gebruik maakten van een recovery coeffi  cient 
methode voor PVC, welke de meest simpele methode is die vele aannames 
doet en enkel op laesie niveau kan corrigeren (en niet op voxelniveau). Naar 
aanleiding van deze systematische review deden we tevens aanbevelingen voor 
toekomstige studies, onder andere aangaande i) het gebruik van betere en meer 
uitvoerig gevalideerde PVC-methoden (conform hoofdstuk 2), ii) het bereiken 
van een consensus in de wetenschappelijke gemeenschap over welke methode 
geprefereerd is zodat resultaten van studies vergeleken kunnen worden, en iii)
het gebruik van PVC-gecorrigeerde data niet als vervanging van ongecorrigeerde 
data, maar eerder als toevoeging hierop. 

In hoofdstuk 8 onderzochten we of we bij patiënten met oligometastasen 
van prostaatkanker bij biochemisch recidief konden voorspellen hoe lang zij 
progressie-vrij zouden blijven na stereotactische bestraling van deze metastasen. 
Oligometastasen worden gedefi nieerd als een beperkt aantal metastasen waarbij 
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lokale behandeling mogelijk is. Op [18F]FCH PET scans die vóór bestraling 
gemaakt werden kwantificeerden we de traceropname in de metastasen. Omdat 
de metastasen (met name lymfekliermetastasen) erg klein waren, hebben we PVC 
toegepast om de nauwkeurigheid van de metingen in deze laesies te vergroten. We 
concludeerden dat, zowel met als zonder gebruik van PVC, er geen significante 
voorspellende waarde zat in de intensiteit en metabole volumina van [18F]FCH op 
PET. Echter, interessant genoeg was het aantal visueel detecteerbare metastasen 
wel voorspellend voor progressie-vrije overleving (in univariaat analyse). Deze 
studie is een voorbeeld van een setting waar, ondanks degelijke methodologische 
validatie, er geen klinische waarde van PET-kwantificatie is boven simpele klinisch 
gebruikte maten. 

Uit een recente studie weten we dat de farmacokinetiek van [18F]DCFPyL 
op PET gevoelig is voor grote tumorvolumina binnen patiënten. Dit betekent 
dat bij uitgebreide metastasering de inputfunctie in het blood anders is dan bij 
patiënten met enkele metastasen. De consequentie is dat SUV geen valide maat 
voor kwantificatie is, in tegenstelling tot TBR omdat deze corrigeert voor eventuele 
variaties in de inputfunctie. Ook betekent dit dat in studies naar responsmeting 
met [18F]DCFPyL PET het gebruik van relatieve verschillen in SUV niet valide 
is als er grote behandelingseffecten zijn op de tumorvolumina binnen patiënten. 
Het nadeel van TBR is echter dat de betrouwbaarheid lager is dan SUV, omdat er 
toegevoegde variabiliteit in de bloedmetingen zit, wat met name aanwezig is bij 
gebruik van PVC beelden (EARL2). Dit zou verhinderen dat we met [18F]DCFPyL 
PET subtiele verschillen tijdens behandeling kunnen meten. Eenzelfde observatie 
is eerder ook voor [18F]FDHT gemaakt, waar SUV ook geen valide maat voor 
traceropname is. Gezien beide tracers zeer specifiek gericht zijn op een bepaalde 
eigenschap van de tumoren, lijkt dit dus een algemeen effect te zijn voor dit soort 
tracers. In hoofdstuk 9 bespraken we dit effect, waarbij we ons commentaar 
leverden op een recent gepubliceerde studie die geen relatie vond tussen [18F]
DCFPyL opname in achtergrondweefsel en het totale tumor volume. Echter, in 
deze studie werden enkel patiënten met lage tumor volumina geïncludeerd. We 
bespraken deze resultaten in het licht van de eerder onderzochte farmacokinetiek 
van [18F]DCFPyL. Ook lieten we met een klinisch voorbeeld zien dat dit duidelijke 
consequenties kan hebben voor het monitoren van respons op behandeling bij een 
patiënt met mCRPC die behandeld werd met abirateron, en zowel [18F]DCFPyL 
als [18F]FDHT PET onderging voor en tijdens behandeling. Bij beide tracers liet 
SUV globaal stabiele ziekte zien, terwijl TBR duidelijk progressieve ziekte aangaf 
welke klinisch bevestigd werd.
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In hoofdstuk 6 hebben we een PSMA-radiomics met machine learning 
analyse voor risicostratifi catie van patiënten met primair prostaatkanker 
geoptimaliseerd en gevalideerd. Op basis van deze resultaten vonden we 
dat het meten van PSMA in de primaire tumor een veelbelovende nieuwe 
biomarker is, naast de gebruikelijke tumorgradering (Gleason score), PSA, en 
klinisch tumorstadium. Het zou dan ook mogelijk de risicostratifi catie van deze 
patiënten kunnen verbeteren, zodat minder patiënten onnodig een pelviene 
lymfeklierdissectie hoeven te ondergaan. In hoofdstuk 10 bespraken we deze 
bevindingen kort, gericht op de urologische gemeenschap. Hierbij bespraken we 
enkele vergelijkbare studies, die dezelfde positieve resultaten lieten zien voor het 
voorspellen van lymfekliermetastasen op basis van PSMA-expressie in de primaire 
tumor op PET. Ook vergeleken we de voorspellende waarde van deze PSMA-
radiomics ten opzichte van de standaard klinisch gebruikte modellen (bijvoorbeeld 
nomogrammen), en vonden dat (in ons cohort) de PSMA-radiomics beter waren 
in het voorspellen van kliermetastasen, hoge Gleason score, en kapseldoorbraak 
van de tumor. In een van de andere onderzoeken was gebleken dat de PSMA-
expressie op PET ongeveer even goed kon voorspellen of er kliermetastasen waren 
dan de klinische modellen, maar in dit onderzoek werden simpele PET maten 
gebruikt en geen radiomics. Al met al is het meten van PSMA-expressie op PET 
een veelbelovende nieuwe speler in de biomarker-groep van prostaatkanker, maar 
toekomstige studies moeten uitwijzen wat de exacte toegevoegde waarde is ten 
opzichte van bestaande modellen, en hoe betrouwbaar deze nieuwe biomarker is 
in een multicenter setting.

Conclusie
In dit proefschrift  hebben we onderzocht of en hoe we kleine tumoren 
nauwkeurig en betrouwbaar kunnen kwantifi ceren op PET in primair, 
recidiverend, en castratie-resistent prostaatkanker en niet-kleincellig longkanker. 
Ook evalueerden we wat de toepassing hiervan oplevert in klinische settings. 
We vonden dat ondanks de lage resolutie van PET we traceropname in tumoren 
≥1cm nauwkeurig konden kwantifi ceren, als PVC methoden zorgvuldig 
gevalideerd waren. In literatuur vonden we dat PVC zeer beperkt en veelal matig 
gevalideerd werd toegepast. De nauwkeurigheid van gevalideerde PVC had een 
beperkt negatief eff ect op de betrouwbaarheid van de PET kwantifi catie voor 
[18F]FCH, [18F]FDG, [18F]FDHT, en [18F]DCFPyL, wat subtiele responsevaluatie 
met deze tracers mogelijk kan verhinderen. In farmacokinetische validatie van 
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responsmetingen in longkanker met versimpelde PET-maten met dynamische 
PET bleek het toepassen van PVC geen toegevoegde waarde te hebben. [18F]FCH 
PET kwantificatie, met of zonder PVC, bleek niet van toegevoegde waarde in het 
voorspellen van progressie-vrije overleving in patiënten met oligometastasen van 
prostaatkanker. In het voorspellen van lymfekliermetastasen op basis van [18F]
DCFPyL-radiomics met kunstmatige intelligentie, bleken zowel toepassing van 
PVC als het optimaliseren van tumorsegmentatie de voorspellingen te verbeteren. 
Toekomstige methodologische PET validatiestudies zouden bij voorkeur ook 
klinische eindpunten moeten incorporeren.
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Dankwoord

Op de voorzijde van dit proefschrift pronkt een prachtige Volvo Amazon uit 1967. 
Net als de PET-scanner die in dit proefschrift onderzocht werd, staat deze auto 
voor betrouwbare en vooruitstrevende techniek. Zoals een klassieke Volvo niet 
zonder brandstof kan en doelloos is zonder bestuurder, kan ik dit proefschrift 
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vak en de wetenschap zijn aanstekelijk, en ik bewonder je kunde om dit over te 
brengen op anderen!

Ronald Boellaard, beste Ronald, bedankt voor alle begeleiding en de vele uren 
waarop je beschikbaar was om resultaten te bespreken. Je hebt de unieke gave 
om complexe zaken voor ieder inzichtelijk te maken, en daar waar onderzoeken 
vastlopen toch net die éne uitkomst te vinden.

Daniela Oprea-Lager, beste Daniela, sinds het begin van mijn onderzoek 
ben jij nauw betrokken geweest bij mijn werk en heb ik zeer plezierig met je 
samengewerkt. Met jouw enthousiasme en optimisme is geen probleem te groot!

Jens Voortman, beste Jens, bedankt voor de prettige samenwerking (al was het 
met name op juridisch, ethisch, en administratief gebied). Hopelijk kunnen we in 
de toekomst nog veel samenwerken!

Geachte prof.dr. Jeroen van Moorselaar, prof.dr. Fons van den Eertwegh, prof.dr. 
Hugo de Jong, prof.dr. Sigrid Stroobants, prof.dr. Kees van Kuijk, en dr. Bart de 
Keizer, dank voor het lezen en kritisch beoordelen van mijn proefschrift. Prof.dr. 
Irene Buvat, merci d'avoir pris le temps de lire et d’évaluer ma thèse!

Gem Kramer, beste Gem, toen ik als jonge student op de afdeling binnen kwam 
heb jij me onder jouw vleugels genomen en alle ins en outs van het ‘onderzoeker-
zijn’ bijgebracht, vaak onder het genot van een biertje! Dank daarvoor en voor de 
fijne samenwerking!
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[18F]DCFPyL 18F-bound PSMA-ligand
[18F]FCH 18F-fl uoromethylcholine
[18F]FDG  2-deoxy-2-(18F)fl uoro-D-glucose
[18F]FDHT 18F-fl uorodihydrotestosterone
[18F]FLT 18F-fl uorothymidine
[18F]PSMA 18F-prostate-specifi c membrane antigen
AC  activity concentration
ADT androgen deprivation therapy
AI   artifi cial intelligence
AR   Androgen receptor
ARSi  androgen receptor signalling inhibitor
AUC  area-under-the-curve
BLOB-OS-TF iterative time-of-fl ight reconstruction algorithm
BPND  non-displaceable binding potential
CNR  contrast-to-noise ratio
COV  coeffi  cient of variation
CT   computed tomography
DNA  deoxyribonucleic acid
EANM European Association of Nuclear Medicine
EARL EANM Research Ltd.
ECE  extracapsular tumor extension
EGFR  endothelial growth factor receptor
ePLND  extended pelvic lymph node dissection
FWHM   full-width-at-half-maximum
GLCM  grey-level co-occurrence matrices
GLDZM  grey-level distance zone matrices
GLRLM  grey-level run length matrices
GLSZM  grey-level size zone matrices
GS   Gleason score
HR  hazard ratio
HYPR  highly-constrained backprojection 
IBSI  image biomarker standardization initiative
ICC  intraclass correlation coeffi  cient
IDIF  image-derived input function
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IQR		 interquartile range
KBq		 Kilobecquerel
Kg			 kilogram
LNI		 lymph node involvement
LOR		 line-of-response
LR			 Lucy-Richardson
MATV		 metabolically active tumor volume
MBq		 Megabecquerel
mCRPC		 metastatic castration-resistant prostate cancer
ML		 machine learning
MRI		 magnetic resonance imaging 
NGLDM		 neighboring grey-level dependence matrices
NGTDM		 neighborhood grey-tone difference matrices
NSCLC		 non-small cell lung cancer
PCa		 Prostate cancer
PCA		 principal component analysis
PERCIST		 PET response assessment criteria
PET		 positron emission tomography
PFS		 progression-free survival
PP			 parent plasma
PSA		 prostate-specific antigen
PSF		 point-spread function
PSMA		 prostate-specific membrane antigen
PVC		 partial-volume correction
PVE		 partial-volume effect
RC			 repeatability coefficient
ROC		 receiver-operator characteristics
SBRT		 stereotactic body radiotherapy
SD			 standard deviation
SMOTE		 Synthetic Minority Oversampling Technique
SUV		 Standardized Uptake Value
TBR		 tumor-to-blood ratio
TKI		 tyrosine kinase inhibitor
TLCU		 total lesion choline uptake
TLG		 total lesion glycolysis
TLU		 total lesion uptake
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TOF   time-of-fl ight
TTB  total tumor burden
TTV  total tumor volume
VOI  volume of interest
VT   Volume of distribution
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