Page 109 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 109
Engineering of Tyrosine-Containing Peptide Loops Enables Non-terminal Protein Labeling
6.6. References
(1) Junutula, J. R., Raab, H., Clark, S., Bhakta, S., Leipold, D. D., Weir, S., Chen, Y., Simpson, M., Tsai, S. P., Dennis, M. S., et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26 (8), 925-32.
(2) Boswell, C. A., Mundo, E. E., Zhang, C., Bumbaca, D., Valle, N. R., Kozak, K. R., Fourie, A., Chuh, J., Koppada, N., Saad, O., et al., Impact of Drug Conjugation on Pharmacokinetics and Tissue Distribution of Anti-STEAP1 Antibody-Drug Conjugates in Rats. Bioconjugate Chem. 2011, 22 (10), 1994-2004.
(3) Shen, B. Q., Xu, K., Liu, L., Raab, H., Bhakta, S., Kenrick, M., Parsons-Reponte, K. L., Tien, J., Yu, S. F., Mai, E., et al., Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 2012, 30 (2), 184-9.
(4) Dorywalska, M., Strop, P., Melton-Witt, J. A., Hasa-Moreno, A., Farias, S. E., Casas, M. G., Delaria, K., Lui, V., Poulsen, K., Loo, C., et al., Effect of Attachment Site on Stability of Cleavable Antibody Drug Conjugates. Bioconjugate Chem. 2015, 26 (4), 650-9.
(5) Su, D., Kozak, K. R., Sadowsky, J., Yu, S. F., Fourie-O'Donohue, A., Nelson, C., Vandlen, R., Ohri, R., Liu, L., Ng, C., et al., Modulating Antibody-Drug Conjugate Payload Metabolism by Conjugation Site and Linker Modification. Bioconjugate Chem. 2018, 29 (4), 1155-67.
(6) Wilchek, M., and Miron, T., Mussel-inspired new approach for polymerization and cross- linking of peptides and proteins containing tyrosines by Fremy's salt oxidation. Bioconjugate Chem. 2015, 26 (3), 502-10.
(7) Kim, S., Sung, B. H., Kim, S. C., and Lee, H. S., Genetic incorporation of l- dihydroxyphenylalanine (DOPA) biosynthesized by a tyrosine phenol-lyase. Chem. Commun. 2018, 54 (24), 3002-5.
(8) Bruins, J. J., Blanco-Ania, D., van der Doef, V., van Delft, F. L., and Albada, B., Orthogonal, dual protein labelling by tandem cycloaddition of strained alkenes and alkynes to ortho- quinones and azides. Chem. Commun. 2018, 54 (53), 7338-41.
(9) Horsch, J., Wilke, P., Stephanowitz, H., Krause, E., and Borner, H. G., Fish and Clips: A Convenient Strategy to Identify Tyrosinase Substrates with Rapid Activation Behavior for Materials Science Applications. Acs Macro Lett. 2019, 8 (6), 724-9.
(10) Zemlin, M., Klinger, M., Link, J., Zemlin, C., Bauers, K., Engler, J. A., Schroeder, H. W., and Kirkham, P. M., Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J. Mol. Biol. 2003, 334 (4), 733-49.
(11) Almagro, J. C., Raghunathan, G., Beil, E., Janecki, D. J., Chen, Q., Dinh, T., LaCombe, A., Connor, J., Ware, M., Kim, P. H., et al., Characterization of a high-affinity human antibody with a disulfide bridge in the third complementarity-determining region of the heavy chain. J. Mol. Recognit. 2012, 25 (3), 125-35.
(12) Gillissen, M. A., de Jong, G., Kedde, M., Yasuda, E., Levie, S. E., Moiset, G., Hensbergen, P. J., Bakker, A. Q., Wagner, K., Villaudy, J., et al., Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice. Blood Adv. 2017, 1 (19), 1551-64.
(13) Rosenstein, Y., Santana, A., and Pedraza-Alva, G., CD43, a molecule with multiple functions. Immunol. Res. 1999, 20 (2), 89-99.
(14) Tuccillo, F. M., de Laurentiis, A., Palmieri, C., Fiume, G., Bonelli, P., Borrelli, A., Tassone, P., Scala, I., Buonaguro, F. M., Quinto, I., et al., Aberrant Glycosylation as Biomarker for Cancer: Focus on CD43. Biomed Res. Int. 2014.
107
6