Page 95 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 95
Preparation of Trifunctional Protein-antibody Conjugates
5.8. References
(1) Kipriyanov, S. M., Moldenhauer, G., Schuhmacher, J., Cochlovius, B., Von der Lieth, C. W., Matys, E. R., and Little, M., Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 1999, 293 (1), 41-56.
(2) Andreev, J., Thambi, N., Bay, A. E. P., Delfino, F., Martin, J., Kelly, M. P., Kirshner, J. R., Rafique, A., Kunz, A., Nittoli, T., et al., Bispecific Antibodies and Antibody-Drug Conjugates (ADCs) Bridging HER2 and Prolactin Receptor Improve Efficacy of HER2 ADCs. Mol. Cancer Ther. 2017, 16 (4), 681-93.
(3) de Goeij, B. E. C. G., Vink, T., ten Napel, H., Breij, E. C. W., Satijn, D., Wubbolts, R., Miao, D., and Parren, P. W. H. I., Efficient Payload Delivery by a Bispecific Antibody-Drug Conjugate Targeting HER2 and CD63. Mol. Cancer Ther. 2016, 15 (11), 2688-97.
(4) Dahlén, E., Veitonmäki, N., and Norlén, P., Bispecific antibodies in cancer immunotherapy. Ther. Adv. Vaccines Immunother. 2018, 6 (1), 3-17.
(5) Yu, L., and Wang, J., T cell-redirecting bispecific antibodies in cancer immunotherapy: recent advances. J. Cancer Res. Clin. Oncol. 2019, 145 (4), 941-56.
(6) Klein, C., Waldhauer, I., Nicolini, V. G., Freimoser-Grundschober, A., Nayak, T., Vugts, D. J., Dunn, C., Bolijn, M., Benz, J., Stihle, M., et al., Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 2017, 6 (3), e1277306.
(7) Brinkmann, U., and Kontermann, R. E., The making of bispecific antibodies. mAbs 2017, 9 (2), 182-212.
(8) Runcie, K., Budman, D. R., John, V., and Seetharamu, N., Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol. Med. 2018, 24 (50).
(9) Bruins, J. J., van de Wouw, C., Wagner, K., Bartels, L., Albada, B., and van Delft, F. L., Highly Efficient Mono-Functionalization of Knob-in-Hole Antibodies with Strain-Promoted Click Chemistry. ACS Omega 2019, 4 (7), 11801-7.
(10) Bartels, L., Ploegh, H. L., Spits, H., and Wagner, K., Preparation of bispecific antibody- protein adducts by site-specific chemo-enzymatic conjugation. Methods 2019, 154, 93- 101.
(11) Bartels, L., de Jong, G., Gillissen, M. A., Yasuda, E., Kattler, V., Bru, C., Fatmawati, C., van Hal-van Veen, S. E., Cercel, M. G., Moiset, G., et al., A chemo-enzymatically linked bispecific antibody retargets T cells to a sialylated epitope on CD43 in acute myeloid leukemia. Cancer Res. 2019.
(12) Wu, X., and Demarest, S. J., Building blocks for bispecific and trispecific antibodies. Methods 2019, 154 (1), 3-9.
(13) Wu, X., Yuan, R., Bacica, M., and Demarest, S. J., Generation of orthogonal Fab-based trispecific antibody formats. Protein Eng., Des. Sel. 2018, 31 (7-8), 249-56.
(14) Khan, S. N., Sok, D., Tran, K., Movsesyan, A., Dubrovskaya, V., Burton, D. R., and Wyatt, R. T., Targeting the HIV-1 Spike and Coreceptor with Bi- and Trispecific Antibodies for Single- Component Broad Inhibition of Entry. J. Virol. 2019, 93 (11).
(15) Maruani, A., Bispecifics and antibody-drug conjugates: A positive synergy. Drug. Discov. Today: Technol. 2018, 30, 55-61.
(16) Fournier, P., and Schirrmacher, V., Bispecific Antibodies and Trispecific Immunocytokines for Targeting the Immune System Against Cancer Preparing for the Future. BioDrugs 2013, 27 (1), 35-53.
93
5