Page 77 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 77

Monofunctionalization of Knob-in-hole Antibodies
(17) Jeger, S., Zimmermann, K., Blanc, A., Grunberg, J., Honer, M., Hunziker, P., Struthers, H., and Schibli, R., Site-Specific and Stoichiometric Modification of Antibodies by Bacterial Transglutaminase. Angew. Chem., Int. Ed. 2010, 49 (51), 9995-7.
(18) Borrmann, A., Fatunsin, O., Dommerholt, J., Jonker, A. M., Lowik, D. W. P. M., van Hest, J. C. M., and van Delft, F. L., Strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) for fast and activatable protein conjugation. Bioconjugate Chem. 2015, 26 (2), 257-61.
(19) Bruins, J. J., Westphal, A. H., Albada, B., Wagner, K., Bartels, L., Spits, H., van Berkel, W. J. H., and van Delft, F. L., Inducible, Site-Specific Protein Labeling by Tyrosine Oxidation- Strain-Promoted (4+2) Cycloaddition. Bioconjugate Chem. 2017, 28 (4), 1189-93.
(20) Bruins, J. J., van de Wouw, C., Keijzer, J. F., Albada, B., and van Delft, F. L. (2019) Inducible, Selective Labeling of Proteins via Enzymatic Oxidation of Tyrosine, in Enzyme-Mediated Ligation Methods (Nuijens, T., and Schmidt, M., Eds.) pp 357-68, Springer New York, New York, NY.
(21) Gahtory, D., Sen, R., Kuzmyn, A. R., Escorihuela, J., and Zuilhof, H., Strain-Promoted Cycloaddition of Cyclopropenes with o-Quinones: A Rapid Click Reaction. Angew. Chem., Int. Ed. 2018, 57 (32), 10118-22.
(22) Bruins, J. J., Blanco-Ania, D., van der Doef, V., van Delft, F. L., and Albada, B., Orthogonal, dual protein labelling by tandem cycloaddition of strained alkenes and alkynes to ortho- quinones and azides. Chem. Commun. 2018, 54 (53), 7338-41.
(23) White, J. B., Fleming, R., Masterson, L., Ruddle, B. T., Zhong, H. H., Fazenbaker, C., Strout, P., Rosenthal, K., Reed, M., Muniz-Medina, V., et al., Design and characterization of homogenous antibody-drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. mAbs 2019, 11 (3), 500-15.
(24) Hagemann, U. B., Mihaylova, D., Uran, S. R., Borrebaek, J., Grant, D., Bjerke, R. M., Karlsson, J., and Cuthbertson, A. S., Targeted alpha therapy using a novel CD70 targeted thorium-227 conjugate in in vitro and in vivo models of renal cell carcinoma. Oncotarget 2017, 8 (34), 56311-26.
(25) Klein, C., Waldhauer, I., Nicolini, V. G., Freimoser-Grundschober, A., Nayak, T., Vugts, D. J., Dunn, C., Bolijn, M., Benz, J., Stihle, M., et al., Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 2017, 6 (3), e1277306.
(26) Yu, L., and Wang, J., T cell-redirecting bispecific antibodies in cancer immunotherapy: recent advances. J. Cancer Res. Clin. Oncol. 2019, 145 (4), 941-56.
(27) Ridgway, J. B., Presta, L. G., and Carter, P., 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996, 9 (7), 617-21.
(28) Xu, Y., Lee, J., Tran, C., Heibeck, T. H., Wang, W. D., Yang, J., Stafford, R. L., Steiner, A. R., Sato, A. K., Hallam, T. J., et al., Production of bispecific antibodies in "knobs-into-holes" using a cell-free expression system. mAbs 2015, 7 (1), 231-42.
(29) Kontermann, R. E., and Brinkmann, U., Bispecific antibodies. Drug Discovery Today 2015, 20 (7), 838-47.
(30) Brinkmann, U., and Kontermann, R. E., The making of bispecific antibodies. mAbs 2017, 9 (2), 182-212.
(31) Merchant, A. M., Zhu, Z., Yuan, J. Q., Goddard, A., Adams, C. W., Presta, L. G., and Carter, P., An efficient route to human bispecific IgG. Nat. Biotechnol. 1998, 16 (7), 677-81.
 75
4

















































































   75   76   77   78   79