Page 122 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 122

Chapter 7
References
(1) McCombs, J. R., and Owen, S. C., Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry. Aaps J. 2015, 17 (2), 339-51.
(2) Mishiro, K., Hanaoka, H., Yamaguchi, A., and Ogawa, K., Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord. Chem. Rev. 2019, 383, 104-31.
(3) Dahlén, E., Veitonmäki, N., and Norlén, P., Bispecific antibodies in cancer immunotherapy. Ther. Adv. Vaccines Immunother. 2018, 6 (1), 3-17.
(4) Junutula, J. R., Raab, H., Clark, S., Bhakta, S., Leipold, D. D., Weir, S., Chen, Y., Simpson, M., Tsai, S. P., Dennis, M. S., et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26 (8), 925-32.
(5) Garcia-Molina, F., Hiner, A. N. P., Fenoll, L. G., Rodriguez-Lopez, J. N., Garcia-Ruiz, P. A., Garcia-Canovas, F., and Tudela, J., Mushroom tyrosinase: Catalase activity, inhibition, and suicide inactivation. J. Agric. Food. Chem. 2005, 53 (9), 3702-9.
(6) Dommerholt, J., Schmidt, S., Temming, R., Hendriks, L. J. A., Rutjes, F. P. J. T., van Hest, J. C. M., Lefeber, D. J., Friedl, P., and van Delft, F. L., Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew. Chem. Int. Ed. 2010, 49 (49), 9422-5.
(7) Borrmann, A., Fatunsin, O., Dommerholt, J., Jonker, A. M., Lowik, D. W. P. M., van Hest, J. C. M., and van Delft, F. L., Strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) for fast and activatable protein conjugation. Bioconjugate Chem. 2015, 26 (2), 257-61.
(8) Chen, Q. X., Liu, X. D., and Huang, H., Inactivation kinetics of mushroom tyrosinase in the dimethyl sulfoxide solution. Biochemistry (Moscow) 2003, 68 (6), 644-9.
(9) Wichers, H. J., Gerritsen, Y. A. M., and Chapelon, C. G. J., Tyrosinase isoforms from the fruitbodies of Agaricus bisporus. Phytochemistry 1996, 43 (2), 333-7.
(10) Son, H. F., Lee, S. H., Lee, S. H., Kim, H., Hong, H., Lee, U. J., Lee, P. G., Kim, B. G., and Kim, K. J., Structural Basis for Highly Efficient Production of Catechol Derivatives at Acidic pH by Tyrosinase from Burkholderia thailandensis. ACS Catal. 2018, 8 (11), 10375-82.
(11) Wilchek, M., and Miron, T., Mussel-inspired new approach for polymerization and cross- linking of peptides and proteins containing tyrosines by Fremy's salt oxidation. Bioconjugate Chem. 2015, 26 (3), 502-10.
(12) Simon, J. D., and Peles, D. N., The Red and the Black. Acc. Chem. Res. 2010, 43 (11), 1452- 60.
(13) Marin-Zamora, M. E., Rojas-Melgarejo, F., Garcia-Canovas, F., and Garcia-Ruiz, P. A., Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D- sorbitol cinnamic ester. J. Biotechnol. 2006, 126 (3), 295-303.
(14) Montanari, E., Gennari, A., Pelliccia, M., Manzi, L., Donno, R., Oldham, N. J., MacDonald, A., and Tirelli, N., Tyrosinase-Mediated Bioconjugation. A Versatile Approach to Chimeric Macromolecules. Bioconjugate Chem. 2018.
(15) Gillissen, M. A., de Jong, G., Kedde, M., Yasuda, E., Levie, S. E., Moiset, G., Hensbergen, P. J., Bakker, A. Q., Wagner, K., Villaudy, J., et al., Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice. Blood Adv. 2017, 1 (19), 1551-64.
120

















































































   120   121   122   123   124