Page 85 - Molecular features of low-grade developmental brain tumours
P. 85

DISTINCT DNA METHYLATION PATTERNS IN SEGA IN TSC
References
1. Curatolo, P., Bombardieri, R. & Jozwiak, S. Tuberous sclerosis. Lancet 372, 657-668, doi:10.1016/ S0140-6736(08)61279-9 (2008).
2. Curatolo, P., Moavero, R. & de Vries, P. J. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol 14, 733-745, doi:10.1016/S1474-4422(15)00069-1 (2015).
3. Davis, P. E. et al. Presentation and Diagnosis of Tuberous Sclerosis Complex in Infants. Pediatrics 140, doi:10.1542/peds.2016-4040 (2017).
4. Aronica, E., Becker, A. J. & Spreafico, R. Malformations of cortical development. Brain Pathol 22, 380- 401, doi:10.1111/j.1750-3639.2012.00581.x (2012).
5. Aronica, E. & Crino, P. B. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 11, 251-268, doi:10.1007/s13311-013-0251-0 (2014).
6. Jozwiak, S., Mandera, M. & Mlynarski, W. Natural History and Current Treatment Options for Subependymal Giant Cell Astrocytoma in Tuberous Sclerosis Complex. Semin Pediatr Neurol 22, 274-281, doi:10.1016/j.spen.2015.10.003 (2015).
7. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica 131, 803-820, doi:10.1007/s00401-016-1545-1 (2016).
8. Adriaensen, M. E. et al. Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 16, 691-696, doi:10.1111/j.1468- 1331.2009.02567.x (2009).
9. Cuccia, V. et al. Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst 19, 232-243, doi:10.1007/s00381-002-0700-2 (2003).
10. 1Buccoliero, A. M. et al. Subependymal giant cell astrocytoma (SEGA): Is it an astrocytoma? Morphological, immunohistochemical and ultrastructural study. Neuropathology 29, 25-30, doi:10.1111/j.1440-1789.2008.00934.x (2009).
11. Fujiwara, S., Takaki, T., Hikita, T. & Nishio, S. Subependymal giant-cell astrocytoma associated with tuberous sclerosis. Do subependymal nodules grow? Childs Nerv Syst 5, 43-44, doi:10.1007/ BF00706748 (1989).
12. Morimoto, K. & Mogami, H. Sequential CT study of subependymal giant-cell astrocytoma associated with tuberous sclerosis. Case report. J Neurosurg 65, 874-877, doi:10.3171/jns.1986.65.6.0874 (1986).
13. Dibble, C. C. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47, 535-546, doi:10.1016/j.molcel.2012.06.009 (2012).
14. Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17, 1829-1834, doi:10.1101/gad.1110003 (2003).
15. Chan, J. A. et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63, 1236-1242, doi:10.1093/jnen/63.12.1236 (2004).
16. Bongaarts, A. et al. The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas. Brain (2019).
17. Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat Commun 8, 15816, doi:10.1038/ncomms15816 (2017).
18. Tyburczy, M. E. et al. Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176, 1878- 1890, doi:10.2353/ajpath.2010.090950 (2010).
83
 3













































































   83   84   85   86   87