Page 27 - Coronary hemodynamics in acute myocardial infarction - Matthijs Bax
P. 27

General introduction and outline of the thesis
56. Duncker DJ, Bache RJ and Merkus D. Regulation of coronary resistance vessel tone in response to
exercise. J Mol Cell Cardiol. 2012;52:802-13. 1
57. Nees S, Weiss DR, Senftl A, Knott M, Forch S, Schnurr M, Weyrich P and Juchem G. Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol. 2012;302:H69-84.
58. Nees S, Weiss DR and Juchem G. Focus on cardiac pericytes. Pflugers Arch. 2013;465:779-87.
59. Avolio E and Madeddu P. Discovering cardiac pericyte biology: From physiopathological mechanisms to potential therapeutic applications in ischemic heart disease. Vascul Pharmacol. 2016;86:53-63.
60. Siao CJ, Lorentz CU, Kermani P, Marinic T, Carter J, McGrath K, Padow VA, Mark W, Falcone DJ, Cohen-Gould L, Parrish DC, Habecker BA, Nykjaer A, Ellenson LH, Tessarollo L and Hempstead BL. ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. J Exp Med. 2012;209:2291-305.
61. O’Farrell FM and Attwell D. A role for pericytes in coronary no-reflow. Nat Rev Cardiol. 2014;11:427- 32.
62. Wang JW, Chen YD, Wang CH, Yang XC, Zhu XL and Zhou ZQ. Development and validation of a clinical risk score predicting the no-reflow phenomenon in patients treated with primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Cardiology. 2013;124:153-60.
63. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ and Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med. 1994;331:222-7.
64. Kern MJ, Moore JA, Aguirre FV, Bach RG, Caracciolo EA, Wolford T, Khoury AF, Mechem C and Donohue TJ. Determination of angiographic (TIMI grade) blood flow by intracoronary Doppler flow velocity during acute myocardial infarction. Circulation. 1996;94:1545-52.
65. Abaci A, Oguzhan A, Eryol NK and Ergin A. Effect of potential confounding factors on the thrombolysis in myocardial infarction (TIMI) trial frame count and its reproducibility. Circulation. 1999;100:2219-23.
66. Kawamoto T, Yoshida K, Akasaka T, Hozumi T, Takagi T, Kaji S and Ueda Y. Can coronary blood flow velocity pattern after primary percutaneous transluminal coronary angioplasty [correction of angiography] predict recovery of regional left ventricular function in patients with acute myocardial infarction? Circulation. 1999;100:339-45.
67. Yamamoto K, Ito H, Iwakura K, Kawano S, Ikushima M, Masuyama T, Ogihara T and Fujii K. Two different coronary blood flow velocity patterns in thrombolysis in myocardial infarction flow grade 2 in acute myocardial infarction: insight into mechanisms of microvascular dysfunction. J Am Coll Cardiol. 2002;40:1755-60.
68. Stegehuis VE, Wijntjens GW, Piek JJ and van de Hoef TP. Fractional Flow Reserve or Coronary Flow Reserve for the Assessment of Myocardial Perfusion : Implications of FFR as an Imperfect Reference Standard for Myocardial Ischemia. Current cardiology reports. 2018;20:77-77.
69. van de Hoef TP, Echavarría-Pinto M, van Lavieren MA, Meuwissen M, Serruys PW, Tijssen JG, Pocock SJ, Escaned J and Piek JJ. Diagnostic and Prognostic Implications of Coronary Flow Capacity: A Comprehensive Cross-Modality Physiological Concept in Ischemic Heart Disease. JACC Cardiovasc Interv. 2015;8:1670-80.
 25


















































































   25   26   27   28   29