Page 147 - Assessing right ventricular function and the pulmonary circulation in pulmonary hypertension Onno Anthonius Spruijt
P. 147

References
[1] Archer SL WE, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 2010; 121:2045–2066.
[2] Hassoun PM ML, Barberà JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH,Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009; 54:S10–S19.
[3] Schermuly RT GH, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol. 2011; 8:443‐455.
[4] Tuder RM. Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med 2009; 30:376‐85.
[5] Price LC WS, Perros F, Dorfmüller P, Huertas A, Montani D, Cohen‐Kaminsky S, Humbert M. Inflammation in pulmonary arterial hypertension. Chest. 2012; 141:210‐221.
[6] Stacher E GB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD, Tuder RM. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012; 186:261‐272.
[7] Farber HW, Miller DP, McGoon MD, Frost AE, Benton WW and Benza RL. Predicting outcomes in pulmonary arterial hypertension based on the 6‐minute walk distance. J Heart Lung Transplant. 2015; 34:362‐8.
[8] Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W and Grimminger F. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005; 115:2811‐21.
[9] Zhao L AA, Wang L, Fang W, Dabral S, Dubois O, Cupitt J, Pullamsetti SS, Cotroneo E, Jones H, Tomasi G, Nguyen QD, Aboagye EO, El‐Bahrawy MA, Barnes G, Howard LS, Gibbs JS, Gsell W, He JG, Wilkins MR. Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation 2013; 128:1214‐1224.
[10] Hoeper MM, Barst RJ, Bourge RC, Feldman J, Frost AE, Galie N, Gomez‐Sanchez MA, Grimminger F, Grunig E, Hassoun PM, Morrell NW, Peacock AJ, Satoh T, Simonneau G, Tapson VF, Torres F, Lawrence D, Quinn DA and Ghofrani HA. Imatinib mesylate as add‐on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation. 2013;127:1128‐38.
[11] Salskov A TV, Grierson J, Vesselle H. . FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3'‐deoxy‐3'‐[18F]fluorothymidine. Semin Nucl Med. 2007; 37:429‐39.
[12] Shields AF GJ, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn‐Crews JM, Obradovich JE, Muzik O, Mangner TJ. Imaging proliferation in vivo with [F‐18]FLT and positron emission tomography. Nat Med 1998; 4:1334‐1336.
[13] Vesselle H GJ, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, Peterson LM, Vallières E, Wood DE. In vivo validation of 3'deoxy‐3'‐[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki‐67 immunohistochemistry and flow cytometry in human lung tumors. . Clin Cancer Res. 2002; 8:3315‐3323.
[14] Barthel H CM, Collingridge DR, Hutchinson OC, Osman S, He Q, Luthra SK, Brady F, Price PM, Aboagye EO. 3'‐deoxy‐ 3'‐[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res. 2003; 63:3791‐3798.
[15] Rasey JS GJ, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase‐1 activity in A549 carcinoma cells. J Nucl Med 2002; 43:1210‐1217.
[16] Schwartz JL TY, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med. 2003; 44:2027‐2032.
[17] Paproski RJ NA, Yao SY, Graham K, Young JD, Cass CE. The role of human nucleoside transporters in uptake of 3'‐ deoxy‐3'‐fluorothymidine. Mol Pharmacol 2008; 74:1372‐1380.
[18] Barthel H PM, Latigo J, He Q, Brady F, Luthra SK, Price PM, Aboagye EO. The uptake of 3'‐deoxy‐3'‐ [18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging. 2005; 32:257‐263.
[19] Shields AF. Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol. 2006; 8:141‐150.
[20] Grierson JR SJ, Muzi M, Jordan R, Krohn KA. Metabolism of 3'‐deoxy‐3'‐[F‐18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol. 2004; 31:829‐837.
[21] Arnér ES ES. Mammalian deoxyribonucleoside kinases. Pharmacol Ther. 1995; 67:155‐186.
[22] Willaime JM TF, Kenny LM, Aboagye EO. Quantification of intra‐tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine‐positron emission tomography. Phys Med Biol 2013; 58:187‐203.
[23] Galiè N HM, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015; 46:903‐975.
Chapter 8
 145
8








































































   145   146   147   148   149