Page 153 - Physiological based CPAP for preterm infants at birth Tessa Martherus
P. 153

18. te Pas AB, et al. Establishing functional residual capacity at birth: the effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model. Pediatr Res. 2009;65(5):537-41.
19. Siew ML, et al. Surfactant increases the uniformity of lung aeration at birth in ventilated preterm rabbits. Pediatr Res. 2011;70(1):50-5.
20. Miserocchi G, et a;. Pulmonary interstitial pressure in anesthetized paralyzed newborn rabbits. J Appl Physiol (1985). 1994;77(5):2260-8.
21. Bland RD, et al. Clearance of liquid from lungs of newborn rabbits. J Appl Physiol Respir Environ Exerc Physiol. 1980;49(2):171-7.
22. Hooper SB, et al. Respiratory transition in the newborn: a three-phase process. Arch Dis Child Fetal Neonatal Ed. 2016;101(3):F266-71.
23. Madar J, et al. European Resuscitation Council Guidelines 2021: Newborn resuscitation and support of transition of infants at birth. Resuscitation. 2021;161:291-326.
24. Mulrooney N, et al. Surfactant and physiologic responses of preterm lambs to continuous positive airway pressure. Am J Respir Crit Care Med. 2005;171(5):488-93.
25. Siew ML, et al. Positive end-expiratory pressure enhances development of a functional
residual capacity in preterm rabbits ventilated from birth. J Appl Physiol (1985).
2009;106(5):1487-93.
26. te Pas AB, et al. Optimizing lung aeration at birth using a sustained inflation and
positive pressure ventilation in preterm rabbits. Pediatr Res. 2016;80(1):85-91.
27. Kitchen MJ, et al. Changes in positive end-expiratory pressure alter the distribution of ventilation within the lung immediately after birth in newborn rabbits. PLoS One.
2014;9(4):e93391.
28. Tingay DG, et al. Effect of sustained inflation vs. stepwise PEEP strategy at birth on gas
exchange and lung mechanics in preterm lambs. Pediatric research. 2014;75(2):288-
94. GD
29. Miedema M, et al. Effect of nasal continuous and biphasic positive airway pressure on lung volume in preterm infants. The Journal of pediatrics. 2013;162(4):691-7.
30. Magnenant E, et al. Dynamic behavior of respiratory system during nasal continuous
positive airway pressure in spontaneously breathing premature newborn infants.
Pediatr Pulmonol. 2004;37(6):485-91.
31. Richardson CP, et al. Effects of continuous positive airway pressure on pulmonary
function and blood gases of infants with respiratory distress syndrome. Pediatric
research. 1978;12(7):771-4.
32. Bhatia R, et al. Regional Volume Characteristics of the Preterm Infant Receiving First
Intention Continuous Positive Airway Pressure. The Journal of pediatrics.
2017;187:80-8 e2.
33. Templin L, et al. A Quality Improvement Initiative to Reduce the Need for Mechanical
Ventilation in Extremely Low Gestational Age Neonates. Am J Perinatol. 2017;34(8):759-64.
General discussion
P
   149
r


































































   151   152   153   154   155