Page 61 - Strategies for non-invasive managementof high-grade cervical intraepithelial neoplasia - prognostic biomarkers and immunotherapy Margot Maria Koeneman
P. 61

42. Hildesheim A, Wang SS. Host and viral genetics and risk of cervical cancer: a review. Virus research. 2002;89(2):229-40.
43. Matsumoto K, Maeda H, Oki A, et al. HLA class II DRB1*1302 allele protects against 2 progression to cervical intraepithelial neoplasia grade 3: a multicenter prospective cohort
study. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 2012;22(3):471-8.
44. Sastre-Garau X, Cartier I, Jourdan-Da Silva N, De Cremoux P, Lepage V, Charron D. Regression of low-grade cervical intraepithelial neoplasia in patients with HLA-DRB1*13 genotype. Obstetrics and gynecology. 2004;104(4):751-5.
45. Ovestad IT, Gudlaugsson E, Skaland I, et al. Local immune response in the microenvironment of CIN2-3 with and without spontaneous regression. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2010;23(9):1231-40.
46. Kojima S, Kawana K, Tomio K, et al. The prevalence of cervical regulatory T cells in HPV-related cervical intraepithelial neoplasia (CIN) correlates inversely with spontaneous regression of CIN. American journal of reproductive immunology. 2013;69(2):134-41.
47. Molling JW, de Gruijl TD, Glim J, et al. CD4(+)CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. International journal of cancer Journal international du cancer. 2007;121(8):1749-55.
48. Liu H, Liu S, Wang H, et al. Genomic amplification of the human telomerase gene (hTERC) associated with human papillomavirus is related to the progression of uterine cervical dysplasia to invasive cancer. Diagnostic pathology. 2012;7:147.
49. Lan YL, Yu L, Jia CW, Wu YM, Wang SY. Gain of human telomerase RNA gene is associated with progression of cervical intraepithelial neoplasia grade I or II. Chinese medical journal. 2012;125(9):1599-602.
50. Chay DB, Cho H, Kim BW, Kang ES, Song E, Kim JH. Clinical significance of serum anti-human papillomavirus 16 and 18 antibodies in cervical neoplasia. Obstetrics and gynecology. 2013;121(2 Pt 1):321-9.
51. Matsumoto K, Yoshikawa H, Yasugi T, et al. Balance of IgG subclasses toward human papillomavirus type 16 (HPV16) L1-capsids is a possible predictor for the regression of HPV16-positive cervical intraepithelial neoplasia. Biochemical and biophysical research communications. 1999;258(1):128-31.
52. de Gruijl TD, Bontkes HJ, Walboomers JM, et al. Immunoglobulin G responses against human papillomavirus type 16 virus-like particles in a prospective nonintervention cohort study of women with cervical intraepithelial neoplasia. Journal of the National Cancer Institute. 1997;89(9):630-8.
53. Matsumoto K, Yasugi T, Oki A, et al. IgG antibodies to HPV16, 52, 58 and 6 L1-capsids and spontaneous regression of cervical intraepithelial neoplasia. Cancer letters. 2006;231(2):309- 13.
54. Wilting SM, Snijders PJ, Verlaat W, et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene. 2013;32(1):106-16.
55. Zheng ZM, Wang X. Regulation of cellular miRNA expression by human papillomaviruses. Biochimica et biophysica acta. 2011;1809(11-12):668-77.
A review of prognostic biomarkers
 59


















































































   59   60   61   62   63