Page 80 - Physico-Chemical Niche Conditions for Bone Cells
P. 80

Shear stress modulates osteoblast cell and nucleus shape
linked to cytoskeletal filaments—integrated bioimaging of epithelial cells in 3D culture. J.
Cell Sci. 2016, 130, 177–189, doi:10.1242/jcs.190967.
19. Duan, L.; Chen, H.; Gao, J. The cytoskeleton of the system. Lab. Cell Biol. Tech. 2018,
1, 17–22.
20. Davies, P.F.; Robotewskyj, A.; Griem, M.L. Quantitative studies of endothelial cell
adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin.
Investig. 1994, 93, 2031–2038, doi:10.1172/JCI117197.
21. Sun, J.; Chen, J.; Mohagheghian, E.; Wang, N. Force-induced gene up-regulation does
not follow the weak power law but depends on H3K9 demethylation. Sci. Adv. 2020, 6,
eaay9095, doi:10.1126/sciadv.aay9095.
22. Juffer, P.; Jaspers, R.T.; Lips, P.; Bakker, A.D.; Klein-Nulend, J. Expression of muscle
anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am. J.
Physiol. Metab. 2012, 302, E389–E395, doi:10.1152/ajpendo.00320.2011.
23. Schaffler, M.B.; Cheung, W.Y.; Majeska, R.; Kennedy, O. Osteocytes: Master orchestrators of bone. Calcif. Tissue Int. 2014, 94, 5–24, doi:10.1007/s00223−013−9790-
y.
24. Bacabac, R.G.; Mizuno, D.; Schmidt, C.F.; MacKintosh, F.C.; van Loon, J.J.W.A.; Klein-
Nulend, J.; Smit, T.H. Round versus flat: Bone cell morphology, elasticity, and
mechanosensing. J. Biomech. 2008, 41, 1590–1598, doi:10.1016/j.jbiomech.2008.01.031.
25. Palumbo, C. A three-dimensional ultrastructural study of osteoid-osteocytes in the tibia of
chick embryos. Cell Tissue Res. 1986, 246, 125–131, doi:10.1007/BF00219008.
26. Finan, J.D.; Guilak, F. The effects of osmotic stress on the structure and function of the
cell nucleus. J. Cell. Biochem. 2009, 109, 460–467, doi:10.1002/jcb.22437.
27. McGarry, J.G.; Klein-Nulend, J.; Prendergast, P.J. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem. Biophys. Res. Commun. 2005, 330, 341–348,
doi:10.1016/j.bbrc.2005.02.175.
28. Gardinier, J.D.; Majumdar, S.; Duncan, R.L.; Wang, L. Cyclic hydraulic pressure and fluid
flow differentially modulate cytoskeleton re-organization in MC3T3 osteoblasts. Cell. Mol.
Bioeng. 2009, 2, 133–143, doi:10.1007/s12195−008−0038−2.
29. Bakker, A.D.; Soejima, K.; Klein-Nulend, J.; Burger, E.H. The production of nitric oxide
and prostaglandin E2 by primary bone cells is shear stress dependent. J. Biomech. 2001,
34, 671–677, doi:10.1016/S0021−9290(00)00231−1.
30. Tan, S.D.; de Vries, T.J.; Kuijpers-Jagtman, A.M.; Semeins, C.M.; Everts, V.; Klein-
Nulend, J. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone
resorption. Bone 2007, 41, 745–751, doi:10.1016/j.bone.2007.07.019.
31. Starr, D.A.; Fridolfsson, H.N. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu. Rev. Cell Dev. Biol. 2010, 26,
421–444, doi:10.1146/annurev-cellbio−100109−104037.
32. Chancellor, T.J.; Lee, J.; Thodeti, C.K.; Lele, T. Actomyosin tension exerted on the
nucleus through nesprin−1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys. J. 2010, 99, 115–123, doi:10.1016/j.bpj.2010.04.011.
33. Anno, T.; Sakamoto, N.; Sato, M. Role of nesprin−1 in nuclear deformation in endothelial cells under static and uniaxial stretching conditions. Biochem. Biophys. Res. Commun. 2012, 424, 94–99, doi:10.1016/j.bbrc.2012.06.073.
34. Morgan,J.T.;Pfeiffer,E.R.;Thirkill,T.L.;Kumar,P.;Peng,G.;Fridolfsson,H.N.;Douglas, G.C.; Starr, D.A.; Barakat, A.I. Nesprin−3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Mol. Biol. Cell 2011, 22, 4324–4334, doi:10.1091/mbc.e11−04−0287.
35. Chambliss, A.B.; Khatau, S.B.; Erdenberger, N.; Robinson, D.K.; Hodzic, D.; Longmore, G.D.; Wirtz, D. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci. Rep. 2013, 3, 1087, doi:10.1038/srep01087.
78

























































   78   79   80   81   82