Page 47 - Physico-Chemical Niche Conditions for Bone Cells
P. 47

REFERENCES
1. Goodman, C.A.; Hornberger, T.A.; Robling, A.G. Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms. Bone 2015, 80, 24–36, doi:10.1016/j.bone.2015.04.014.
2. DiGirolamo, D.J.; Kiel, D.P.; Esser, K.A. Bone and skeletal muscle: neighbors with close ties. J. Bone Miner. Res. 2013, 28, 1509–1518, doi:10.1002/jbmr.1969.
3. Karsenty, G.; Oury, F. Biology without walls: the novel endocrinology of bone. Annu. Rev. Physiol. 2012, 74, 87–105, doi:10.1146/annurev-physiol-020911-153233.
4. DiGirolamo, D.J.; Clemens, T.L.; Kousteni, S. The skeleton as an endocrine organ. Nat. Rev. Rheumatol. 2012, 8, 674–683, doi:10.1038/nrrheum.2012.157.
5. Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465, doi:10.1038/nrendo.2012.49.
6. Kim, H.; Wrann, C.D.; Jedrychowski, M.; Vidoni, S.; Kitase, Y.; Nagano, K.; Zhou, C.; Chou, J.; Parkman, V.-J.A.; Novick, S.J.; et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell 2018, 175, 1756-1768.e17,
doi:10.1016/j.cell.2018.10.025.
7. Schiaffino, S.; Dyar, K.A.; Ciciliot, S.; Blaauw, B.; Sandri, M. Mechanisms regulating
skeletal muscle growth and atrophy. FEBS J. 2013, 280, 4294–4314,
doi:10.1111/febs.12253.
8. Robling, A.G. The interaction of biological factors with mechanical signals in bone
adaptation: Recent developments. Curr. Osteoporos. Rep. 2012, 10, 126–131,
doi:10.1007/s11914-012-0099-y.
9. Hornberger, T. Mechanotransduction and the regulation of mTORC1 signaling in
skeletal muscle. Int. J. Biochem. Cell Biol. 2011, 43, 1267–1276,
doi:10.1016/j.biocel.2011.05.007.
10. Eftestøl, E.; Egner, I.M.; Lunde, I.G.; Ellefsen, S.; Andersen, T.; Sjåland, C.; Gundersen,
K.; Bruusgaard, J.C. Increased hypertrophic response with increased mechanical load
in skeletal muscles receiving identical activity patterns. Am. J. Physiol. Physiol. 2016, 311, C616–C629, doi:10.1152/ajpcell.00016.2016.
11. Arfat, Y.; Xiao, W.-Z.; Iftikhar, S.; Zhao, F.; Li, D.-J.; Sun, Y.-L.; Zhang, G.; Shang, P.; Qian, A.-R. Physiological effects of microgravity on bone cells. Calcif. Tissue Int. 2014, 94, 569–579, doi:10.1007/s00223-014-9851-x.
12. Klein-Nulend, J.; Bacabac, R.G.; Bakker, A.D. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur. Cells Mater. 2012, 24, 278–291, doi:10.22203/eCM.v024a20.
13. Janz, K.F.; Letuchy, E.M.; Burns, T.L.; Francis, S.L.; M, L.S. Muscle power predicts adolescent bone strength: lowa bone development study. Med. Sci. Sport. Exerc. 2015, 47, 2201–2206, doi:10.1249/MSS.0000000000000648.
14. Nathan, A.S.; Baker, B.M.; Nerurkar, N.L.; Mauck, R.L. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 2011, 7, 57–66, doi:10.1016/j.actbio.2010.08.007.
15. Juffer, P.; Bakker, A.D.; Klein-Nulend, J.; Jaspers, R.T. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production. Cell Biochem. Biophys. 2014, 69, 411–419, doi:10.1007/s12013-013-9812- 4.
16. Han, Y.; You, X.; Xing, W.; Zhang, Z.; Zou, W. Paracrine and endocrine actions of bone - The functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018, 6, 1–11, doi:10.1038/s41413-018-0019-6.
17. Ohlstein, B.; Kai, T.; Decotto, E.; Spradling, A. The stem cell niche: theme and variations. Curr Opin Cell Biol 2004, 16, 693–699, doi:10.1016/j.ceb.2004.09.003.
18. Malinova, T.; Huveneers, S. Sensing of cytoskeletal forces by asymmetric adherens junctions. Trends Cell Biol. 2018, 28, 328–341, doi:10.1016/j.tcb.2017.11.002.
19. Martino, F.; Perestrelo, A.R.; Vinarský, V.; Pagliari, S.; Forte, G. Cellular 45
Chapter 2
 2




































































   45   46   47   48   49