Page 173 - Physico-Chemical Niche Conditions for Bone Cells
P. 173

16. Thomas, C.H.; Collier, J.H.; Sfeir, C.S.; Healy, K.E. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1972–1977, doi:10.1073/pnas.032668799.
17. Jin, J.; Bakker, A.D.; Wu, G.; Klein-Nulend, J.; Jaspers, R.T. Physicochemical niche conditions and mechanosensing by osteocytes and myocytes. Curr. Osteoporos. Rep. 2019, 17, 235–249, doi:10.1007/s11914-019-00522-0.
18. Bloom, S.; Lockard, V.G.; Bloom, M. Intermediate filament-mediated stretch-induced changes in chromatin: A hypothesis for growth initiation in cardiac myocytes. J. Mol. Cell. Cardiol. 1996, 28, 2123–2127, doi:10.1006/jmcc.1996.0204.
19. Juffer, P.; Bakker, A.D.; Klein-Nulend, J.; Jaspers, R.T. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production. Cell Biochem. Biophys. 2014, 69, 411–419, doi:10.1007/s12013-013-9812- 4.
20. Jaalouk, D.E.; Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 2009, 10, 63–73, doi:10.1038/nrm2597.
21. Palumbo, C. A three-dimensional ultrastructural study of osteoid-osteocytes in the tibia of chick embryos. Cell Tissue Res. 1986, 246, 125–131, doi:10.1007/BF00219008.
22. Temiyasathit, S.; Jacobs, C.R. Osteocyte primary cilium and its role in bone mechanotransduction. Ann. N. Y. Acad. Sci. 2010, 1192, 422–428, doi:10.1111/j.1749- 6632.2009.05243.x.
23. Ishijima, M.; Rittling, S.R.; Yamashita, T.; Tsuji, K.; Kurosawa, H.; Nifuji, A.; Denhardt, D.T.; Noda, M. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J. Exp. Med. 2002, 193, 399–404, doi:10.1084/jem.193.3.399.
24. Moore, A.S.; Holzbaur, E.L. Mitochondrial-cytoskeletal interactions: dynamic associations that facilitate network function and remodeling. Curr. Opin. Physiol. 2018, 3, 94–100, doi:10.1016/j.cophys.2018.03.003.
25. Vining, K.H.; Mooney, D.J. Mechanical forces direct stem cell behaviour in development
and regeneration. Nat.
Rev. Mol. Cell Biol. 2017, 18, 728–742,
doi:10.1038/nrm.2017.108.
26. Mai, Z.; Peng, Z.; Wu, S.; Zhang, J.; Chen, L.; Liang, H.; Bai, D.; Yan, G.; Ai, H. Single
bout short duration fluid shear stress induces osteogenic differentiation of MC3T3-E1 cells via integrin β1 and BMP2 signaling cross-talk. PLoS One 2013, 8, e61600, doi:10.1371/journal.pone.0061600.
27. Bartolák-Suki, E.; Imsirovic, J.; Nishibori, Y.; Krishnan, R.; Suki, B. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int. J. Mol. Sci. 2017, 18, 1812–1828, doi:10.3390/ijms18081812.
28. Boldogh, I.R.; Pon, L.A. Interactions of mitochondria with the actin cytoskeleton. Biochim. Biophys. Acta - Mol. Cell Res. 2006, 1763, 450–462, doi:10.1016/j.bbamcr.2006.02.014.
29. Di Benedetto, G.; Gerbino, A.; Lefkimmiatis, K. Shaping mitochondrial dynamics: The role of cAMP signalling. Biochem. Biophys. Res. Commun. 2018, 500, 65–74, doi:10.1016/j.bbrc.2017.05.041.
30. Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689, doi:10.1016/j.cell.2006.06.044.
31. Zhao, G.; Raines, A..; Wieland, M.; Schwartz, Z.; Boyan, B.. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 2007, 28, 2821–2829, doi:10.1016/j.biomaterials.2007.02.024.
32. Healy, K.E.; Thomas, C.H.; Rezania, A.; Kim, J.E.; McKeown, P.J.; Lom, B.; Hockberger, P.E. Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 1996, 17, 195–208, doi:10.1016/0142- 9612(96)85764-4.
33. Allori, A.C.; Sailon, A.M.; Warren, S.M. Biological basis of bone formation, remodeling, 171
Chapter 7
 7











































































   171   172   173   174   175