Page 159 - Physico-Chemical Niche Conditions for Bone Cells
P. 159

REFERENCES
1. Farré-Guasch, E.; Prins, H.-J.; Overman, J.R.; ten Bruggenkate, C.M.; Schulten, E.A.J.M.; Helder, M.N.; Klein-Nulend, J. Human Maxillary Sinus Floor Elevation as a Model for Bone Regeneration Enabling the Application of One-Step Surgical Procedures. Tissue Eng. Part B Rev. 2013, 19, 69–82, doi:10.1089/ten.teb.2012.0404.
2. Gittens, R.A.; Olivares-Navarrete, R.; Schwartz, Z.; Boyan, B.D. Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants. Acta Biomater. 2014, 10, 3363–3371, doi:10.1016/j.actbio.2014.03.037.
3. Shah, F.A.; Thomsen, P.; Palmquist, A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019, 84, 1–15, doi:10.1016/j.actbio.2018.11.018.
4. Sun, Z.; Guo, S.S.; Fässler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 2016, 215, 445–456, doi:10.1083/jcb.201609037.
5. Geiger, B.; Spatz, J.P.; Bershadsky, A.D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 2009, 10, 21–33, doi:10.1038/nrm2593.
6. Marie, P.J.; Haÿ, E.; Saidak, Z. Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol. Metab. 2014, 25, 567–575, doi:10.1016/j.tem.2014.06.009.
7. Porté-Durrieu, M..; Guillemot, F.; Pallu, S.; Labrugère, C.; Brouillaud, B.; Bareille, R.; Amédée, J.; Barthe, N.; Dard, M.; Baquey, C. Cyclo-(DfKRG) peptide grafting onto Ti– 6Al–4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials 2004, 25, 4837–4846, doi:10.1016/j.biomaterials.2003.11.037.
8. Takai, E.; Landesberg, R.; Katz, R.W.; Hung, C.T.; Guo, X.E. Substrate modulation of osteoblast adhesion strength, focal adhesion kinase activation, and responsiveness to
mechanical stimuli. MCB
Mol. Cell. Biomech. 2006, 3, 1–12,
doi:10.3970/mcb.2006.003.001.
9. Lim, J.Y.; Dreiss, A.D.; Zhou, Z.; Hansen, J.C.; Siedlecki, C.A.; Hengstebeck, R.W.;
Cheng, J.; Winograd, N.; Donahue, H.J. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 2007, 28, 1787–1797, doi:10.1016/j.biomaterials.2006.12.020.
10. Keselowsky,B.G.;Collard,D.M.;Garcıá,A.J.Surfacechemistrymodulatesfocal adhesion composition and signaling through changes in integrin binding. Biomaterials 2004, 25, 5947–5954, doi:10.1016/j.biomaterials.2004.01.062.
11. Ruoslahti, E.; Pierschbacher, M. New perspectives in cell adhesion: RGD and integrins. Science. 1987, 238, 491–497, doi:10.1126/science.2821619.
12. Wu, S.; Yang, X.; Li, W.; Du, L.; Zeng, R.; Tu, M. Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing RGD onto liquid crystal substrate. Mater. Sci. Eng. C 2017, 71, 973–981, doi:10.1016/j.msec.2016.11.003.
13. Cheng, K.; Wang, T.; Yu, M.; Wan, H.; Lin, J.; Weng, W.; Wang, H. Effects of RGD immobilization on light-induced cell sheet detachment from TiO2 nanodots films. Mater. Sci. Eng. C 2016, 63, 240–246, doi:10.1016/j.msec.2016.02.072.
14. Oya, K.; Tanaka, Y.; Saito, H.; Kurashima, K.; Nogi, K.; Tsutsumi, H.; Tsutsumi, Y.; Doi, H.; Nomura, N.; Hanawa, T. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials 2009, 30, 1281– 1286, doi:10.1016/j.biomaterials.2008.11.030.
15. Lee, M.H.; Adams, C.S.; Boettiger, D.; DeGrado, W.F.; Shapiro, I.M.; Composto, R.J.; Ducheyne, P. Adhesion of MC3T3-E1 cells to RGD peptides of different flanking residues: Detachment strength and correlation with long-term cellular function. J. Biomed. Mater. Res. Part A 2007, 81A, 150–160, doi:10.1002/jbm.a.31065.
16. Koçer, G.; Jonkheijm, P. Guiding hMSC adhesion and differentiation on supported lipid bilayers. Adv. Healthc. Mater. 2017, 6, 1600862–1600873, doi:10.1002/adhm.201600862.
17. Glazier, R.; Salaita, K. Supported lipid bilayer platforms to probe cell mechanobiology. 157
Chapter 6
 6











































































   157   158   159   160   161