Page 128 - Predicting survival in patients with spinal bone metastasesL
P. 128
CHAPTER IX
23. Bollen L, Wibmer C, Van der Linden YM, et al. Predictive value of six prognostic scoring systems for spinal bone metastases – An analysis based on 1379 patients. Spine 2016; 41(3):155-162.
24. Versteeg AL, Van der Velden JM, Verkooijen HM, et al. The effect of introducing the Spinal Instability Neoplastic Score in routine clinical practice for patients with spinal metastases. The Oncologist. 2016;21(1):95-101.
25. Bollen L, Wibmer C, Wang M, et al. Molecular phenotype is associated with survival in breast cancer patients with spinal bone metastases. Clin. Exp. Metastasis. 2015;32(1):1-5.
26. Willeumier JJ, Van der Linden YM, Van der Wal CWPG, et al. An Easy-to-Use Prognostic model for survival estimation for patients with symptomatic long bone metastases. J Bone Joint Surg. 2018;100(3):196-204.
27. Somashekhar SP, Sepulveda MJ, Puglielli S, et al. Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol 2018;29(2):418-423.
28. Suwanvecho S, Suwanrusme H, Sangtian M, et al. Concordance assessment of a cognitive computing system in Thailand. Abstract, ASCO June 5, 2017.
29. Groenen KH, Bitter T, Van Veluwen TC, et al. Case-specific non-linear finite element models to predict failure behavior in two functional spinal units. J Orthop Res. 2018 EPUB ahead of print.
30. Wang Z, Wen X, Lu Y, et al. Expoiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget. 2016;7(11):612-622.
31. Karhade AV, Thio QC, Ogink PT, et al. Development of machine learning algorithms for prediction of 30-day mortality after surgery for spinal metastases. Neurosurgery. 2018 EPUB ahead of print.
126